
In un precedente articolo abbiamo parlato della genesi dell’equazione di Dirac. Ora però mettiamo le mani nella marmellata ed eseguiamo una vera e propria dissezione dell’equazione, in ogni suo elemento chiave.
Cosa contiene

Partiamo dal capire cosa c’è dentro. Abbiamo di fronte a noi cinque simboli diversi, ciascuno con un ruolo ben preciso. Procediamo da sinistra verso destra

- La “i”, altrimenti nota come unità immaginaria.
Cosa è?: È un numero, proprio come anche 2 è un numero, o 13.4. L’unica differenza è che “i” ha delle proprietà speciali, infatti è l’unico numero che moltiplicato algebricamente per se stesso è capace di dare come risultato un numero negativo, cioè i2 = −1.
Perché è presente nell’equazione?: la meccanica quantistica prevede l’utilizzo delle unità immaginarie al fine di semplificare la scrittura delle equazioni più importanti. I fisici sono pigri e preferiscono usare la notazione più comoda e diretta possibile. I “numeri complessi“ garantiscono comodità logistica. Nulla di più, nulla di meno. - “La matrice γμ “, nota come matrice di Dirac.
Cosa è?: È una matrice, cioè un oggetto matematico che ha il compito di trasformare altri oggetti formati da più componenti. La trasformazione ha l’effetto di mischiare queste componenti secondo una particolare ricetta contenuta nella struttura matematica della matrice. In questo caso l’oggetto da trasformare è la funzione d’onda ψ, che nella teoria di Dirac è formata da 4 componenti.
Perché è presente nell’equazione?: come discusso nel precedente articolo sulla genesi, le γμ sono presenti al fine di garantire la covarianza dell’equazione sotto le trasformazioni relativistiche di Einstein. (Per saperne di più sul concetto di covarianza clicca qui). - “La derivata parziale ∂μ” , scritta in un formato criptico e riassuntivo.
Cosa è?: è un operatore, cioè trasforma gli oggetti proprio come una matrice, ma in aggiunta ha anche il compito di calcolare la variazione dell’oggetto in una specifica direzione dello spazio-tempo. Le direzioni dello spaziotempo sono specificate dall’indice μ=0,1,2,3 in cui μ=0 è la direzione temporale, e μ=1,2,3 sono le tre direzioni cartesiane x,y,z a cui siamo abituati.
Perché è presente nell’equazione?: In fisica studiamo i sistemi chiedendoci come variano sotto certi stimoli. Le variazioni sono calcolate con le derivate. Le equazioni chiave della fisica sono chiamate “equazioni differenziali” perché contengono le derivate delle soluzioni che vogliamo trovare, cioè hanno il compito di descrivere l’evoluzione di un sistema chiedendoci: “sai trovare quella funzione soluzione ψ che quando varia in un certo modo descritto dall’equazione differenziale ci dà questo risultato?”. La risposta a questa domanda, matematicamente, fornisce la soluzione che permette di fare previsioni teoriche da verificare sperimentalmente. - “La massa m”.
Cosa è?: è la massa della particella descritta dalla soluzione ψ.
Perché è presente nell’equazione?: come spiegato nella genesi dell’equazione, l’equazione di Dirac è stata ricavata modellando l’equazione di Schrödinger e adattandola al caso relativistico. In tal caso l’energia di una particella ferma è proporzionale alla sua massa, come evidenziato da E=mc2: questa massa deve quindi comparire esplicitamente nell’equazione differenziale relativistica (perché l’equazione di Schrödinger coinvolge proprio l’energia della particella). - “La funzione d’onda ψ“, altrimenti nota come spinore di Dirac.
Cosa è?: dal punto di vista quantistico rappresenta quella quantità matematica il cui modulo al quadrato rappresenta la densità di probabilità di trovare la particella in un certo punto dello spazio. Dal punto di vista della teoria dei campi rappresenta il campo della particella di massa m, distribuito nello spaziotempo. Le eccitazioni di questo campo vengono interpretate come la particella stessa.
Perché è presente nell’equazione?: per trovare l’espressione matematica del campo ψ, occorre capire come si comporta quando si calcola una sua variazione. Questo è il metodo delle equazioni differenziali, e l’equazione di Dirac è un’equazione differenziale. L’equazione ci chiede di trovare la più generica ψ che rispetta una certa proprietà. Questa proprietà è evidenziata da un altro modo di scrivere la stessa equazione (portando cioè il termine di massa a secondo membro):

L’equazione ci sta parlando, ci chiede di risolvere un determinato problema:
Sai trovare quella funzione ψ tale che, una volta trasformata tramite gli operatori “γμ∂μ” e moltiplicata per il numero “i”, produce come risultato la moltiplicazione di se stessa per una costante “m”?
La risposta a questa domanda fornisce la soluzione per il campo di una particella massiva, libera da forze.
Come si interpreta
Per capire il potere concettuale di questo modo di porre i problemi, cioè quello di ricavare delle informazioni su un certo oggetto ψ studiando prima come si comporta sotto trasformazioni generate da degli operatori, è molto utile sfruttare un’analogia con il concetto di vettori.
Un vettore 2D può essere rappresentato sul piano cartesiano (x,y) come una freccia uscente dall’origine:

Ad esempio per costruire un vettore di componenti (1,1), cioè v1=1 sull’asse x, e v2=1 sull’asse y, parto dall’origine e mi sposto di 1 sull’asse x, poi mi sposto di 1 sull’asse y. Il punto in cui arrivo è la testa del vettore. Collegando la testa con la coda (cioè l’origine) ottengo una linea diagonale che chiamo “vettore”.
Un vettore può essere trasformato da una matrice usando la seguente ricetta di composizione:

Il vettore trasformato ha le sue componenti che nascono mischiando le componenti del vettore di partenza, secondo una particolare ricetta descritta dalla matrice-operatore.
Anche il non fare niente è una trasformazione: prende il nome di matrice identità, la sua azione mi fa ottenere di nuovo il vettore di partenza. Puoi verificare anche tu con la ricetta data sopra che il seguente calcolo lascia invariato il vettore di partenza:

Infatti in questo caso l’operatore è tale che a1=1, a2=0, a3=0, a4=1, e sostituendo nella ricetta di sopra otteniamo proprio che il vettore rimane invariato.
Una trasformazione meno banale può invece essere una riflessione, descritta da:

Puoi verificare il risultato pure tu usando la solita ricetta. Graficamente abbiamo invertito la componente verticale del vettore, come si vede sul piano cartesiano:

L’equazione di Dirac si presenta, come accennato, nella seguente veste:

La quale ricalca fortemente il modo in cui trasformiamo i vettori. In questo caso la ricetta prescritta dall’equazione è molto specifica: la trasformazione di ψ è tale da restituire come risultato la ψ stessa, moltiplicata per la massa m. Dal punto di vista matematico, questa richiesta può permetterci di trovare la ψ in maniera non ambigua.
NB: non a caso ψ soddisfa un’equazione con una struttura simile alle equazioni vettoriali con le matrici. Infatti ψ sono oggetti parenti dei vettori, chiamati spinori di Dirac. La differenza fondamentale con i vettori è legata al modo in cui trasformano sotto trasformazioni di Lorentz, come accennato in questo articolo.
Come si usa
Per dare un assaggio di come si affronti una situazione in cui si deve risolvere l’equazione di Dirac, scegliamo la situazione più semplice possibile: il caso di una particella libera e ferma rispetto a noi.
Prima permettimi di trasformare l’operatore “γμ∂μ“ in una sua forma più agevole matematicamente:
In meccanica quantistica l’operatore ∂μ può essere espresso in termini della quantità di moto “p” della particella. Per ora prendi questa affermazione come un “ipse dixit”, non è questo il luogo e il momento per giustificarla. L’equazione di Dirac può quindi essere scritta come

In cui esplicitiamo una volta per tutte il fatto che con γμpμ intendiamo una somma che per pigrizia non avevamo voglia di esplicitare prima

Le quantità γ1,γ2,γ3 sono tutte matrici di Dirac che non ci interessano perché noi supponiamo che la particella sia ferma rispetto a noi, quindi le componenti spaziali della quantità di moto sono nulle, cioè px=py=pz=0. La “quantità di moto” di indice p0 è invece solo un modo lezioso di chiamare l’energia totale della particella. Nel caso di particella a riposo l’energia è, com’è arcinoto:

Da ora in poi porremo c=1 per pigrizia, dato che questa scelta non cambia di sicuro la fisica del problema. L’equazione di Dirac si traduce in

che ha la stessa identica forma delle equazioni con i vettori studiate sopra. Le quantità scritte hanno le seguenti espressioni esplicite

Lasciando agire γ0 su u(p) otteniamo

Eguagliando questo risultato con u(p) stesso, come ci dice di fare l’equazione di Dirac, scopriamo di dover risolvere il seguente sistema a due incognite

il quale ha la soluzione ovvia u1=u2: una particella di Dirac ferma rispetto a noi ha uguali componenti spinoriali. La soluzione può essere scritta sostituendo u1=u2=ξ e invocando la struttura di onda piana (che è ovviamente soluzione, ed è evidenziata dall’esponenziale contenente quantità di moto e coordinate spaziali):

Da questa espressione si evince che in realtà lo spinore che abbiamo trovato è composto da altre due componenti aggiuntive. In realtà ti ho ingannato tutto il tempo per salvare la semplicità concettuale: uno spinore di Dirac è un oggetto a quattro dimensioni, non due. Tuttavia può essere visto come un oggetto di due componenti, le quali sono a loro volta composte da altre due componenti, per un totale di quattro. La matematica è molto simile e si presta bene a questo inganno.
Una volta ottenuta la soluzione per la particella ferma si può effettuare una trasformazione di Lorentz per osservarla in movimento e derivare così la soluzione più generica per una particella libera.
“Però io credevo che il mondo della Fisica fosse costellato da interazioni tra particelle. Che utilità hanno le soluzioni di particella “libera" senza interazioni?"

Giusta osservazione. Le soluzioni di particella libera in realtà sono ottime approssimazioni per trattare processi in cui le particelle arrivano a collidere e poi si allontanano: nei due stati iniziale e finale possiamo considerare le particelle come libere, ed usiamo la soluzione molto semplice dell’equazione di Dirac per descriverle. L’interazione viene trattata in maniera perturbativa considerando piccoli contributi delle interazioni, basandoci sempre sulla soluzione libera.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.


Ottimo….. Continua cosi è fantastico. La prossima sullo spin, gruppi e trasformazioni di Lorentz
Grazie Achille. Presto tornerò anche su quei concetti, aspetto solo la scintilla giusta 😉