Ci sono pochi argomenti che fanno da musa ispiratrice sia per i fisici teorici che per i fisici sperimentali. Le simmetrie discrete rappresentano una guida importantissima con cui interpretiamo i risultati sperimentali e con cui strutturiamo la forma matematica delle teorie, perché hanno la capacità di predire “cosa è concesso e cosa è vietato”.

  • Vuoi osservare il decadimento di una particella e non sai quali proprietà aspettarti dai suoi prodotti di decadimento? Argomenti di simmetria scarteranno alcune tra le varie possibilità, permettendoti di focalizzare le tue misure su altre proprietà.
  • Vuoi scrivere una teoria che descrive l’interazione nucleare? Sappi che gli esperimenti non hanno mai osservato la violazione di una certa simmetria “A”, quindi assicurati che le tue equazioni abbiano la stessa simmetria!

Quando diciamo “il sistema ha una simmetria” dobbiamo prima specificare rispetto a quale trasformazione. Infatti una simmetria è sempre preceduta da una trasformazione, altrimenti dire “simmetria” perde ogni significato. (Per un’introduzione al concetto di simmetria rimando a un precedente articolo).

Non tutte le trasformazioni sono una simmetria di un certo sistema. Ciò non è un problema: in ogni caso abbiamo scoperto che è molto comodo catalogare gli oggetti in base al loro comportamento sotto determinate trasformazioni.
Ad esempio la freccia in figura possiamo chiamarla “generica freccia bianca con punta a destra”

Potremmo decidere arbitrariamente di studiare il comportamento di questa freccia sotto alcune trasformazioni interessanti: ad esempio la trasformazione “inversione speculare” trasforma la freccia in quest’altra:

L’oggetto ottenuto non è lo stesso di prima, ora la freccia ha la punta verso sinistra: diremo che “la riflessione speculare non è una sua simmetria della freccia”. Pazienza! Non tutto può essere simmetrico.
Abbiamo comunque imparato qualcosa di nuovo: possiamo dare un nuovo nome a questo sistema: tipo “freccia bianca che sotto riflessione va nel suo opposto“. Questo modo di chiamare un oggetto in base a come si comporta sotto una trasformazione è ciò che facciamo per catalogare le particelle e le interazioni fondamentali del Modello Standard.

Il Modello Standard è caratterizzato da tre simmetrie fondamentali: la simmetria di Lorentz (le leggi della Fisica hanno la stessa forma in tutti i sistemi di riferimento inerziali, o in altri termini, sono simmetriche sotto una trasformazione di Lorentz), la simmetria di gauge (gli oggetti matematici della Fisica presentano più variabili di quelle fisicamente necessarie), e la simmetria CPT. Le prime due sono abbastanza astratte rispetto all’ultima, su cui ci concentriamo oggi.

La simmetria “CPT” evidenzia un fatto importantissimo della nostra realtà: le leggi della Fisica rimangono inalterate se applichiamo tutte e tre le seguenti trasformazioni:

  • Inversione spaziale “P”
  • Inversione di carica “C”
  • Inversione temporale “T”

Le trasformazioni P, C, T sono chiamate in gergo “simmetrie discrete”. Svisceriamole una ad una.

La simmetria P: inversione spaziale

L’inversione spaziale, altrimenti nota come “trasformazione di parità” consiste nell’invertire tutte e tre le direzioni spaziali: le coordinate cartesiane (x,y,z) vengono mandate in (-x,-y,-z).
Per visualizzare meglio questa trasformazione, considera una freccia in tre dimensioni, ad esempio dotata di un certo spessore, una punta e due facce rettangolari. Chiamiamo “A” e “B” le due facce di questa freccia.

Le due facce “A” e “B” della stessa freccia.

Visualizziamo la freccia in una certa posizione iniziale, ad esempio disponiamola con la faccia “A” rivolta verso di noi (quindi la faccia “B” è rivolta verso la pagina di questo articolo), e la punta è rivolta verso destra.
Per ottenere una trasformazione di parità eseguiamo due step: anzitutto ruotiamo di 180 gradi la freccia attorno alla direzione della sua punta ed infine invertiamo la punta. Infatti così facendo abbiamo mandato la faccia “A” nel suo opposto (cioè la faccia B), poi abbiamo invertito il basso con l’alto, ed infine abbiamo invertito la destra con la sinistra. Gli step sono illustrati in figura

Una trasformazione di parità della freccia. Dall’alto verso il basso: la freccia nella sua posizione iniziale, la freccia dopo una rotazione di 180 gradi attorno alla direzione della sua punta, e poi l’inversione della punta nell’ultimo step.

Nota bene, una trasformazione di parità è ben diversa da una trasformazione “speculare”. Non è come vedere la freccia davanti a uno specchio!

Una trasformazione speculare della freccia.

Spesso invece capita di sentire che l’inversione spaziale corrisponde a “vedere l’universo attraverso uno specchio”, come mai questa inesattezza?
Immagina per un attimo se la freccia avesse due facce uguali e non ci fosse modo di distinguere il basso dall’alto, in quel caso la riflessione speculare e la trasformazione di parità coincidono!

Questo perché la freccia iniziale era simmetrica sotto una rotazione di 180 gradi rispetto alla direzione della punta (quindi il primo step della trasformazione di parità la lascia invariata). Moltissimi sistemi fisici di interesse godono di una simmetria sotto rotazioni attorno a una certa direzione, per cui non è così scorretto dire che l’inversione spaziale “coincide” con l’osservare l’universo allo specchio.

"Però mi sfugge cosa c'entri con la Fisica tutto questo discorso sull'inversione dello spazio. Cosa gliene frega alle particelle se prendo gli assi cartesiani in un verso o nell'altro?" 

Magari non è immediato vederlo, ma la connessione è piuttosto profonda e ha a che fare con le interazioni fondamentali.

In particolare ha a che fare con il modo con cui scriviamo le teorie della Fisica.
Se le evidenze sperimentali suggeriscono ad esempio che un processo ha la stessa probabilità di avvenire in una direzione rispetto alla direzione opposta, allora sarà meglio che la teoria sia simmetrica sotto una trasformazione di parità dal punto di vista matematico! Lo schema di queste ragionamento è il seguente:

Per fare un esempio consideriamo la teoria di Dirac per un fermione di massa m. Nella teoria il termine di massa è scritto accoppiando i campi ψ del fermione nel seguente modo:

La trasformazione di parità dei campi fermionici si ottiene moltiplicandoli per una matrice detta “di Dirac”: γ0

Trasformazione di parità per i campi fermionici. La matrice di Dirac è caratterizzata dall’equazione (γ0)2 =1, cioè il suo quadrato è uguale all’identità.

A questo punto mostriamo che il termine di massa della teoria di Dirac è invariante sotto parità:

La trasformazione di parità dei campi fermionici lascia invariato il termine di massa grazie al fatto che 0)2 =1. La teoria di Dirac è costruita in modo da essere invariante sotto parità (ciò era suggerito dagli esperimenti).

In teoria nulla garantisce che le leggi della Natura siano invarianti sotto inversione spaziale, è una nostra assunzione ragionevole, confermata dalla maggior parte dei risultati sperimentali e per la maggior parte delle interazioni fondamentali.
Negli anni 50′, con grossa sorpresa, si scoprì che la nostra assunzione non corrispondeva alla realtà.

L’interazione debole e la violazione della parità

È arcinota l’importanza dei vettori nella Fisica. Siccome i vettori sono quantità riferite agli assi cartesiani, invertire gli assi con una trasformazione di parità invertirà anche i vettori.
Un vettore r verrà mandato nel suo opposto –r in seguito a una trasformazione di parità. Se però consideriamo il prodotto di due vettori, ad esempio come il momento angolare L=rxp , sotto una trasformazione di parità si ha

I segni meno si cancellano e il momento angolare rimane uguale a se stesso, non si inverte.

Un giroscopio davanti a uno specchio. L’asse di rotazione del giroscopio è perpendicolare alla superficie dello specchio: il verso di rotazione rimane inalterato nella riflessione.

Ciò si capisce intuitivamente se pensiamo a un sistema invariante sotto rotazioni e caratterizzato da un asse di rotazione, come un giroscopio. Per questo oggetto la trasformazione di parità equivale alla riflessione speculare (come precisato sopra). Se mettiamo un giroscopio rotante davanti allo specchio, il suo verso di rotazione non viene invertito: se gira in senso orario nel “nostro mondo”, continuerà a girare in verso orario anche nello specchio.

Fatta questa premessa, consideriamo uno degli esperimenti cruciali nella Fisica delle particelle: l’esperimento di Wu (1956).
Nell’esperimento di Wu si considerò un particolare decadimento nucleare del Cobalto-60, che provocava l’emissione di elettroni e antineutrini.
Tramite l’accensione di un campo magnetico, il team di Wu orientò gli spin dei nuclei di Cobalto in una direzione privilegiata, proprio come si farebbe con degli aghi magnetici. Per la conservazione del momento angolare, gli spin dell’elettrone e dell’antineutrino emessi dovevano avere lo stesso orientamento spaziale degli spin dei nuclei di Cobalto.
L’obbiettivo dell’esperimento era di seguire le traiettorie degli elettroni e vedere quale direzione prendessero rispetto allo spin del nucleo decaduto. Dopo un po’ di raccolta dati, si scoprì che gli elettroni avevano una direzione preferita di emissione: opposta allo spin nucleare. L’informazione raccolta sulla Fisica del problema era l’osservazione sperimentale: “la direzione preferita di emissione da parte degli elettroni è quella opposta allo spin del nucleo.”

Di primo acchito questa osservazione non sembra presentare nulla di problematico. Consideriamo però una trasformazione di parità: lo spin nucleare (essendo analogo a un momento angolare) viene mandato in se stesso come abbiamo visto, ma la direzione di moto degli elettroni viene invertita. Quindi in un mondo speculare (con asse di riflessione coincidente con quello dello spin) la conclusione dell’esperimento è che la direzione di emissione preferita da parte degli elettroni è quella concorde allo spin del nucleo.

Sotto una trasformazione di parità le conclusioni sperimentali sono diverse, in netta contrapposizione l’una con l’altra! Per la prima volta nella storia della Fisica una conclusione sperimentale è modificata da una trasformazione di parità, cioè la parità NON è una simmetria del sistema!

Perché la parità potesse essere una simmetria del sistema, ci saremmo aspettati tanti elettroni emessi nella direzione dello spin nucleare, quanti emessi nella direzione opposta. Ciò non è quello che si osserva, per cui siamo portati alla conclusione che la parità non è una simmetria fondamentale della natura, nonostante sia una simmetria delle forze nucleari e delle forze elettromagnetiche.

Interpretazione dell’esperimento di Wu

L’interpretazione dell’esperimento fu la seguente: esiste un’interazione fondamentale capace di far decadere un nucleo emettendo elettroni e antineutrini (oggi nota come interazione debole) che non è simmetrica rispetto a una trasformazione di parità. La parità NON è più una simmetria fondamentale della Natura.
L’universo visto allo specchio ha un comportamento diverso se si considerano i decadimenti deboli di alcuni nuclei. Questa distinzione fu abbastanza sconcertante e i fisici dell’epoca rimasero piuttosto sorpresi.

La simmetria C: inversione di carica

La trasformazione matematica di un elettrone in un positrone.

Una trasformazione di inversione di carica viene effettuata sulle funzioni d’onda che descrivono le particelle.
Le funzioni d’onda possono essere caratterizzate da numeri quantici come: carica elettrica, numero leptonico, numero barionico e numero leptonico di sapore.
L’inversione di carica, come suggerito dal nome, inverte tutti questi numeri quantici: non solo la carica elettrica, ma anche numero leptonico, numero barionico e sapore!


Ad esempio l’inversione di carica su un elettrone lo trasforma in un positrone (cioè una particella con stessa massa, ma carica elettrica opposta e numero leptonico opposto). Quindi effettivamente l’inversione di carica trasforma una particella nella sua anti-particella (per un resoconto su come siamo arrivati a teorizzare le antiparticelle rimando a un precedente articolo).

D’altra parte, una particella senza carica elettrica e senza altri numeri quantici (come il fotone) viene mandato in se stesso da questa trasformazione: il fotone è l’antiparticella di se stesso.

Per la maggior parte dei processi fisici, l’inversione di carica C è una simmetria: potremmo sostituire tutte le particelle del processo con le rispettive antiparticelle e il processo rimarrebbe lo stesso (stesse previsioni teoriche e stessi risultati sperimentali).
Ancora una volta fa eccezione l’interazione debole: per questa interazione entrambe le trasformazioni P e CP (combinazione di C e P) non sono una simmetria. Si pensa che questo fatto sia la risposta al quesito: perché il nostro universo è composto per la maggior parte da materia rispetto ad antimateria? In qualche momento dopo il big bang ci fu una maggior produzione di materia forse proprio grazie al fatto che l’interazione debole presenta questa asimmetria nel trattare particelle e antiparticelle.

La simmetria T: inversione temporale

L’ultima trasformazione discreta è l’inversione temporale: si inverte il tempo nelle equazioni della Fisica. L’inversione del tempo agisce su tutte quelle quantità in cui il tempo compare, ad esempio la quantità di moto (contenendo la velocità definita come il rapporto tra spazio e tempo) acquista un segno negativo sotto inversione temporale: p va in –p. Il momento angolare acquista un segno negativo anche lui, dato che L=rxp e r va in se stesso, ma p va in –p, quindi rx(-p)=-L.

Di nuovo, la maggior parte delle teorie fisiche rimane inalterata sotto inversione temporale, ad eccezione della solita guastafeste: l’interazione debole!

Ciò non sconforta ormai più di tanto, dato che le eventuali simmetrie sotto C,P e T separatamente non hanno motivo di esistere se non per la nostra soddisfazione personale.
Esiste un’unica simmetria che però deve essere rispettata affinché non crolli tutto il palazzo della Fisica Teorica, ed infatti esiste un Teorema che lo dimostra precisamente. Questa simmetria è la combinazione simultanea di C, P e T: la simmetria CPT.

Il Teorema CPT

Il Teorema CPT discende dall’unione tra meccanica quantistica e relatività ristretta, nel contesto della teoria quantistica dei campi. La sua dimostrazione dipende fortemente da tutto ciò che sappiamo essere verificato sperimentalmente sulla meccanica quantistica e sulla relatività ristretta. TUTTE le leggi della Natura sono invarianti se applichiamo successivamente: un’inversione di tutte le coordinate spaziali, un’inversione della carica di tutte le particelle (cioè la trasformazione di tutte le particelle in antiparticelle) e l’inversione temporale dei processi fisici.

Stiamo dicendo che non è possibile distinguere un esperimento di Fisica condotto in un anti-universo composto da anti-particelle, studiate con coordinate spaziali invertite e con i processi che avvengono al contrario nel tempo.

Per capire il significato del teorema, dobbiamo ricollegarci all’interpretazione di Feynman-Stückelberg sulle antiparticelle, come discusso in un articolo precedente. Un’antiparticella può essere interpretata come una particella che si muove “indietro nel tempo”.

Siccome la trasformazione combinata “CP” trasforma tutte le particelle in anti-particelle e inverte le coordinate spaziali (in modo da farle muovere “all’indietro” rispetto alle coordinate originali), se applichiamo un’ulteriore trasformazione “T” di inversione temporale stiamo facendo muovere queste antiparticelle all’indietro nel tempo e in una direzione spaziale opposta alle coordinate originali. Tradotto: siamo ritornati punto e a capo, e cioè all’universo originale. Quindi, se operiamo un’ulteriore trasformazione di inversione temporale “T”, l’anti-universo ottenuto con la trasformazione “CP” può essere reso indistinguibile dall’universo iniziale.

La violazione di CP e T, ma non di CPT

Sottolineiamo: la simmetria sempre conservata è la combinazione simultanea CPT, ma ciascuna delle trasformazioni separate C, P o T può comunque non essere una simmetria delle teorie fisiche.

Abbiamo visto che l’interazione debole viola la simmetria P. Sappi che viola anche la simmetria CP, cioè la combinazione simultanea di C e P ( è stato verificato sperimentalmente). Questo fatto mise in grave allarme i fisici dell’epoca, perché la simmetria CPT era quindi in pericolo, e assieme a lei tutta la struttura matematica della teoria quantistica dei campi.

Grazie all’interpretazione di Feynman-Stückelberg sappiamo che, se CP è violata, allora l’unico modo per avere simmetria CPT è che anche T sia violata. Un po’ come dire: se voglio ottenere +1 dal prodotto di due numeri, dovranno essere entrambi negativi in modo che si cancelli il segno “-“, in questo modo (-1)(-1)=+1. Fisicamente corrisponde a dire:

Analogia tra la violazione delle simmetrie e la moltiplicazione tra numeri negativi.

I risultati sperimentali odierni sembrano confermare che la simmetria T sia violata, quindi la CPT dovrebbe essere salva, assieme a tutto il castello della Fisica Teorica.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

[Immagine di copertina: Kelly Sikkema]

Rispondi

%d blogger hanno fatto clic su Mi Piace per questo: