Sono trascorsi quasi 117 anni da quando l’umanità ha capito che la nostra realtà è meglio descritta utilizzando una struttura concettuale che lega indissolubilmente spazio e tempo: lo spaziotempo.
Siamo cioè passati da una concezione tridimensionale della nostra realtà a una concezione quadridimensionale.

Infatti, anche se non sappiamo ancora cosa siano oggettivamente spazio e tempo e quindi ne possiamo avere solo un’interpretazione che ci aiuta comunque a fare previsioni molto precise sulla realtà, sappiamo per certo che non sono due entità distinte: spazio e tempo sono malleabili, e dal punto di vista di osservatori diversi possono anche mischiarsi tra loro.

Ritengo che oggi questo argomento debba essere divulgato con la stessa semplicità e chiarezza con cui nelle scuole divulghiamo tanti altri fatti scientifici. Infatti dopo quasi 117 anni non possiamo più catalogare la Relatività Ristretta come “fisica moderna”, proprio allo stesso modo in cui Einstein nel 1905 non si riferiva alla meccanica lagrangiana del 1790 con il nome di “fisica moderna”.

Il modo migliore per spiegare la nostra comprensione dello spaziotempo è quello di fare un passo indietro e studiare come la pensavamo qualche secolo fa.

I quattro numeri della nostra realtà

Un oggetto tridimensionale della nostra realtà.

La nostra intuizione sensoriale ci suggerisce che viviamo in uno spazio tridimensionale, infatti gli oggetti hanno una lunghezza, larghezza e altezza. Per descrivere un oggetto a un’altra persona senza fargli vedere una sua fotografia possiamo misurarlo e poi dirle quanto è lungo, largo e alto: tre numeri, niente di più e niente di meno, perché tre sono le dimensioni che percepiamo dello spazio attorno a noi.

Allo stesso modo, quando vogliamo descrivere i fenomeni che accadono intorno a noi dobbiamo essere in grado di dire dove si sono verificati e in che istante di tempo. Per capirsi tutti al volo sul “dove”, sono state inventate le mappe e i sistemi di coordinate che scandiscono lo spazio intorno a noi con dei numeri ben precisi, mentre per essere tutti d’accordo sul “quando” è stato inventato l’orologio, che scandisce con altri numeri ben precisi lo scorrere di una misteriosa entità che chiamiamo “tempo”.

Un evento è per definizione l’unione tra le tre informazioni spaziali sul “dove” e la singola informazione temporale sul “quando”. Quando diciamo “alle 15:06 di ieri si è rotto il vaso nella veranda di nonna” stiamo assegnando all’evento “Rottura del vaso” le coordinate geografiche “veranda di nonna” e la coordinata temporale “ora locale 15:06″. In totale sono quattro numeri: tre spaziali e uno temporale.

In totale un evento è descritto da quattro numeri: per seguire i fenomeni che accadono intorno a noi non possiamo usare meno di quattro numeri o rischieremmo di non farci comprendere dagli altri.

Lo spazio e il tempo prima del XX secolo

In passato i fisici si fecero guidare dall’intuizione e immaginarono spazio e tempo come due entità separate. Questo perché nulla nell’esperienza di tutti i giorni ci farebbe intuire il contrario. Per quei fisici, l’immagine mentale del “tempo” è proprio la stessa che intuiamo dalla vita di tutti i giorni:

La freccia del tempo.

Il tempo è una retta infinita che si estende dall’infinito passato fino all’infinito futuro, ma che ha un’unica orientazione: scorre solo verso il futuro.

Per i fisici del passato esisteva un’unica freccia del tempo universale: ogni evento dell’universo accadeva in un preciso istante di tempo su cui potenzialmente tutti possono concordare.

Vediamo la conseguenza del ragionamento di quei fisici. Supponiamo che una persona si metta d’accordo con un astronauta prima della sua partenza e che sincronizzino i propri telefoni in modo da far partire una suoneria ogni 8 ore per il resto della loro vita. In questo modo quando l’astronauta si troverà su Marte e sentirà la suoneria del proprio telefono, saprà che in quel preciso istante di tempo il suo amico sulla Terra avrà sentito la stessa suoneria. I due amici potranno quindi definire un istante chiamato “presente”, cioè una nozione di “adesso”.
Se non vedi nulla di strano in questa conseguenza, è perfettamente comprensibile! Siamo abituati a concepire il tempo in questo modo, cioè come un’entità universale che scorre allo stesso modo per tutti, e i fisici del passato non erano comunque scemi nonostante pensassero ciò!

Il moto di una pallina in una sola dimensione può in principio essere studiato con righello e cronometro.

Spazio e tempo non sarebbero comunque granché utili se non li facessimo “cooperare” per provare a fare delle previsioni sul mondo che ci circonda.
Per studiare il moto di una pallina su un tavolo potremmo ad esempio utilizzare un righello per tracciare la sua posizione, e un cronometro per tenere traccia del tempo che passa. Così facendo, finiamo per collezionare un insieme di eventi come “pallina nel punto 2.5 cm all’istante 1.51 s” o “pallina nel punto 4.7 cm all’istante 2.05 s” che messi in successione tra loro costituiscono la traiettoria della pallina.

Usiamo una sola coordinata spaziale per semplicità: il moto si svolge su una sola dimensione spaziale..

Se sei familiare con il concetto di piano cartesiano, possiamo scegliere di rappresentare gli eventi raccolti su di esso, solo che al posto di “y” mettiamo il tempo “t” trascorso. A differenza di un piano geometrico bidimensionale, abbiamo ora davanti un piano spaziotemporale (in gergo “1+1 dimensionale“, cioè una dimensione spaziale, che è la “x”, e una dimensione temporale):

Un diagramma spazio-tempo per il moto di una pallina.

Se collezionassimo tantissimi eventi per il moto della pallina e collegassimo tutti i puntini blu con una linea continua, troveremmo quella che è nota essere la traiettoria della pallina.
Se la pallina fosse ferma in ogni istante di tempo, la sua traiettoria nello spazio-tempo sarebbe la seguente

Il grafico spazio-tempo di una pallina ferma nel punto x=2.5 cm.

Questo perché la coordinata “x“, per definizione di “fermo”, non deve cambiare nel tempo. Il tempo scorre in verticale, e la posizione rimane fissa sul punto x=2.5 cm.
Un pallina che si muove con velocità costante avrebbe invece il seguente grafico:

A parità di intervallo di tempo passato, la pallina percorre sempre porzioni uguali di spazio: la velocità è allora costante.

Potremmo anche non limitarci al moto dei corpi e usare i diagrammi spaziotempo per raccogliere tutti gli eventi della nostra realtà!

Ad esempio tutti gli eventi dello spazio che avvengono allo stesso istante di tempo si ottengono tracciando la retta parallela all’asse “x”. Questa retta è detta “linea di simultaneità

Tutti gli eventi spaziali che avvengono all’istante “t=2 s” fanno parte della linea di simultaneità in arancione.

Scorrendo con il dito lungo la retta arancione, il tempo non cambia, è sempre fisso a “t=2 s”, mentre lo spazio cambia. Stiamo esplorando tutti i punti dello spazio che esistono nel medesimo istante di tempo.

Allo stesso modo possiamo raccogliere tutti gli eventi che avvengono nello stesso punto dello spazio tracciando la retta parallela all’asse “t”, come fatto nel caso della pallina ferma.

Il punto importante da capire però è che lo spaziotempo esiste indipendentemente dal nostro diagramma cartesiano. Il diagramma con cui scegliamo di catalogare gli eventi si chiama “sistema di riferimento” ed è totalmente arbitrario. Decido io quando far iniziare il conteggio del cronometro e decido io dov’è il punto di partenza in cui mettere lo zero del righello. Nonostante ciò, il moto della pallina avviene comunque in uno spaziotempo “invisibile”, e le coordinate che uso per descriverlo non sono altro che una mia personale interpretazione con cui posso fare delle previsioni.

L’evento nello spaziotempo esiste anche se non c’è nessun sistema di riferimento che lo descrive. Lo spaziotempo esiste indipendentemente dai sistemi di riferimento.

Proprio per questo motivo, la Fisica prevede che le sue leggi si mantengano vere indipendentemente dalle coordinate di chi le sta utilizzando. Non avrebbe proprio senso se la realtà dipendesse dal tipo di righello o cronometro che uso!

Le trasformazioni di Galileo

Galileo Galilei, l’ideatore del principio di relatività.

In particolare, come studiato da Galileo, le conclusioni degli esperimenti di Fisica devono essere identiche a seconda che siano studiate su un treno che si muove a velocità costante o che stia fermo rispetto alla stazione. Muoversi a velocità esattamente costante è comunque una cosa rara, concorderai sicuramente che capita spesso di sentirsi “tirati” in una direzione o in un’altra in un viaggio in macchina, o in treno quando frena o fa una curva. In quei frangenti il moto non è a velocità costante, ma trascurandoli possiamo dire che il resto del viaggio si svolge in maniera che se oscurassi i finestrini e mascherassi il suono del motore, non saresti in grado di dire se si è fermi o in movimento. Questa è l’idea di Galileo: il principio di relatività.

Se mettiamo tre persone di tre nazionalità diverse davanti a una mela su un tavolo, ciascuna delle tre persone dirà nella propria lingua “la mela è sul tavolo”. Il fatto che la mela stia sul tavolo è un dato di fatto che non può dipendere dalla particolare lingua che si utilizza per descriverlo.
Siccome l’obbiettivo degli umani è comunicare tra loro, deve esistere una traduzione da un linguaggio all’altro che mantenga intatto il fatto oggettivo che la mela è sul tavolo.

Allo stesso modo, sistemi di riferimento in moto relativo l’uno con l’altro devono poter concordare sui fenomeni che osservano con le proprie coordinate. Deve quindi esistere una traduzione da un set di coordinate all’altro che mantenga intatto il fatto oggettivo di ciò che si manifesta nello spaziotempo.

Se il moto relativo è a velocità costante, la traduzione linguistica è particolarmente semplice e lascia inalterati tutti i risultati della Fisica: si chiama trasformazione di Galileo.

Dati due osservatori che utilizzano due piani cartesiani diversi con coordinate diverse:

Se “v” è la velocità relativa, possiamo ottenere le coordinate di uno in funzione delle coordinate dell’altro con una trasformazione di Galileo:

Una trasformazione di Galileo.

Ovviamente abbiamo assunto che i due osservatori abbiano sincronizzato i propri orologi in un certo istante di tempo precedente, ecco perché le loro coordinate temporali sono identiche: T=t.

Con questa traduzione possiamo descrivere con le coordinate dell’osservatore 2 tutti gli eventi descritti in precedenza con le coordinate dell’osservatore 1.

Una cosa concettualmente molto utile per ciò che faremo dopo è rappresentare i due sistemi di riferimento nello stesso grafico. Rispetto all’osservatore 1, gli assi dell’osservatore 2 si ottengono impostando le loro equazioni T=0 e X=0. Infatti l’asse T è anche noto come “la retta verticale tale che X=0“. Quindi possiamo ricavare l’asse T nelle coordinate (x,t) sostituendo “0” al posto di “X

Nel diagramma spazio-tempo di prima avremo quindi

Una trasformazione di Galileo da coordinate (x,t) a coordinate (X,T).

La cosa più importante da notare è che rispetto all’osservatore di coordinate (x,t), l’asse T del secondo osservatore è geometricamente inclinato: questa inclinazione rappresenta il fatto che il secondo osservatore si sta muovendo rispetto al primo con una certa velocità.

Ora studiamo un po’ come questi osservatori interpretano lo spaziotempo intorno a loro. Le linee di simultaneità sono sempre rette parallele agli assi x e X per definizione:

I punti dello spazio simultanei tra loro secondo l’osservatore (X,T) sono simultanei anche per l’osservatore (x,t). Per verificare, scorri una retta arancione con il dito e verifica che non ti stai spostando né sulla coordinata t, né sulla coordinata T.

Le trasformazioni di Galileo non toccano la simultaneità: il tempo, nella concezione galileiana e newtoniana della fisica classica, è assoluto.

Ovviamente invece il discorso cambia se consideriamo gli eventi che avvengono in un unico punto nello spazio dell’osservatore in movimento. Magari l’osservatore 2 è in auto e sta segnando sul taccuino la posizione di un suo compagno di viaggio che è fermo rispetto a lui in ogni istante di tempo. Tuttavia dal nostro punto di vista in cui osserviamo l’autostrada da un casello, quel compagno di viaggio non è fermo!


Come abbiamo fatto prima, per ottenere le rette degli eventi che avvengono nello stesso punto dello spazio tracciamo le parallele all’asse T, quindi si avrà:

Le rette degli eventi che per l’osservatore (X,T) avvengono tutti in uno specifico punto del suo sistema di riferimento.

Come puoi notare, le rette non sono verticali anche per l’osservatore fermo (x,t), proprio perché dal suo punto di vista tutti quegli eventi che sono fissi nel sistema di riferimento (X,T) si muovono alla stessa velocità di questo. Infatti le rette hanno la stessa inclinazione dell’asse T, che rappresenta, come detto, il moto dell’osservatore 2.

Il tuo occhio potrebbe ora notare un fatto interessante: dal grafico sembra che l’intervallo temporale ∆T tra i due eventi (indicato in rosso), sia maggiore dell’intervallo temporale ∆t, quando invece sappiamo che nelle trasformazioni di Galileo deve essere rigorosamente:

L’intervallo di tempo tra due eventi è un numero su cui tutti gli osservatori connessi da una trasformazione di Galileo devono sempre concordare.

Questo è un dettaglio acutissimo e che potenzialmente potrebbe generare molta confusione. Non se ne parla spesso.

La verità è che quell’asse “T” ruotato non ha la stessa scala di lettura dell’asse originale, proprio per via della rotazione! Una volta tenuto conto di questo fattore di scala, troviamo che anche se visivamente le lunghezze indicate in rosso sembrano diverse, a conti fatti risultano uguali, come ci aspettiamo.

Una dimensione spaziale in più

Ora che abbiamo macinato un po’ di percorso, aggiungiamo una dimensione spaziale in più per divertimento. Assieme alla “x” consideriamo anche la “y” per ottenere il classico, beneamato piano euclideo.
Lo spazio-tempo ha ora dimensione 2+1 (due spaziali e una temporale), e può essere visualizzato nel modo seguente:

La rappresentazione di uno spazio bidimensionale nel tempo, descritta come una sovrapposizione di copie.

Concentriamoci però solo sul piano spaziale senza considerare il tempo, o se preferisci, congeliamo un singolo istante di tempo. Il piano euclideo è proprio quello che ci ha svezzato e ci ha introdotto alla geometria piana, è quel posto magico in cui l’ipotenusa di un triangolo rettangolo è data dal teorema di Pitagora:

Tutti concordano sul teorema di Pitagora, è un fatto matematico che è indipendente dal proprio stato di moto! Se le trasformazioni di Galileo fanno quel che promettono di fare, non dovrebbero mai e poi mai alterare la lunghezza dell’ipotenusa di un triangolo rettangolo! Ci aspettiamo che sia:

Le trasformazioni di Galileo lasciano invariata la geometria euclidea dello spazio.

Effettivamente è così, le trasformazioni di Galileo restituiscono il risultato corretto, lasciando intatto il teorema di Pitagora (non avrebbe proprio senso se dovesse dipendere dallo stato di moto!). Nel caso più semplice in cui il moto relativo è lungo l’asse x dell’osservatore 1 si ha:

Nota che il conto restituisce il risultato che ci aspettiamo solo se poniamo uguale a zero l’intervallo temporale “∆t” tra i due eventi spaziali che specificano i cateti del triangolo rettangolo! Questo passo è fondamentale, le lunghezze spaziali, nello spaziotempo, si calcolano per definizione a tempo fissato. Non avrebbe proprio senso dire “questo oggetto è lungo 3 cm tra gli istanti di tempo 1 e 10 secondi”: un osservatore è in grado di misurare una lunghezza spaziale nel proprio sistema di riferimento solo una volta che individua simultaneamente gli estremi dell’oggetto che vuole misurare.

Ora che abbiamo completato il riscaldamento con la relatività di Galileo, è il momento di passare al succo del discorso, ovvero il motivo per cui sei qui!

Ripensare il principio di relatività

Alla fine del XIX secolo ci si accorse che una serie di argomenti teorici e sperimentali rendevano incompatibili le leggi dell’elettromagnetismo con il principio di relatività, o meglio, con il principio di relatività mediato dalle trasformazioni di Galileo. Siccome l’elettromagnetismo era fondato su radici sperimentali solidissime, e si presumeva che il principio di relatività fosse un qualcosa di irrinunciabile per la Fisica, si spalancarono due possibilità:

  • 1) La teoria dell’elettromagnetismo è falsa e bisogna trovarne una migliore, che sia compatibile con Galileo. Il principio di relatività è irrinunciabile.
  • 2) La teoria dell’elettromagnetismo è vera. Il principio di relatività può essere abbandonato.

Fu quel giovanotto di Einstein a trovare il mix perfetto tra queste due soluzioni molto drastiche, la cosiddetta terza via:

  • 3): La teoria dell’elettromagnetismo è vera. Il principio di relatività è irrinunciabile. Le trasformazioni di Galileo però non sono le trasformazioni corrette per applicare il principio di relatività.

Einstein notò che le trasformazioni di coordinate che lasciavano invariate le leggi dell’elettromagnetismo non erano quelle di Galileo, ma le trasformazioni di Lorentz:

“c” è la velocità della luce: 300.000 km/s. È evidenziato il fattore gamma.

Queste bestiole non sono altro che le trasformazioni di Galileo con un po’ di accorgimenti in più: ad esempio compare a moltiplicare il “fattore gamma: γ” che contiene il rapporto tra la velocità relativa dei due osservatori e la velocità della luce al quadrato. La velocità della luce compare per due motivi, uno storico e uno concettuale:

  • 1): Queste trasformazioni furono trovate tra quelle possibili che lasciavano invariate le leggi elettromagnetiche tra osservatori in moto a velocità costante. Siccome la luce è un’onda elettromagnetica che si propaga nel vuoto con velocità “c”, questa compare direttamente nelle trasformazioni come fattore costante per far sì che l’equazione dell’onda rimanga appunto invariata, come vuole il principio di relatività.
  • 2): Studiando le conseguenze di queste trasformazioni si scoprì che facevano una predizione insolita: la velocità della luce è un vero e proprio limite di velocità: nessuno può raggiungerla e nessuno può superarla. È una conseguenza matematica di queste trasformazioni. (Si nota già dal fatto che il fattore gammaγ” esplode se poniamo la velocità relativa “v” uguale a “c”. Non si può dividere per zero!).
    Come tutti i limiti di velocità, deve essere uguale per ogni “automobilista”: la velocità della luce è una costante che ha lo stesso valore numerico per tutti gli osservatori che si muovono di moto relativo a velocità costante. Questo è anche un fatto rigorosamente verificato sperimentalmente.

Senza soffermarci troppo sulla matematica di queste trasformazioni, osserviamo che la prima differenza importante con quelle di Galileo è il fatto che la coordinata temporale dell’osservatore in moto relativo è ottenuta mischiando coordinate temporali e spaziali dell’osservatore iniziale!

A differenza di Galileo, non è semplicemente “T=t”, ma compare prepotentemente anche lo spazio con la coordinata “x”!


Questo fatto è assolutamente inedito, e dà i natali a una interpretazione completamente rivoluzionaria del concetto di spaziotempo!

Il tempo non è più assoluto e uguale per tutti, ma è una cosa personale per ogni osservatore dell’universo, così come sono personali le proprie coordinate spaziali. L’importante poi è riuscire a tradurre da una lingua all’altra per mettersi tutti d’accordo, ma a questo ci pensano proprio le trasformazioni di Lorentz.

Il problema dell’elettromagnetismo ci ha aiutato a capire che sono in realtà le trasformazioni di Lorentz quelle corrette da introdurre quando si parla di principio di relatività. Le trasformazioni di Lorentz si riducono a quelle di Galileo nel limite in cui la velocità relativa “v” è molto inferiore alla velocità della luce “c” (cosa che ci riguarda in particolar modo, dato che nulla nel nostro mondo viaggia a velocità prossime a 300.000 km/s, eccezion fatta per la luce e alcune particelle subatomiche).

Lo spaziotempo di Minkowski

Ricordi la questione del teorema di Pitagora discussa poco fa? Le trasformazioni di Galileo vanno molto d’accordo con la geometria euclidea dello spazio. Anche le trasformazioni di Lorentz ci vanno d’accordo, ma concentrarsi solo sulla parte spaziale è riduttivo. Si trovò che esiste una nuova quantità spaziotemporale che è lasciata invariata dalle trasformazioni di Lorentz! Tenendoci sempre in dimensioni 2+1, questa quantità è la seguente:

L’intervallo spaziotemporale lasciato invariato

Cioè se prendiamo due eventi separati da una distanza spaziale e da una distanza temporale, la quantità costruita in questo modo assume lo stesso valore per tutti gli osservatori che si muovono con velocità costante:

Questo fatto ci fa capire quanto fosse poco casuale che tempo e spazio si mischiassero nelle trasformazioni di Lorentz. Tempo e spazio si mischiano per un motivo ben preciso: fanno parte di un costrutto più grande dello spazio, lo spaziotempo! In questo spaziotempo la velocità della luce gioca un ruolo così importante da comparire addirittura nella “versione estesa del teorema di Pitagora spaziotemporale”.

L’insegnamento che ne possiamo trarre è il seguente: se lo moltiplichiamo per la velocità della luce, il tempo diventa a tutti gli effetti una nuova dimensione spaziale.

Viviamo quindi in una realtà a quattro dimensioni: tre dimensioni spaziali e una dimensione temporale. A differenza di come la pensavano qualche secolo fa, la dimensione temporale è in grado di mischiarsi con le informazioni spaziali tramite le trasformazioni di Lorentz.

Il teorema di Pitagora spaziotemporale è però particolarmente speciale, perché non possiamo ignorare che il termine temporale presenta un segno negativo!

Tempo e spazio non sono trattati allo stesso modo, c’è un segno meno di differenza!

Cambia proprio il concetto di geometria: la geometria dello spaziotempo non è più euclidea! Hai mai visto un teorema di Pitagora con una differenza al posto di una somma?
È la somma dei quadrati a rendere euclidea la geometria spaziale del teorema di Pitagora.

D’altra parte la geometria dello spaziotempo si dice essere “pseudo-euclidea“. Questo nome potrà essere figo da pronunciare, ma non dice nulla di troppo rilevante per i nostri scopi.

Una cosa ben più rilevante da esplorare invece è il diagramma spaziotempo (detto “di Minkoswki“).
Ricordi i diagrammi che abbiamo studiato nel caso di spazio-tempo classici? Quello spazio-tempo era particolarmente noioso in quanto tempo e spazio non erano in alcun modo connessi reciprocamente da trasformazioni di coordinate rilevanti per la Fisica. Ora si son mischiate un po’ le carte, quindi vediamo cosa bolle in pentola.

Consideriamo di nuovo due osservatori in moto relativo l’uno rispetto all’altro con velocità costante, ed esattamente come prima rappresentiamo i loro sistemi di riferimento in un unico grafico spaziotempo.

Per fare ciò dobbiamo trovare le equazioni degli assi T e X del secondo osservatore in funzione delle coordinate del primo! Con un procedimento identico a prima troviamo le seguenti rette:

Il risultato del mixing tra coordinate spaziali e temporali cambia completamente le regole del gioco: nel caso di Galileo avevamo che solo l’asse temporale dell’osservatore appariva ruotato nello spazio-tempo dell’osservatore fermo. Ora abbiamo una rotazione di entrambi gli assi!

Un diagramma di Minkowski.
Nota che gli assi temporali sono moltiplicati per la velocità della luce.
Come suggeritoci dal “teorema di Pitagora dello spaziotempo”, la dimensione temporale deve comparire moltiplicata per la velocità della luce.

Questo fatto ha delle implicazioni senza precedenti, perché se ora andiamo a chiederci, come fatto prima, quali siano le rette di simultaneità per l’osservatore in movimento, dovremo tracciare nuovamente la parallela all’asse X:

Eventi che giacciono sulle rette di simultaneità, come si vede, sono separati da un intervallo temporale ∆t non nullo per l’altro osservatore.

Il fatto che le rette di simultaneità non siano parallele all’asse “x” del primo osservatore implica che:

Eventi simultanei per un osservatore in moto possono non essere simultanei per un altro osservatore

La simultaneità di due eventi è relativa a chi osserva gli eventi! Se io osservo due eventi A e B accadere allo stesso istante di tempo sul mio orologio, un osservatore che si muove rispetto a me potrebbe veder succedere A prima o dopo B.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo fatto dipende dalla velocità della luce: la velocità della luce è una costante per tutti gli osservatori, e siccome le informazioni sugli eventi possono arrivarci al massimo alla velocità della luce (noi “vediamo” il mondo intorno a noi proprio grazie alla luce) l’unico modo in cui il moto relativo dell’osservatore riesce a non influenzare questi due fatti è proprio mettendo mano alla coordinata temporale.
Concettualmente, è come se la coordinata temporale si fosse “sacrificata” per preservare la velocità della luce.

Ricordi quegli astronauti che sincronizzavano i loro telefoni, convinti di poter definire un unico istante comune di “simultaneità” anche se distanti? Nel contesto dello spaziotempo di Minkowski ha poco senso: non esiste una retta di simultaneità degli eventi comune a tutti gli osservatori!

Se pensi che ciò sia la cosa più strabiliante di tutta questa faccenda, ti consiglio di continuare a leggere la prossima!

Dilatazione temporale

Consideriamo un evento che avviene in una singola posizione spaziale per l’osservatore in moto, e che la durata da lui registrata sia ∆T. Indicando con dei pallini il momento iniziale e il momento finale dell’evento, questi giace sulla retta degli eventi che avvengono in quella posizione, che ricordiamo, si ottiene tracciando la parallela all’asse T.

La durata ∆T dell’evento è indicata dalla striscia rossa sull’asse T. Come si vede graficamente, la durata dell’evento è indicata in rosso anche dal punto di vista dell’osservatore fermo. Secondo le trasformazioni di Galileo avremmo dovuto avere “∆T=∆t“: cioè la durata temporale dell’evento deve essere una cosa su cui è possibile concordare indipendentemente dal proprio stato di moto.

La trasformazione di Lorentz per la coordinata temporale ha tutta l’aria di promettere un po’ meno. Anzi, promette discordia tra gli osservatori a seconda del loro stato di moto.

Quanto è durato lo stesso evento secondo l’osservatore fermo? Per scoprirlo facciamo ricorso al teorema di Pitagora pseudo-euclideo, ovvero l’unica quantità su cui i due osservatori possono concordare di certo.
Consideriamo un’unica dimensione spaziale e ipotizziamo che il moto relativo si svolga sull’asse “x” del primo osservatore.
Per l’osservatore in moto l’evento avviene in un unico punto dello spazio, cioè la sua posizione non cambia, quindi si ha ∆X=0.:

Qui stiamo indicando con ∆t e ∆x la durata e la variazione in posizione dell’evento dal punto di vista dell’osservatore fermo, il quale evidentemente vedrà l’evento muoversi alla stessa velocità dell’osservatore in moto. Non ci resta che eguagliare le due espressioni per l’invarianza di Lorentz citata prima:

Abbiamo l’obbiettivo di isolare ∆t per capire quanto dura l’evento dal punto di vista dell’osservatore fermo. A tale scopo raccogliamo

Siccome l’evento in questione si sposta alla stessa velocità dell’osservatore in moto, chiamiamo proprio “v” il rapporto tra spazio percorso e l’intervallo di durata, dove “v” è proprio la velocità relativa dell’osservatore in moto. A questo punto ricaviamo ∆t dividendo tutto per quella quantità e calcolando la radice quadrata di entrambi i membri

E questa è una delle formule più famose nella storia della Fisica: la dilatazione temporale. La durata di un evento dal punto di vista di un osservatore che vede l’evento muoversi rispetto a lui è sempre maggiore della durata calcolata nel sistema di riferimento solidale a dove l’evento è avvenuto. Perché maggiore? Proprio perché ∆T, qualunque esso sia, è diviso per una quantità che è sempre minore di 1, quindi questa divisione produce un numero più grande di ∆T.

È questa forse la conseguenza più difficile da accettare sullo spaziotempo della nostra realtà, nonostante sia stata verificata sperimentalmente innumerevoli volte nell’ultimo secolo. La durata temporale degli eventi dipende dallo stato di moto dell’osservatore. Lo spaziotempo di Minkowski non è solo un’utile rappresentazione di quello che succede quando usiamo le trasformazioni di Lorentz, ma anche un’ottima intuizione su quale sia la vera natura della nostra realtà.

Ok forse questo è stato più un capitolo di un libro piuttosto che un articolo del blog, ma volevo essere davvero sicuro che ogni pezzo del puzzle del ragionamento cascasse al posto giusto. In futuro parlerò ancora di spaziotempo, quindi userò questo articolo come utile referenza per chi ne avesse bisogno.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Rispondi

%d blogger hanno fatto clic su Mi Piace per questo: