La freccia del Tempo, spiegata con la statistica elementare

Si sente spesso dire che la Fisica non cambia se si inverte la freccia del tempo. Ne ho anche parlato di recente in un articolo sulla gravità.

La nostra esperienza quotidiana però è ben diversa: un cubetto di ghiaccio si scioglie se esposto a una temperatura più alta, e anche abbassando di nuovo la temperatura l’acqua si solidificherà, ma non riassumerà mai la forma iniziale. Fatti analoghi a questo, da millenni, ci hanno convinto che esista una direzione ben definita del tempo, un passato realizzato e un futuro da realizzarsi. La morte ne è solo l’esempio emotivamente più eclatante.

Come conciliare le due cose?

Come possiamo dire che le leggi della fisica sono in gran parte soddisfatte sia dalle equazioni con il tempo normale, sia dalle equazioni con il tempo invertito (t\to -t), ma poi rimangiarci tutto e dire che in realtà il mondo funziona in una sola direzione e mai in quella opposta?

Il problema è il calcolo

Immagina una scatola che contiene N particelle che interagiscono tra loro in maniera molto complicata. In linea di principio, tramite la Fisica saremmo in grado di calcolare posizioni e velocità di tutte le particelle a ogni istante di tempo (ricorda: 3 coordinate spaziali per ciascuna dato che viviamo in un mondo tridimensionale, e 3 coordinate per la velocità per lo stesso motivo).

Ad esempio siamo interessati a questo problema: tracciando una linea immaginaria che divide in due parti la scatola, vorremmo capire quante particelle staranno a destra e a sinistra di questa linea in un certo intervallo di tempo \tau in cui ci mettiamo ad osservare la scatola.

In totale quindi abbiamo da calcolare 6\times N coordinate di cui vogliamo sapere l’andamento nel tempo per poter predire dove si troverà ciascuna particella. Ognuna di queste coordinate potrebbe essere dipendente da qualsiasi altra per via delle interazioni tra le particelle, e il problema diventa immediatamente molto complesso dal punto di vista del calcolo numerico.

Come rimedio possiamo fare delle assunzioni ragionevoli. Si tratta di buonsenso. Si preferisce ottenere la massima resa con il minimo sforzo (essendo il mondo dannatamente complesso di per sé).

Anzitutto semplifichiamo il problema, per capirci meglio. Trattiamo solo 2 particelle interagenti (distinguibili tra loro).

Due particelle interagenti in una scatola. Le particelle sono distinguibili tra loro (di colore diverso).

La domanda che ci facciamo è: se osserviamo la scatola per un tempo \tau, quanto spesso vedremo le particelle a sinistra o a destra della linea immaginaria?

Facciamo un’altra assunzione ragionevole: supponiamo che queste 2 particelle interagiscano poco, così da non turbarsi troppo a vicenda. Concentriamoci sul numero di particelle n in un lato della scatola.

In un determinato lato ci potranno essere al massimo due particelle, e al minimo nessuna (n_\text{max}=2, n_\text{min}=0). Può anche esserci una sola particella per lato, e dato che sono distinguibili questo può avvenire in due modi: la blu a sinistra, la arancione a destra, o viceversa.

In totale abbiamo quattro configurazioni possibili, mostrate in figura.

Dal punto di vista del numero, entrambe le configurazioni “arancione a destra e blu a sinistra, e viceversa” conducono alla stessa risposta: una sola particella in un determinato lato, n=1. In Fisica questa proprietà è nota come degenerazione degli stati: lo stato a n=1 particelle per lato ha degenerazione pari a 2, la indichiamo col simbolo C(n)=2.

Siccome assumiamo che interagiscano poco, e che la scatola sia perfettamente simmetrica tra destra e sinistra, ciascuna avrà una uguale probabilità di trovarsi in uno dei due lati, ovvero p=1/2 (o il 50\%).

Il fatto che si influenzano pochino ci permette di dire che la probabilità per ciascuna configurazione mostrata in figura sarà il prodotto delle singole probabilità, cioè (1/2)\times (1/2)=1/4.

Tuttavia la configurazione a una particella per lato compare due volte (degenerazione), quindi la probabilità per questa particolare configurazione è data da 2\times (1/2)\times (1/2)=1/2.


Ci sono più modi equivalenti di ottenere lo stesso stato macroscopico (n=1), quindi è più probabile degli stati a n=0 e n=2.

La degenerazione controlla quanto è grande la probabilità di un certo stato macroscopico.

Per fissare le idee, in generale per esprimere la probabilità P_2 di avere n particelle in uno dei due lati è:

    \[P_2(n)=C_2(n)\times \frac{1}{2}\times\frac{1}{2}\]

in cui, come abbiamo detto, C_2(n=2)=C_2(n=0)=1 e C_2(n=1)=2.

Facciamo ora un bel salto: passiamo da 2 particelle a N particelle. La probabilità di avere n_1 particelle in un lato, e n_2=N-n_1 nell’altro, è una generalizzazione della formula precedente:

    \[P_N(n_1)=C_N(n_1)\times \left(\frac{1}{2}\right)^{n_1}\times\left(\frac{1}{2}\right)^{N-n_1}\]

dove adesso la degenerazione è data da:

    \[C_N(n_1)=\frac{N!}{n_1!(N-n_1)!}\]

Nota che quei punti esclamativi non sono estetici, è un’operazione chiamata “fattoriale” (2! = 2\times 1, 3! = 3\times 2 \times 1 e così via. Una particolarità buffa è che per definizione 0! =1).

Ora chiediamoci: qual è la configurazione n_1 che ha la più alta probabilità di verificarsi? Il buonsenso ti avrà suggerito bene: n_1=N/2 particelle a destra ed n_2=N-n_1=N/2 particelle a sinistra. Se tutto è all’equilibrio, lo stato in cui metà delle particelle occupano ciascun lato è ovviamente quello che osserveremo di più nel lasso di tempo \tau in cui stiamo monitorando la scatola.

Il punto però è il seguente: la quotidianità, la vita e l’universo stesso, sono sistemi che in generale sono fuori dall’equilibrio. Ciascun processo della nostra esistenza consiste in una transizione da uno stato fuori equilibrio a uno stato con maggiore equilibrio, in un processo che va all’infinito.

Qual è la probabilità che tutte le N particelle stiano in un solo dei due lati della scatola? Sicuramente sarà più piccola, ma perché? Semplicemente ci sono meno modi di realizzarla rispetto alle altre, in particolare c’è un solo modo! Ricorda infatti che è la degenerazione che fa aumentare la probabilità.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare

Quanto sarà piccola questa probabilità? Qual è la probabilità per la configurazione a n_1=N? Poniamo n_1=N nella formula data sopra:

    \[P_N(n_1=N)=\underbrace{\frac{N!}{N!}}_1\times \left(\frac{1}{2}\right)^N\left(\frac{1}{2}\right)^0=\]

    \[=\frac{1}{2^N}\]

Se N è un numero molto grande, questa probabilità è insignificanteQuesta è la chiave di tutto il discorso. Anche solo per N=100 la probabilità è minuscola P_{100}(100)\approx 10^{-30}, figuriamoci per un numero di Avogadro! (N\sim 10^{24}).

Immaginiamo quindi che il sistema sia inizialmente fuori dall’equilibrio, cioè che la scatola sia divisa in due parti da una paratia che teniamo abbassata. Una volta alzata la paratia, le particelle saranno libere di distribuirsi alla ricerca di un nuovo equilibrio, distribuendosi in parti eguali a sinistra e a destra.

Spontaneamente, le particelle passano da sinistra verso destra. Passato (figura sopra), e futuro (figura sotto) sono ben distinti. Nella tua vita non vedrai mai accadere il contrario.

Occhio però: non sono le leggi fondamentali della Fisica a proibirlo, queste funzionano perfettamente anche al contrario nel tempo. Lo stato con tutte le particelle a sinistra appartiene anche lui all’insieme degli stati “esplorabili” dal sistema.

Per questo motivo la configurazione in cui tutte le particelle stanno a sinistra può ricapitare, ovviamente. Tuttavia la probabilità che ciò accada è pari a 1/2^N come abbiamo visto, cioè estremamente piccola.

In questo senso c’è una distinzione netta tra uno stato iniziale e uno stato finale, una direzione del tempo ben distinta: le particelle non si distribuiranno praticamente mai più nella configurazione iniziale (che corrisponderebbe a un’inversione di quell’illusione che chiamiamo freccia del tempo).

Quel “praticamente” non vuol dire “impossibile”, vuole solo dire una “probabilità così piccola da essere considerabile come impossibile”.

In ciò sta la distinzione tra reversibilità delle leggi del moto e la vita reale: nel grande numero di componenti del sistema che costituisce l’universo, in questo fatto del “contare le configurazioni”, che da noi è stato chiamato per millenni, ingenuamente, “freccia del tempo”.

Bibliografia

Coniglio, A. “Reversibilità e freccia del tempo” Giornale di Fisica Vol. LXI, N.2
Lebowitz, J.L., Physica A, 194 (1993)


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Nel mondo di oggi, un “Einstein” verrebbe pubblicato?

Propongo una personalissima riflessione che, in quanto tale, va presa con le pinze ed è aperta alla discussione. La riflessione riguarda il sistema odierno dell’editoria scientifica.

L’articolo originale del 1905.

Nel 1905 (118 anni fa) veniva pubblicato “Sull’elettrodinamica dei corpi in movimento“, articolo con cui Einstein ha iniziato una vera e propria rivoluzione non solo nella fisica, ma anche nella cultura generale.

La rivista da cui venne pubblicato era una delle più prestigiose nel panorama tedesco ed europeo: la “Annalen der Physik“, e tra gli editori c’era nientemeno che il celebre Max Planck.

Fu proprio Planck uno dei primi garanti della qualità del lavoro di Einstein sulla relatività. Nello stesso anno Planck aveva accettato di pubblicare un altro lavoro di Einstein, quello sull’effetto fotoelettrico, nonostante per lui l’idea dei “quanti di luce” fosse un po’ indigesta [1]. Invece l’articolo sulla relatività fu presentato nel giugno 1905 e pubblicato il settembre successivo, e già in novembre Planck espresse pubblicamente il suo apprezzamento [2].

Oggi questa scala temporale di eventi sarebbe altamente improbabile, dobbiamo infatti ricordare che Einstein all’epoca lavorava in un ufficio brevetti e faceva il fisico solo “part-time”, ovvero non aveva nessun prestigio accademico che gli garantisse pubblicazione immediata. Solo la grande qualità del suo lavoro e la lungimiranza degli editori potevano fare la differenza.

Perché questo discorso sia così importante lo si capisce bene dal fatto che uno degli aspetti fondamentali del metodo scientifico è proprio la riproducibilità dei risultati, la quale passa per un’attenta revisione del lavoro di un ricercatore da parte di un altro collega dello stesso campo. Questa revisione è nota come “revisione tra pari”, in inglese “peer review“.

Possiamo “fidarci” della Scienza e dei suoi costrutti proprio grazie a questo processo di revisione: non importa chi tu sia, se hai detto una evidente castroneria io devo rigettare il tuo risultato. Spesso questo sistema funziona molto bene, e viene garantita una buona scrematura dei lavori in modo tale che rimangano solo le idee migliori.

A volte funziona un po’ meno bene: la revisione può risultare un po’ troppo soggettiva, può dipendere dalla luna storta di chi la fa, o semplicemente può capitare che la rivista tratti temi con una filosofia diversa da quelli perseguiti nell’articolo.

Per fare un esempio, l’articolo-capolavoro di Enrico Fermi “Tentativo di una teoria sull’emissione dei raggi beta” fu rifiutato da Nature nel 1934 perché secondo i gusti dell’editore conteneva troppe speculazioni.

All’epoca però non era inusuale che tanti articoli passassero con una revisione minima, se non assente. Che poi sopravvivessero o meno il test del tempo lo avrebbero detto gli altri colleghi negli anni, nei dibattiti alle conferenze ad esempio. In ogni modo, la revisione tra pari era comunque presente ed importantissima. Avveniva però spesso grazie all’influenza di una illustre personalità (l’editore) che si incaricava di decidere se fosse interessante pubblicare o meno. Una “de facto” peer review, senza troppa scrupolosità.

La rivista in un certo senso rappresentava anche quello che potrebbe essere definito “archivio delle proposte”, ruolo che oggi è ricoperto da siti come Arxiv, PubMed etc., i quali sono dei database in cui vengono caricate le versioni “bozze” (chiamati preprint) degli articoli da proporre alle riviste. Oggi, per via dell’enorme volume di articoli proposti dalle accademie [3] il processo di peer review diventa più che mai fondamentale per garantire la corretta scrematura.

Funziona così: l’editore della rivista incarica uno (o più) revisori di studiare l’articolo, affidando a loro la decisione (in sua vece) se pubblicare o meno il lavoro.

Se il livello è, come nei campi della Fisica, altissimo di per sé, la scrematura diventa ancora più spietata. La rivista non può pubblicare tutti i lavori (indipendentemente dalla qualità dei lavori), dovrà quindi inevitabilmente rigettare anche qualche ottimo articolo. Il motivo? Possono essercene diversi, alcuni ragionevoli, altri un po’ meno:

  • l’articolo non è conforme agli interessi della rivista;
  • l’articolo ha un contenuto simile a uno già pubblicato, con piccole variazioni non degne di pubblicazione;
  • l’articolo non è conforme alle credenze di chi fa la revisione (l’ho sentito dire!);
  • l’articolo va in una direzione sconosciuta a cui nessuno è interessato (i fondi vanno in altre direzioni);
  • l’articolo è troppo speculativo, troppo filosofico, o in generale contiene troppe supposizioni personali.

La lista potrebbe andare avanti, figure inserite male, tabelle non chiare, chi più ne ha ne metta: quanti più motivi possibili pur di non pubblicare il 100% degli articoli che arrivano in revisione. Non importa chi tu sia, il tuo articolo può comunque essere rigettato a volte per motivi che sfuggono il tuo controllo.

Questa circostanza è una naturale conseguenza dell’incredibile volume di articoli prodotti ogni mese, non è una cosa né giusta né sbagliata, va accettata in virtù del metodo scientifico. Di sicuro la scrematura riesce spesso ad eliminare gli articoli davvero terribili.

Tuttavia viene da riflettere: la scrematura sopracitata rischierebbe forse di eliminare anche gli articoli più rivoluzionari?

Questa opinione è condivisa da Lorraine Daston in una sua intervista [4].

Analizziamo l’articolo di Einstein “Sull’elettrodinamica dei corpi in movimento“:

Quello evidenziato in giallo è un eccezionale esempio di chiarezza espositiva ed attenzione pedagogica nei confronti del lettore. Secondo la Daston un revisore per una rivista prestigiosa di oggi smetterebbe di leggere già da qui. Lo stile di Einstein era notoriamente un po’ verboso, speculativo, filosofico. A posteriori è la ciliegina sulla torta di un capolavoro scientifico, ma oggi potrebbe essere potenzialmente oggetto di “taglia quella parte o non te lo pubblicheranno mai”.

Inoltre salta subito all’occhio un altro fatto: l’articolo di Einstein non ha bibliografia. Albert non cita nessuno. Un peccato veniale che oggi potrebbe portare all’esclusione dell’articolo (o, più ragionevolmente, a un marcato sollecito di aggiungerla).

In nessun modo questa riflessione vuole intaccare la illuminante produzione scientifica di Einstein, ma credo che possa stimolare una discussione sui potenziali lati negativi della professionalizzazione della scienza. L’edificazione di questi sistemi editoriali è una risposta all’ingente numero di preprint (a sua volta dovuto alla ignobile politica del “publish or perish“), dunque la domanda è: dobbiamo in qualche modo ripensare tutta questa infrastruttura?

Bibliografia

[1] Seelig Carl, Albert Einstein: A documentary biography, Translated to English by Mervyn Savil
[2] Hoffmann Banesh and Dukas, Helen, Albert Einstein Creator & Rebel, 1973, New York: A Plume Book, pp. 83-84.
[3] Bornmann, L., Haunschild, R. & Mutz, R. Growth rates of modern science. Humanit Soc Sci Commun 8, 224 (2021). 
[4] Loncar Samuel, Does Science Need History? A conversation with Lorraine Daston, Meanings of Science Project MRB Interviews 2022.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Un suo teorema cambiò per sempre la Fisica Teorica

Nascere in Baviera nel momento di maggior splendore del Secondo Reich comportava grossi vantaggi, ad esempio le opportunità accademiche: l’Impero Tedesco era il leader mondiale nelle scienze matematiche e fisiche.

Ciò era dovuto ai sostanziosi investimenti nella struttura scolastica e nelle università, il cui effetto collaterale fu quello di dare strumenti e voce a tante personalità geniali che altrimenti sarebbero rimaste inascoltate.

Immaginiamo ora di nascere in quelle circostanze, ma al contempo essere privati di tutte queste opportunità per via del proprio sesso.

Emmy Noether: 1882-1935

Il destino della giovane Emmy Noether sarebbe dovuto essere segnato già dalla sua nascita: il ceto borghese a cui apparteneva si aspettava precisamente che diventasse una maestra di inglese e francese.

Infatti alle ragazze non era concesso di puntare all’istruzione universitaria, dovevano fermarsi qualche passo prima.

Il padre di Noether era professore di matematica all’Università di Erlangen, mentre due dei suoi tre fratelli erano scienziati. La famiglia poteva quindi dare il necessario supporto a una carriera accademica, ed Emmy non aveva alcuna intenzione di essere lasciata indietro: voleva studiare matematica.

Per completare la sua formazione pre-universitaria decise di andare ad ascoltare le lezioni all’università di Erlangen, e per fare ciò doveva chiedere il permesso a ciascun professore individualmente.

Fu così che, con tutta la caparbietà del mondo, riuscì ad ottenere il diploma di ginnasio che le permise di frequentare l’università di Gottinga (senza iscrizione, dato che alle donne non era permesso).

Anche stavolta poteva solo ascoltare le lezioni, ma senza la possibilità di partecipare. Possiamo solo immaginare la spiacevole sensazione del sentirsi completamente trasparenti, inascoltati, ogni giorno della propria esistenza. I più fortunati tra noi vivono solo occasionalmente situazioni di questo tipo, ma per Noether dovevano far parte della sua identità.

Finalmente nel 1904 l’università di Erlangen permise l’iscrizione alle donne, e Noether ottenne il dottorato in matematica nel 1907. Le venne quindi concesso di fare ricerca all’istituto matematico di Erlangen, senza retribuzione.
Da allora Noether collaborò con le menti più proficue dell’epoca: Fischer, Minkowski, Klein, Hilbert (lavorò persino alla relatività generale di Einstein), ma a differenza loro Noether non vedeva un centesimo.

Non solo, doveva tenere le sue lezioni sotto il nome di Hilbert, in qualità di sua assistente, per far sì che fossero autorizzate e frequentate.

In questo astio sociale che andava a ledere la dignità personale di Noether, sarebbe stato molto comprensibile decidere di cambiare carriera.

L’articolo originale (in tedesco) di Emmy Noether, 1918.

Il fatto che lei non lo fece non dovrebbe far sentire in colpa chi invece avrebbe mollato: ognuno gioca la sua partita con le carte dategli dal destino. Noether dimostrò senza dubbio una tenacia fuori dal comune, forte della stima espressa da eminenti colleghi come Hilbert ed Einstein.

Sta di fatto che al momento giusto riuscì a far valere la sua genialità: nel 1918 dimostra un teorema che avrebbe cambiato per sempre il modo di fare Fisica Teorica.

Il teorema di Noether

L’enunciato del teorema testimonia la magnifica creatività ed eleganza di Noether, dato che può essere riassunto in sole 8 parole:

Per ogni simmetria c’è una legge di conservazione

Per comprenderne il significato facciamo un passo indietro.

La fisica studia il comportamento dei sistemi sotto particolari tipi di trasformazione.

Se a un fisico presenti un qualsiasi oggetto, la prima cosa che gli interessa è controllare come reagisce l’oggetto sotto una trasformazione.

Un esempio di oggetti che possiamo descrivere con una proprietà di forma geometrica.
A sinistra un oggetto simmetrico sotto una riflessione attorno al suo asse verticale, a destra un oggetto asimmetrico sotto la stessa trasformazione.

Questo atteggiamento è tipico della Scienza: si prende un oggetto e se ne verifica il comportamento sotto alcune trasformazioni, perché nei secoli si è capito che questo è il miglior modo per studiare il mondo che ci circonda.


Un esempio tipico di trasformazione è la rotazione spaziale: si tratta di ruotare gli oggetti attorno a qualsiasi asse passante per essi. Una volta effettuata la trasformazione ci si può chiedere quali proprietà dell’oggetto si vogliono indagare.


Ad esempio puoi prendere in mano il tuo telefono ed elencarne alcune proprietà:


La prima proprietà può essere quella ontologica: il telefono è un telefono perché è costruito in modo da funzionare come un telefono.

La seconda proprietà può essere funzionale: la facciata del telefono ha funzione di touchscreen, mentre il retro non ha questa funzione.

Una terza proprietà può essere la forma geometrica: un telefono è rettangolare.

Eseguiamo una trasformazione: ruotiamo il telefono di 180 gradi rispetto al suo asse verticale, cioè giriamolo in modo che ora il retro sia rivolto verso di noi.

Una volta ruotato il telefono possiamo chiederci: come sono cambiate le proprietà che avevamo elencato?

  • La prima proprietà non può variare: un telefono rimane tale indipendentemente da che angolo lo guardi.
  • La seconda proprietà varia, perché ora non puoi usare il touchscreen sul retro.
  • La terza proprietà non varia: un telefono rimane di forma rettangolare anche se ruotato.

Possiamo quindi classificare il telefono come un oggetto le cui proprietà variano in questo modo sotto una rotazione spaziale di 180 gradi attorno al suo asse verticale.
I fisici teorici lavorano così.

Se una certa proprietà rimane uguale a se stessa sotto una trasformazione, diremo che quella proprietà è una simmetria sotto quella trasformazione.

La simmetria è una “immunità” a una certa trasformazione.

La forma geometrica di una sfera è simmetrica sotto qualsiasi rotazione.

Facciamo un altro esempio. Consideriamo la sfera in figura, caratterizzata da un simbolo a forma di stella sulla sua superficie. Questa sfera può essere caratterizzata da due proprietà: la sua forma geometrica e la posizione della stellina. Potremmo classificare questo oggetto chiamandolo anche “sfera con una stellina in alto a sinistra”.

È intuitivo che sotto qualsiasi rotazione la sfera rimanga una sfera ai nostri occhi, ma la proprietà “stellina in alto a sinistra” cambia in base al tipo di rotazione. Ad esempio se riflettiamo la sfera attorno al suo diametro orizzontale, ora la proprietà cambierà in “sfera con stellina in basso a sinistra”.

La lezione da portare a casa è che non tutte le proprietà con cui possiamo descrivere un oggetto rimangono invariate sotto una trasformazione, e non c’è nulla di male in ciò.

Una simmetria va sempre riferita al tipo di trasformazione effettuato.


Possiamo dire che una sfera è simmetrica sotto rotazione, ma non possiamo dire che “sfera con stellina in alto a sinistra” rimane simmetrica sotto qualsiasi rotazione, ma magari solo per rotazioni di 360 gradi.

La conservazione nel teorema di Noether

Una classe speciale di trasformazioni in fisica sono le traslazioni. Possiamo considerare un certo sistema e segnare la sua posizione tramite degli assi cartesiani. In questo modo possiamo elencare alcune proprietà: ad esempio la massa dell’oggetto e la sua interazione con l’ambiente circostante, il suo moto ecc.

Per essere concreti consideriamo una particella in uno spazio completamente vuoto e identico in ogni suo punto.

Una particella in uno spazio completamente vuoto e identico in ogni suo punto.

Siccome lo spazio è vuoto ed identico in ogni suo punto, se spostiamo la particella in un altro punto le sue proprietà di moto non possono variare, altrimenti significherebbe che una qualche posizione spaziale è più speciale di altre, in contraddizione con l’ipotesi di spazio identico.


Non solo la proprietà di “particella” rimane invariata sotto la traslazione spaziale, ma anche le sue proprietà di moto.

La simmetria delle proprietà di moto viene chiamata quindi “conservazione” di una certa quantità, che in questo caso è la quantità di moto: una particella, come ci diceva Galileo, prosegue indisturbata nel suo moto rettilineo in assenza di forze, o rimane ferma se era già ferma.

Se invece ci fosse una forza, generata da una sorgente localizzata nello spazio, allora perderemmo l’equivalenza dei punti spaziali: non può esserci conservazione della quantità di moto, perché la quantità di moto varia in base alla forza applicata.

Non tutte le proprietà rimangono simmetriche sotto una certa trasformazione.

Supponiamo però che ora la sorgente di forza abbia una simmetria circolare, cioè che la forza sia la stessa lungo una circonferenza immaginaria centrata attorno alla sorgente.


In tal modo abbiamo ottenuto una simmetria sotto rotazioni attorno all’asse della sorgente. Per via di questa simmetria la traiettoria della massa è influenzata allo stesso modo indipendentemente da che angolo formi rispetto alla posizione della sorgente, ciò consente la conservazione di un’altra proprietà di moto: il momento angolare.

Abbiamo perso la conservazione della quantità di moto, ma abbiamo guadagnato la conservazione del momento angolare, che nasce da un’altra simmetria del sistema sorgente-particella.

Il pattern è chiaro: una certa simmetria spaziale di un sistema fisico genera la conservazione di una certa proprietà del suo moto, e questo è il contenuto del teorema di Noether: le leggi di conservazione nascono dalle simmetrie.


Come ci ha insegnato Einstein con la Relatività Generale, se consideriamo le traslazioni spaziali dobbiamo quindi considerare anche le traslazioni temporali e studiare le trasformazioni dei sistemi fisici sotto tali traslazioni.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Il principio di conservazione dell’energia nasce proprio dalla simmetria sotto traslazioni temporali: se le interazioni di un sistema non variano nel tempo, deve conservarsi il suo contenuto energetico.

Energia e quantità di moto sono quindi due proprietà di un sistema che rimangono invariate sotto una traslazione temporale per la prima, e spaziale per la seconda.

Ciò aprì le porte alla fisica delle simmetrie, che ha permesso la classificazione di tanti tipi di interazione, con le relative particelle mediatrici. Infatti molti oggetti della fisica vengono classificati semplicemente in base a come trasformano: il modo che abbiamo di distinguere un processo di interazione da un altro è proprio osservarne il comportamento sotto trasformazioni. Nel tempo sono state studiate varie simmetrie:

  • La simmetria di inversione spaziale.
  • La simmetria di inversione temporale.
  • La simmetria sotto cambi di coordinate.
  • La simmetria sotto cambi di sistemi di riferimento inerziali.
  • ….

e da ciascuna (o da gruppi) di queste simmetrie è nata una teoria capace di spiegare i risultati sperimentali. Ad esempio la richiesta di simmetria di alcune quantità fisiche sotto un cambio di coordinate tra due sistemi in moto uniforme ha condotto alla relatività di Einstein. Oggi le nuove teorie della fisica delle particelle vengono costruite sui princìpi di simmetria.

Da tutto ciò si intuisce l’impatto colossale del teorema di Noether sulla Fisica Teorica: la matematica tedesca ha cambiato il nostro modo di pensare, rendendolo sorprendentemente elegante.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Decodificando le equazioni di campo di Einstein per i non-esperti

Scoperte verso la fine del 1915, le equazioni di campo di Einstein della Relatività Generale rappresentano uno dei risultati intellettuali più importanti della nostra civiltà.

Le equazioni di campo di Einstein per la Gravità (1915).

Queste equazioni descrivono la Gravità in maniera completamente differente dalla legge di gravitazione newtoniana.

La Gravità di Newton è quel fenomeno a cui attribuiamo il moto, nello spazio e nel tempo, degli oggetti che si trovano nei pressi di altri oggetti massivi.

Per Einstein, la Gravità non è un fenomeno di per sé. Lo spazio e il tempo diventano quantità dinamiche, modificabili dalla materia che li riempie. A sua volta, la materia non può fare altro che muoversi nello spazio e nel tempo, con un moto dettato precisamente dalla geometria dello spazio e del tempo.

Parliamoci chiaro: lo spazio-tempo non è un fluido che interagisce con la materia, non è un qualcosa di tangibile, è ancora più pazzesco di così.

Lo spazio-tempo è una collezione di eventi a cui ogni corpo è fondamentalmente legato, perché è con gli eventi che capiamo la realtà. È il nostro modo di comprendere il mondo: “quell’oggetto stava lì, a quell’ora del giorno”.
Dal punto di vista matematico interpretiamo la collezione di eventi come una iper-superficie geometrica in quattro dimensioni (3 spaziali e 1 temporale). È questa la grande intuizione di Einstein.

Le equazioni di Einstein dicono come questa iper-superficie reagisce alla presenza di massa ed energia. Il concetto è semplice, ma le equazioni sono abbastanza complicate.

È quindi mia intenzione decodificarle per dimostrare come funzionano anche ai non-esperti del settore.

Chi è già esperto può invece comodamente leggersi la bibbia della gravitazione di Kip Thorne, J.A. Wheeler e C. Misner.

Per iniziare la decodificazione, concentriamoci sul cosa e sul come: cosa stiamo cercando di risolvere con queste equazioni? E come lo stiamo cercando?

Decodificazione: cosa stiamo cercando?

Siccome è difficile disegnare le iper-superfici a 4 dimensioni, concentriamoci su 3 dimensioni per fissare le idee. Considera questa figura:

Matematicamente, come fai a descrivere questo spazio? Immagina che questo fosse, in origine, un lenzuolo. Un lenzuolo disteso in uno spazio tridimensionale. Il lenzuolo, di per sé, ha due dimensioni (lunghezza e larghezza, se trascuri lo spessore), ma vive in uno spazio tridimensionale in cui possiamo giudicare se il lenzuolo è curvo verso l’alto o verso il basso, proprio come nella figura.

Prendi un pennarello e disegna due punti A e B su questo lenzuolo, come nella figura seguente:

Prendi un sistema di assi cartesiani x e y, come si fa a scuola: qual è la distanza più preve tra A e B? Naturalmente è data dal teorema di Pitagora

    \[l^2=\Delta x^2+\Delta y^2\]

dove \Delta x=x_B-x_A e \Delta y=y_B-y_A. Questa è chiamata geometria piatta di uno spazio, è tutto liscio, nessun rigonfiamento, nessuna depressione. Nelle coordinate x e y vale sempre:

    \[ds^2=dx^2+dy^2\]

Questa quantità si chiama metrica (dx significa \Delta x=x_B-x_A per x_B molto vicino ad x_A, cioè distanze molto piccole). I coefficienti davanti agli elementi dx^2 e dy^2 (che sono pari a 1 come vedi) si chiamano coefficienti della metrica, che è indicata come un oggetto a quattro componenti: g_{ij}. Siccome non ci sono termini misti del tipo dx\times dy diremo che questi hanno coefficiente zero davanti a loro. La metrica è un modo molto comodo di riassumere i contenuti geometrici di uno spazio.

Coefficienti per la metrica del lenzuolo.

In questo caso abbiamo g_{xx}=1, g_{yy}=1, g_{xy}=g_{yx}=0.

Se adesso pieghi il lenzuolo (ti è concesso stiracchiarlo sfruttandone l’elasticità), vedrai i punti precedentemente disegnati cambiare la loro posizione relativa. In uno spazio curvo la metrica ha un’espressione ben diversa da questa che abbiamo appena scritto.

Potremmo essere interessati a capire come varia questa metrica da punto a punto: quanto rapidamente si inclina verso l’alto? Quanto si inabissa? Potremmo chiederci: quanto varia g_{ij} in vista di un leggero spostamento nella direzione x? Il cambiamento della metrica lo indichiamo con \Delta g_{ij}.

Il simbolo \partial significa un cambiamento \Delta molto piccolo, nella direzione di x, tenendo la coordinata y inalterata. Un modo ancora più conciso di scrivere \partial g/\partial x è con il simbolo \partial_x g.

Un piccolo check: se la metrica è piatta posso spostarmi nella direzione x o y quanto voglio, ma lei non cambierà, non si innalza e non si inabissa, quindi \partial_x g=0 e \partial_y g=0.

Questo è il punto più importante che serve per capire le equazioni di Einstein.

Esiste una quantità chiamata “curvatura dello spaziotempo” la quale è una combinazione non lineare di termini come \partial_x g, \partial_y g, \partial_z g per le tre dimensioni spaziali, e \partial_t g per la dimensione temporale indicata col simbolo t. Le informazioni sulla curvatura sono racchiuse in simboli che indichiamo con R_{\mu\nu} e R:

Ora il simbolo \partial^2 g sta a significare “come varia la variazione della metrica”? Allo stesso modo in cui l’accelerazione ci dice come varia la variazione della posizione (cioè come varia la velocità).

Einstein voleva un’equazione che esprimesse la seguente frase: “questa distribuzione di massa ed energia fa sì che la metrica varii da punto a punto (tramite (\partial g)^2,\partial^2 g...) in questo modo qui. Sai trovare la metrica g che risponde di tale variazione come descritto qui?”.

Le equazioni di Einstein descrivono come varia la metrica: se conosci come varia, sai anche trovare la metrica stessa, e se conosci la metrica, conosci il moto di tutti i corpi che sono contenuti nello spaziotempo.

Decodificazione: i due membri

Concentriamoci ora sulla distinzione visiva. Un’equazione serve per trovare qualcosa in funzione di qualcos’altro. Pensa a x^2=4, significa: sai trovare quel numero x tale che il suo quadrato faccia 4?

La situazione è molto simile: sai trovare quegli oggetti geometrici dello spazio-tempo R_{\mu\nu}, R, g_{\mu\nu} tali che combinati in questo modo si ha uguaglianza con il contenuto di materia ed energia?

La materia-energia è contenuta nell’oggetto T_{\mu\nu}, mentre 8\pi è una semplice costante matematica. D’altra parte c e G sono la velocità della luce e la costante di gravitazione universale di Newton, rispettivamente.

La risposta a questa domanda permette di conoscere la curvatura dello spaziotempo in ogni suo punto.

Perché sono chiamate “equazioni” di Einstein, se di equazione se ne vede effettivamente solo una?

In realtà è un modo furbo e sintetico di rappresentarle. L’oggetto g_{\mu\nu}, come visto nell’esempio del lenzuolo, ha in realtà tante componenti. In due dimensioni spaziali (x e y) era un oggetto a quattro componenti. Qui abbiamo 10 componenti effettive (sarebbero 16, ma alcune sono uguali ad altre, quindi il numero si riduce per simmetria), ad esempio g_{tt}, g_{xt}, g_{yt}, g_{zt}, g_{xx},g_{yy},g_{zz},... etc.

Dobbiamo quindi leggere l’equazione di Einstein come ben 10 uguaglianze indipendenti tra loro!

È perfettamente analogo a quel che si fa con i vettori della fisica di Newton: l’equazione \vec{F}=m\vec{a} nelle tre dimensioni spaziali sono tre equazioni distinte:

Volendole descrivere con un formalismo più vicino a quello delle equazioni di Einstein, possiamo indicarle con la seguente notazione: F_i=m\,a_i dove i è un indice che scorre sui tre assi cartesiani i=\{x,y,z\}.
Ricordando poi che l’accelerazione è la variazione della velocità nel tempo a=dv/dt, che a sua volta è la variazione della posizione nel tempo v=ds/dt, potremo indicare con a_i=\partial_t^2 s_i se s_i è la posizione nell’asse x, y o z.

Le equazioni di Einstein hanno un significato concettuale simile. Nel caso di Newton ci interessa trovare lo spostamento s_i in funzione del tempo, nota la distribuzione di forze F_i e la massa del corpo. L’equazione chiave per trovare ciò ci dice “sapendo che lo spostamento varia in questo modo, data la forza, trova lo spostamento ad ogni istante di tempo“.

Nel caso di Einstein le equazioni dicono “sapendo che la metrica varia in questo modo, data la sorgente, trova la metrica in ogni punto dello spazio“. E sono esprimibili in una maniera abbastanza analoga:

In realtà l’informazione contenuta è molto più ricca. Conoscendo T_{\mu\nu} (la materia e l’energia presenti nello spaziotempo) possiamo trovare la forma dello spaziotempo (contenuta in g_{\mu\nu}). Tuttavia la conoscenza di questa forma ci dice pure come si muoveranno massa ed energia.

La materia dice allo spaziotempo come curvarsi, e lo spaziotempo dice alla materia come muoversi

J.A. Wheeler

Un esempio molto semplice di sorgente massa-energia si ha nel caso di fluido perfetto in equilibrio termodinamico. Un fluido perfetto è caratterizzato dalla sua densità volumica \rho e dalla sua pressione P. Il tensore T_{\mu\nu} ha la seguente forma:

Inserendo T_{\mu\nu} nelle equazioni di Einstein è possibile risalire alla struttura dello spaziotempo g_{\mu\nu}, in riposta alla presenza di questo fluido!

Come mai le equazioni hanno questa forma?

Le equazioni di campo di Einstein hanno una forma poco familiare rispetto alle quantità che si maneggiano di solito in fisica classica. Per realizzare matematicamente quello che Einstein voleva esprimere, e cioè che la fisica non deve dipendere dalle coordinate di chi la sta studiando, era fondamentale che le equazioni per lo spaziotempo fossero tensoriali.

La metrica g_{\mu\nu} è un tensore. La sorgente di massa-energia T_{\mu\nu} è un tensore.

Un tensore è un oggetto matematico che permette di scrivere equazioni che non dipendono dalle coordinate utilizzate, grazie alla sua proprietà di trasformazione sotto cambiamenti di coordinate.

Questa richiesta complica terribilmente le equazioni della teoria, ma le rende infinitamente eleganti, perché assumono carattere di universalità: sono valide per tutti.

Non importa che coordinate utilizzi per studiare la Gravità: sarà sempre una manifestazione della curvatura dello spaziotempo, studiabile nelle coordinate che più ti tornano comode.

Le equazioni di Einstein sono ENORMEMENTE complicate da risolvere, anche nei casi più semplici. Si tratta di equazioni differenziali alle derivate parziali e non lineari, la cui soluzione analitica si conosce solo per un ristrettissimo numero di situazioni altamente semplificate e simmetriche (per tutto il resto, ci sono i computer).

Ad esempio, concentrandoci sullo spaziotempo vuoto attorno a una distribuzione di massa M a simmetria sferica, il lato destro delle equazioni di Einstein è nullo dato che T_{\mu\nu}=0

La metrica g_{\mu\nu} che risolve questa equazione (oltre alla soluzione banale di metrica piatta) è data da:

in cui r è la distanza dalla sorgente di massa M, \theta è una coordinata angolare, ed r_s è definito come raggio di Schwarzschild r_s=2GM/c^2. Il primo termine in alto a sinistra è g_{00}, la componente puramente temporale (chiamato anche g_{tt}), mentre sulla diagonale abbiamo g_{11},g_{22} e g_{33}, altrimenti indicati con g_{xx}, g_{yy}, g_{zz}.

Per valori della distanza r vicini al raggio di Schwarzschild r_s, uno dei termini della metrica (g_{11}) diventa molto grande perché stiamo dividendo per un numero molto vicino a zero. La curvatura dello spaziotempo aumenta sempre di più man mano che la nostra distanza dalla sorgente diminuisce.

Rappresentazione bidimensionale della metrica di Schwarzschild.

Questa metrica g_{\mu\nu} è un esempio di soluzione delle equazioni di Einstein: descrive lo spaziotempo attorno a una massa M. Ad esempio lo spaziotempo attorno al Sole ha una struttura di questo tipo. Anche lo spaziotempo attorno alla Terra ha questa struttura. Anche lo spaziotempo attorno a un buco nero.

Dove si nasconde Newton?

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

La Gravità di Einstein è una versione ultra-sofisticata della Gravità di Newton, in cui i concetti di spazio e tempo si uniscono e diventano dinamici. Nel mondo di Einstein, il tempo è relativo, la velocità della luce è un limite universale, e non esiste l’azione istantanea delle forze, ma tutto deve essere mediato dai campi.

Come faceva Einstein a sapere di aver ragione? Beh, la sua teoria doveva anche essere in grado di riprodurre due secoli di successi della gravitazione di Newton. Scrivendo l’accelerazione come \vec{a}=d^2\vec{x}/dt^2 la legge di Newton per la gravitazione di un corpo attorno a una massa M è

L’accelerazione non dipende dalla massa del corpo che cade. Come sai, tutti i corpi accelerano allo stesso ritmo, a parità di distanza dalla sorgente. Questa è una caratteristica unica della Gravità, e ad Einstein venne in mente che proprio per questo motivo la Gravità non è una forza, ma il risultato del moto in uno spaziotempo curvo: tutti i corpi dell’universo si muovono su traiettorie di caduta libera nello spaziotempo, chiamate geodetiche.

Una volta nota la metrica dello spaziotempo, sai come si muoveranno gli oggetti nello spaziotempo.

Nel contesto einsteiniano una geodetica x(\tau) è una traiettoria nello spaziotempo che soddisfa la seguente equazione:

La lettera \mu è un indice che scorre tra i valori \{0,1,2,3\}.

Espressione che mette un po’ d’ansia se vista per la prima volta, lo ammetto. Sappi solo che serve a trovare una traiettoria nello spaziotempo. Lo spaziotempo è contenuto dentro il simbolo \Gamma_{\nu\rho}^\mu: la metrica g_{\mu\nu} (e la sua variazione) è proprio contenuta dentro \Gamma. Per questo motivo Wheeler diceva che lo spaziotempo dice alla massa come muoversi.

La Gravità di Newton si recupera richiedendo che:

  • le velocità coinvolte devono essere molto più piccole di quella della luce v\ll c;
  • la curvatura dello spaziotempo non sia troppo elevata. Ad esempio ci mettiamo a distanza r\gg r_s, lontani dal raggio di Schwarzschild.

Così facendo, l’espressione per l’equazione delle geodetiche si approssima così (non è formalmente precisissima, ma mi serve per far rendere l’idea)

Chi è g_{00}? Guardiamo la metrica g_{\mu\nu} trovata sopra:

Dunque per trovare l’accelerazione basterà fare la derivata di g_{00} rispetto ad r. Se non sai cosa è una derivata, ti basti sapere che il calcolo produce (d/dr)(1/r)=-1/r^2, e che la derivata di una costante fa zero.

La velocità della luce c^2 si semplifica in quanto tutta l’equazione delle geodetiche era in realtà moltiplicata da 1/c^2 (anche se te l’ho nascosto per semplicità). Sostituendo, il risultato è quindi:

e cioè proprio l’espressione newtoniana.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Il Graal della Fisica: perché l’Unificazione tra Gravità e Quantistica è Tecnicamente Ardua?

Tra le quattro interazioni fondamentali, l’unica a non ammettere (ad oggi) una convincente e comprovata trattazione quantistica è la Gravità.

Che la situazione sia questa non è di certo cosa nuova. D’altra parte le tre interazioni fondamentali quantistiche (forza forte, forza debole ed elettromagnetismo) trovano una naturale collocazione nel mondo microscopico, dove la quantistica fa da padrona, appunto.

Anzi, dal punto di vista della fisica teorica, queste tre interazioni (si dimostra) sorgono in maniera naturale nella teoria quantistica una volta incorporati i princìpi della Relatività Speciale tramite alcune simmetrie aggiuntive (chiamate simmetrie di gauge).

La Gravità, invece, trova una naturale collocazione nel mondo macroscopico, con Newton (prima) ed Einstein (oggi).

Però ho letto che molti gruppi di ricerca stanno lavorando a diverse teorie di Gravità quantistica. Qual è lo stato odierno della ricerca?

Semplicemente: non abbiamo una teoria quantistica della Gravità che sia in grado di passare dal microscopico (mondo quantistico) al macroscopico (pianeti, cosmologia etc.) in maniera univoca e naturale.

Microscopico e macroscopico: quanto ci piacerebbe che la Gravità fosse un po’ più simile all’elettromagnetismo. L’elettromagnetismo ammette sia una descrizione quantistica (elettrodinamica quantistica, o QED) che una descrizione classica (le leggi di Maxwell che studiamo al liceo). Dal punto di vista quantistico, delle particelle chiamate fotoni fanno da intermediarie tra le cariche elettriche. A partire da questa descrizione quantistica è facile ricavare la descrizione classica ottocentesca di Maxwell, in cui dei fotoni ce ne freghiamo altamente.

La Gravità, però, è così tanto diversa…

Diversa in che senso? Mi pare di aver letto che elettromagnetismo e Gravità siano anzi molto simili, in fisica classica entrambe dipendono dalla distanza con la legge 1/r^2 ad esempio…

Oltre al fatto che in Gravità possiamo avere solo attrazione e mai repulsione, c’è anche quest’altro fatto: una particella elettricamente neutra non “sente” il campo elettrico che la circonda.


La Gravità invece? Niente è in grado di “spegnere” la Gravità. Anche un corpo senza massa “sente” il campo gravitazionale attorno a lui, ad esempio la luce viene deflessa dal campo gravitazionale. Questo è spiegato, in Relatività Generale, dal fatto che la Gravità non è altro che la manifestazione della curvatura dello spaziotempo. Tutti gli oggetti seguono le traiettorie naturali dettate dalla curvatura dello spaziotempo, non possono fare altrimenti. La curvatura dello spaziotempo è a sua volta dettata da quanta massa ci sta dentro.

Che la Gravità fosse essenzialmente diversa dall’elettromagnetismo si capiva già dalla teoria di Newton. Ricordi F=ma? Se cerchi l’accelerazione di un corpo sottoposto al campo gravitazionale, trovi che l’accelerazione non dipende dalla massa del corpo, ma solo dalla massa di chi il campo gravitazionale lo ha generato. La famosa forza di Coulomb per il campo elettrico, invece, prevede che l’accelerazione di un corpo dipenda sia dalla sua carica elettrica, sia dalla sua massa. Parliamo quindi di due cose completamente diverse.

Qui k è la costante elettrica di Coulomb, mentre G è la costante di gravitazione universale di Newton. Nell’elettromagnetismo, l’accelerazione di un corpo dipende dalla sua massa, mentre nella Gravità no. Nella Gravità, la massa si semplifica.

D’accordo, sono forze molto diverse. Per questo motivo Einstein intuì che la Gravità doveva essere legata alla struttura stessa dello spaziotempo.

Ciò che non capisco ora è perché questo fatto renda così difficile quantizzare la gravità.

Uno dei primi problemi è puramente tecnico: nel Modello Standard (il quale ingloba le tre interazioni quantistiche citate prima), i fenomeni tra le particelle sono descritti sul palcoscenico dello spaziotempo della Relatività Speciale: uno spaziotempo piatto che agisce passivamente, il cui unico scopo è quello di permetterci di annotare le coordinate spaziali e temporali delle particelle nei processi quantistici.

Ho capito! Quindi il problema è che non sappiamo fare i calcoli in uno spazio curvo, è lo spazio curvo della Relatività Generale il problema?

No, in realtà sappiamo fare i calcoli del Modello Standard anche in uno spazio curvo. Curvo o piatto non fa differenza, ci si adatta. No, la difficoltà è un’altra: questo spazio, curvo o piatto che sia, deve essere fisso, indipendente dalla materia, deve essere uno spettatore, non un attore.

Le teorie quantistiche del Modello Standard sono scritte nel seguente modo: i campi quantistici delle particelle sono “costruiti” come funzioni dello spaziotempo. Le interazioni avvengono nello spazio e nel tempo, ma la presenza stessa delle particelle non determina che forma debba avere lo spaziotempo. Il Modello Standard non prevede la risoluzione di un’equazione che descrive la dinamica dello spaziotempo.

L’equazione che descrive la dinamica dello spaziotempo è invece la più importante della Relatività Generale ed è nota come equazione di campo di Einstein:

R_{\mu\nu}, R e g_{\mu\nu} sono quantità con cui descriviamo la geometria dello spaziotempo. Invece T_{\mu\nu} descrive il contenuto di materia-energia presente. L’equazione dice che tale contenuto determina la geometria stessa dello spaziotempo.

In realtà va usato il plurale, queste sono 10 equazioni (gli indici \mu,\nu=\{0,1,2,3\} esplicitano le componenti), equazioni differenziali altamente non lineari, alle derivate parziali (qualsiasi cosa voglia dire per te, se non hai dimestichezza, sappi che è un modo tecnico per dire “è tutto altamente incasinato”).

Cosa vogliamo trovare con queste equazioni? L’espressione per g_{\mu\nu}, chiamata “metrica“, cioè la forma geometrica dello spaziotempo.

Anche quando non c’è sorgente (cioè T_{\mu\nu}=0) non esiste una soluzione generica per le equazioni di Einstein. Certamente lo spazio piatto è una soluzione possibile, ma non LA soluzione più generica. In genere vanno assunte ulteriori simmetrie geometriche per trovare la soluzione anche nel caso più semplice (come la simmetria sferica attorno a un punto).

In sostanza, è questo uno dei principali motivi per cui è difficile raccordare il formalismo quantistico con quello della Relatività Generale, è proprio la dinamicità dello spaziotempo!

Prima di andare avanti ho una domanda:

e se fosse proprio così? Nel senso, non potremmo lasciare la Gravità per conto suo se la Natura ci suggerisce di fare così? Tre forze sono quantistiche e una forza è non-quantistica, per dire. Che ci sarebbe di male?

Intendi che dovremmo rinunciare a una descrizione quantistica della gravità? In questo senso è la Relatività Generale stessa (la attuale teoria classica della Gravità) che “si scava la fossa da sola”.

Perché si “scava la fossa” da sola?

Due parole: buchi neri. Sono previsti dalla Relatività Generale, ma la matematica smette di avere senso nella singolarità di un buco nero. La singolarità è il punto in cui la curvatura dello spaziotempo diventa infinita. Si suppone che a quel punto, vicino alla singolarità, entri in gioco una teoria più sofisticata della Gravità, che abbia a che fare con il microscopico: la gravità quantistica. Questa teoria potrebbe potenzialmente descrivere anche i primissimi istanti di vita dell’Universo.

D’accordo, quindi è sensato (e necessario) ricercare la gravità quantistica.

Ho sentito parlare in giro del gravitone, l’ipotetica particella quantistica mediatrice della Gravità (un po’ come il fotone nella QED)….Non è già questa una teoria quantistica?

Il gravitone è quanto di più “Modello Standard” tu possa fare con la Relatività Generale. Nelle teorie del Modello Standard ci piace lavorare nello spaziotempo piatto e immobile della Relatività Speciale, chiamiamolo \eta_{\mu\nu}.

Un’idea (primitiva) in Gravità quantistica è di considerare delle perturbazioni piccole di questo spazio piatto, chiamiamole h_{\mu\nu}(x). Lo spaziotempo può quindi essere espresso come la seguente somma: spazio piatto più una piccola perturbazione:

Nella cosiddetta “trattazione perturbativa” di una teoria quantistica di gravità, il gravitone è un quanto di eccitazione di questo campo h_{\mu\nu}(x), e così come il campo elettromagnetico prevede l’esistenza delle onde elettromagnetiche come dettato dalle leggi di Maxwell, il campo di perturbazione gravitazionale h_{\mu\nu} prevede l’esistenza di onde gravitazionali come dettato dalle equazioni di Einstein scritte sopra (in sostanza si sostituisce g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}(x) al loro interno in assenza di sorgente, cioè T_{\mu\nu}=0).

Il problema è che questa trattazione perturbativa casca completamente quando si considerano alte energie, nulla ha più senso: sorgono degli infiniti che non è possibile rimuovere. Nelle altre tre interazioni fondamentali erano rimovibili, nel caso della Gravità ciò non è possibile, proprio per via della sua struttura altamente non-lineare.

Per questo motivo l’approccio perturbativo è stato presto abbandonato e si sono ricercate delle teorie più fondamentali, teorie quantistiche in cui lo spaziotempo è effettivamente dinamico, e non una mera “perturbazione” dello spaziotempo piatto sottostante e immutabile.

Sì, ne ho sentito parlare. Due in particolare sono molto famose: Teoria delle Stringhe e Gravità quantistica a Loop.

Sono alcuni degli approcci possibili, ma non gli unici, anche se oggi quei nomi hanno un significato un po’ diverso da quello che avevano 30 anni fa. Senza andare nei dettagli, queste teorie cercano di quantizzare la gravità in modi diversi: la gravità quantistica a loop ha un approccio geometrico e ha come unico scopo la quantizzazione della gravità. La teoria delle stringhe ha un obbiettivo molto più vasto, cioè l’unificazione e la descrizione di tutte le interazioni fondamentali, assieme a tutte le particelle ad oggi scoperte (e non).

  • Gravità quantistica a loop: ci interessa la struttura quantistica dello spaziotempo, che viene visto come una rete fatta di nodi e connessioni tra quanti discreti di spazio e tempo.
  • Teoria delle (super)stringhe: ci interessa la dinamica di ipotetiche piccolissime stringhe. La loro forma, la loro propagazione nello spaziotempo e i loro modi di vibrazione descrivono tutte le particelle, fino al gravitone.

Mi pare però di capire che nessuna delle due risulti essere la teoria definitiva della Gravità quantistica?

Purtroppo è così. In particolare è difficile inventare strumenti matematici in grado di risolvere le questioni tecniche citate prima, che siano compatibili sia con il mondo quantistico che con il mondo relativistico, in modo che dalla teoria fondamentale possa discendere anche un limite classico. Insomma, ci piacerebbe che le equazioni di Einstein uscissero in maniera naturale dai calcoli della teoria quantistica, nel limite di basse energie (o, equivalentemente, di grandi distanze).

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non è chiedere troppo, d’altronde anche le equazioni di Einstein si riducono alle equazioni della gravità newtoniana (sì, anche la famosa dipendenza 1/r^2 della forza di gravità) se assumiamo un limite non relativistico (basse velocità rispetto a quella della luce, e spaziotempo quasi-piatto).

Che una teoria più sofisticata contenga al suo interno la teoria più “grezza” come limite, è un aspetto cruciale della fisica teorica. La Relatività Generale continua a superare ogni test sperimentale di giorno in giorno, per cui è importante che ogni teoria quantistica della gravità sappia riprodurre anche i suoi risultati. Il punto poi è scegliere LA teoria quantistica definitiva, tra le versioni più promettenti.


In questo senso, una delle difficoltà principali rimane quella della testabilità di queste teorie. Solo tramite test sperimentali siamo in grado di fare scienza.

Perché è difficile testare la teorie esistenti di gravità quantistica?

La Gravità è sfortunatamente l’interazione fondamentale più debole. Ad esempio l’attrazione gravitazionale tra due protoni risulta essere 10^{36} volte più debole della loro repulsione elettrica.

Per questo motivo, è estremamente complicato ricercare effetti gravitazionali nel mondo quantistico delle particelle. Infatti c’è pure chi ha fatto dimostrazioni euristiche sulla non osservabilità del gravitone! [F. Dyson (2013)].

Senza la guida sperimentale è impossibile trovare una teoria convincente?

Non è impossibile. Grazie agli sviluppi tecnologici degli ultimi decenni nel campo dei calcolatori, siamo stati in grado di esplorare nuovi approcci (chiamati approcci “non perturbativi”), i quali riguardano simulazioni numeriche di alcuni calcoli che a mano sarebbero proibitivi.

Questi che ho illustrato sono alcuni dei motivi per cui questo matrimonio è così difficile. Sicuramente ci saranno altri motivi più sottili, ma non essendo questo il mio campo (mi occupo di fisica delle particelle) preferisco non andare oltre. Una cosa rimane certa: con questo matrimonio ci giochiamo la chiave per la comprensione della realtà.

[Bibliografia]
R.Loll, G. Fabiano, D. Frattulillo, F. Wagner (2022).


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

L’inversione del Tempo nella Gravità

Svuota la mente da tutte le complicazioni del mondo, elimina l’aria e altri attriti, e prova ad immaginare solo una palla sospesa sopra a un pavimento perfetto (cioè senza irregolarità nella sua superficie).

Lascia cadere la palla e registra quel che succede con una videocamera: la palla cade e rimbalza, ritornando su.

Ipotizza pure che la palla rimbalzi elasticamente in modo che la sua energia cinetica non sia dispersa in deformazione a causa dell’urto col pavimento.

La palla rimbalzerà fino a tornare all’altezza da cui è stata lanciata, per il principio di conservazione dell’energia totale. La sequenza in figura è da leggere come 1, 2 e 3.

Ok, wow. Che c’entra questo con l’inversione del tempo nella Gravità?

Abbiamo fatto un video di quanto accaduto, e la registrazione è suddivisibile in tre sequenze, indicate in figura dai numeri 1, 2 e 3. Che cosa vediamo ora se facciamo scorrere il filmato al contrario, cioè 3, 2, 1? Vediamo esattamente la stessa cosa: la palla inizia a scendere prima lentamente, poi sempre più velocemente fino a quando non rimbalza sul pavimento e arriva al fotogramma 1, in maniera del tutto identica alla sequenza 1, 2, 3!

Lo scenario 321 corrisponde all’inversione della freccia del tempo. L’inversione temporale consiste matematicamente nel cambiamento del segno davanti alla coordinata del tempo, indicata con “t”:

Impariamo quindi che la Gravità è simmetrica sotto inversione temporale! Significa che l’interazione gravitazionale rimane attrattiva indipendentemente dalla direzione del tempo.

Aspetta, ma se rimuovo il pavimento la palla cade verso il centro della Terra e rimane lì, non ritorna su!

Il filmato visto al contrario ha un aspetto ben diverso in quel caso: la palla arriva da giù e poi ritorna su (per starci), come se la Gravità fosse una forza repulsiva invece che attrattiva!

Ottima osservazione. Nel caso che hai citato, se guardassimo il filmato al contrario, sembrerebbe infatti che la Gravità stia “rigettando” la palla. In realtà bisogna studiare la situazione del filmato fotogramma per fotogramma come se fossimo degli investigatori.

  • Tempo normale: la palla parte dall’alto con velocità nulla, e viene man mano accelerata verso il basso per via dell’attrazione gravitazionale con la Terra. Come conseguenza la sua velocità (diretta verso il basso) ha un valore che aumenta sempre di più man mano che scende. C’è insomma qualche attrazione verso il basso che sta dicendo alla palla “vieni verso di me!”
  • Tempo invertito: la palla parte dal basso con grande velocità, ma stavolta direzionata verso l’alto. Man mano che la sua quota aumenta e si avvicina al punto da cui l’abbiamo lasciata cadere nel filmato originale, la sua velocità diminuisce sempre di più: c’è anche qui un’attrazione verso il basso che sta dicendo alla palla “fermati, torna da me, vieni verso di me!”

In entrambi i casi è la Gravità che dice alla palla di accelerare verso il basso, la direzione dell’accelerazione è sempre verso il centro della Terra. In questo senso intendiamo dire che la Gravità è simmetrica per inversione temporale.

Non so se debba sorprendermi o confondermi. E in ogni caso, mi pare una definizione costruita ad-hoc!

Almeno c’è un motivo fisico dietro?

Il motivo è molto semplice e sta dentro un dettaglio matematico. Chiamiamo dS lo spostamento in un piccolo segmento di traiettoria della palla, percorso in un tempo dt. Qui la lettera d ha un ruolo speciale che significa “piccola variazione di”:

  • dS significa “piccolo spostamento nello spazio S
  • dt significa “piccolo intervallo di tempo”

La velocità di un corpo è, a parole, quanto spazio abbiamo percorso in un certo tempo che abbiamo cronometrato. Normalmente si misura in metri al secondo, chilometri all’ora, etc. La preposizione articolata “al” sta a significare che spazio e tempo vanno divisi (matematicamente) tra loro. Infatti la velocità è definita come il rapporto tra dS e dt

Ok il fatto che la velocità cambi segno quando invertiamo il tempo dovrebbe vedersi da questa formula, giusto?

Esattamente, facciamo la trasformazione t \to (-t) nella formula e vedrai che il segno si propaga dal denominatore a tutta la frazione: segno invertito!

Questo ce lo aspettavamo: nel filmato la palla si muove effettivamente al contrario rispetto a prima, ma il suo valore assoluto non cambia (in particolare, il valore assoluto nel tempo rimane uguale punto per punto della traiettoria).

L’accelerazione invece (che nel nostro caso è dettata dall’interazione gravitazionale) è definita come la variazione della velocità nel tempo:

  • dv significa “piccola variazione nella velocità”

definita quindi come:

Abbiamo semplicemente sostituito al posto di v la sua espressione v=dS/dt data sopra.

Vuoi dirmi che da qui dovrebbe essere evidente che l’accelerazione conserva sempre lo stesso segno anche se invertiamo la coordinata del tempo?

Esattamente! Lo vedi applicando t \to (-t) nella formula:

meno per meno fa più, e il segno sparisce! All’accelerazione non frega nulla della freccia del tempo. Nel caso dell’accelerazione gravitazionale questo è proprio ciò che osserviamo.

Sì, molto bene. Però ho capito dove sta la furbizia: il mondo non funziona così!

Nel primo esempio la palla perde sempre anche solo una minuscola quantità di energia cinetica nel rimbalzo: si chiama dissipazione. Anche l’aria fa da attrito! Dunque, rivedendo il filmato al contrario, sarò capace di distinguere una direzione del tempo dall’altra.

La palla non tornerà mai esattamente alla stessa altezza da dove l’ho lasciata cadere.

Giustissima osservazione, di nuovo. Il punto è che quegli effetti non sono dovuti alla Gravità, ma alle interazioni della palla col mondo circostante. In un mondo senza attrito, la simmetria del tempo della Gravità è solo molto più evidente, tutto qua.

In fondo, ciò che ci permette di distinguere tra passato e futuro è proprio la dissipazione di energia in calore, collegato con l’aumento dell’entropia dell’universo.

D’accordo, ma perché secondo te tutto questo discorso è interessante?

Questa simmetria della Gravità sotto inversione temporale viene rotta esplicitamente nell’orizzonte di un buco nero, anche senza scomodare i concetti di entropia. Avrai forse sentito (clicca qui per un video pedagogico sull’argomento) che una volta superato il cosiddetto “orizzonte degli eventi” nulla può tornare indietro, neanche la luce può uscire.

Illustrazione bidimensionale dello spaziotempo attorno a un buco nero.

Se invertiamo la freccia del tempo sull’orizzonte, la Gravità si comporta in maniera diversa dato che non potremo mai vedere un oggetto tornare indietro superando l’orizzonte.

Possiamo vedere un oggetto che oltrepassa l’orizzonte venendo da fuori, ma non possiamo mai vederlo oltrepassarlo venendo dall’interno?

In realtà non lo vediamo nemmeno nel primo caso, dato che la luce ci mette sempre più tempo per raggiungerci man mano che l’oggetto si avvicina all’orizzonte. L’oggetto ci apparirà come “immobile” sull’orizzonte, ipotizzando che lo osserviamo a una certa distanza dal buco nero.

Ok stai tirando in ballo la Relatività Generale di Einstein senza dirlo pubblicamente. Se non masticassi l’argomento ti perderei qui, chiaro?

D’accordo allora concentriamoci sul messaggio da portare a casa: alcuni gruppi di ricerca stanno ipotizzando che la famosa “singolarità” di un buco nero preveda la possibilità di un “ribaltamento” della direzione del tempo.

L’interno dello spaziotempo di un buco nero potrebbe transitare quantisticamente in una configurazione in cui il tempo è invertito.

Tale transizione consiste nella trasformazione di un buco nero in un buco bianco.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Da un buco nero nulla può uscire, in un buco bianco nulla può entrare. Un buco bianco è il futuro di un buco nero, il suo interno vede il tempo scorrere al contrario, e ora il suo orizzonte prevede la fuoriuscita di materia invece che il suo assorbimento [tutto ciò è discusso divulgativamente da C.Rovelli in “Buchi Bianchi” (Adelphi, 2023)].

La chiave di tutto ciò è che all’esterno un buco nero e un buco bianco sono del tutto simili: lo spaziotempo attorno è identico, la Gravità rimane attrattiva nonostante la direzione del tempo in un buco bianco sia ribaltata. Il motivo è proprio quello che abbiamo discusso prima: l’accelerazione è insensibile alla freccia del tempo.

Questo, di fatto, legittima l’ipotesi dei buchi bianchi: all’esterno, la loro esistenza non contraddice le leggi della Relatività Generale, l’Universo funziona ugualmente anche includendo i buchi bianchi. Il ribaltamento del tempo è compatibile con quanto sappiamo dell’Universo.

Invece, all’interno degli orizzonti, l’inversione del tempo gioca un ruolo fondamentale dato che consiste nel diverso comportamento di queste due entità.
Due entità (buco nero e buco bianco) che all’esterno sono indistinguibili, ma che all’interno si comportano in maniera opposta (uno fa l’inverso dell’altro).

Ho come l’impressione che tutto ciò sia solo un’introduzione molto semplificata. Dove sta l’entropia in questo gioco? La distinzione tra passato e futuro?

E inoltre, non avevi illustrato che un buco nero è in grado di emettere energia e rimpicciolirsi tramite la radiazione di Hawking? Come fa a evolversi in un buco bianco tenendo conto di ciò?

Hai detto bene, questo è solo un assaggio con cui spero di avere acceso la tua curiosità. Come per ogni argomento di ricerca, le questioni tecniche sono tante e intricatissime. Cercherò di dissenzionarle una ad una in futuro, anche perché voglio vederci meglio pure io. Sono poi curioso di sapere come si evolverà il campo nei prossimi dieci anni, e di come questa ipotesi dei buchi bianchi andrà a stimolare discussioni sulla natura della freccia del Tempo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

“E questa…chi l’ha ordinata?” La particella che contribuì a verificare la Relatività

A cavallo degli anni ’30 del secolo scorso, la fisica delle particelle si trovava in una fase di rapida evoluzione:

Insomma, questa timeline poteva far pensare che stessimo avanzando a passo spedito verso una comprensione delle interazioni nucleari (oggi note come interazioni forti). Perciò è facile comprendere l’esclamazione iconica del fisico Isidor Rabi quando si concluse che la nuova particella scoperta da Carl Anderson e Seth Neddermeyer nel 1936 (che oggi sappiamo essere il muone) non partecipava alle interazioni nucleari forti, cioè non era il pione teorizzato da Yukawa, ma era anzi un “cugino più ciccione” dell’elettrone:

E questa…chi l’ha ordinata?

I.I. Rabi (premio Nobel 1944)

Chi ha ordinato un cugino più ciccione dell’elettrone? In gergo da fisici significa: questa particella non ci aiuta ad avanzare le nostre comprensioni del nucleo dato che non sente l’interazione forte, quindi a che pro la sua esistenza? Che cosa ce ne facciamo di un elettrone più massiccio? E inoltre, perché è tipo 200 volte più massiccio dell’elettrone, ma ha uguale carica elettrica e spin?

La massa del muone è circa 200 volte quella dell’elettrone, ma hanno stesso spin e carica elettrica.

È vero, è vero, la scienza non si occupa dei “perché”, ma cerca di sfruttare ogni scoperta al fine di migliorare la condizione sociale e culturale dell’umanità.

In questo senso, la scoperta del muone ha avuto una grande importanza non solo per la fisica delle particelle, ma anche per una delle prime verifiche della celebre dilatazione temporale prevista dalla Relatività Ristretta. In questa verifica c’è un pezzo di Italia: il fisico veneziano Bruno Rossi.

L’ innovazione di Bruno Rossi 

Nell’anno della scoperta del muone, Bruno Rossi insegnava fisica sperimentale a Padova, ed era già un nome affermato nel campo della fisica dei raggi cosmici. Questi ultimi venivano osservati da un paio di decenni e consistevano in particelle cariche ionizzanti che si formavano nell’atmosfera, a causa (come si scoprì) dell’impatto tra gli atomi atmosferici e particelle altamente energetiche (principalmente protoni) provenienti dalle profondità del cosmo. Fu proprio da queste collisioni che venne scoperto il muone. 

Un giovane Bruno Rossi (sinistra) con Enrico Fermi, al primo congresso internazionale di fisica nucleare di Roma. 

Rossi era riservato, mite e profondamente artistico (era un grande ammiratore di Dante Alighieri), ed era descritto dai suoi colleghi come una personalità “complessa, un po’ da poeta e un po’ da scienziato”. Gli fu sottratto il posto da insegnante nel 1938 per via delle leggi razziali italiane, e fu quindi costretto ad emigrare. Dopo un soggiorno a Manchester, si trasferì definitivamente negli Stati Uniti su invito dell’università di Chicago per la partecipazione a un simposio proprio sul muone, la nuova particella. 

Rossi aveva grande manualità nella costruzione di circuiti in grado di rivelare il passaggio di queste particelle, tant’è che alcune sue invenzioni sono poi diventate lo standard nel campo della fisica dei rivelatori. Dopo il simposio di Chicago, si occupò di dimostrare che il muone è una particella instabile, e riuscì a inferire che il suo tempo medio di decadimento doveva essere di circa 2 microsecondi. Questa fu la prima dimostrazione sperimentale del decadimento di una particella sub-nucleare. 

È molto probabile che, mentre stai leggendo, alcuni muoni derivanti dai raggi cosmici ti stiano attraversando dall’alto verso il basso.

La dilatazione dei tempi

Il punto fondamentale è che questo tempo medio di decadimento del muone è riferito rispetto al sistema di riposo della particella.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Il ragionamento è questo: le particelle non amano stare ferme, questi muoni sono prodotti in collisioni nell’alta atmosfera, dopodiché si dirigono a grande velocità verso il suolo terrestre. Se ci mettiamo in un sistema di riferimento solidale a un muone (cioè ci muoviamo nella sua stessa direzione e con la sua stessa velocità in modo che, rispetto a noi, risulti fermo), e cronometriamo dal momento in cui è prodotto al momento in cui decade, il tempo che passerà ammonta a circa 2 microsecondi, come è possibile calcolare con la teoria di Fermi dell’interazione debole.

La velocità dei muoni è una frazione apprezzabile della velocità della luce, per cui diventa apprezzabile la natura interconnessa tra spazio e tempo prevista dalla relatività speciale di Einstein. Prendiamo due eventi temporali che accadono nello stesso punto dello spazio, la distanza temporale la chiamiamo \Delta \tau. Gli stessi eventi temporali, visti ora da qualcuno che si muove a velocità v rispetto a prima, sono invece distanziati temporalmente di una quantità \Delta t relazionata a \Delta \tau secondo la celebre formula:

dove c è la velocità della luce. Vediamo che per v\to c il denominatore approccia zero, e dunque \Delta t cresce molto: si ha una dilatazione dei tempi dal punto di vista dell’osservatore che vede i due eventi verificarsi in punti diversi dello spazio (per via del suo moto relativo). Questo è il contenuto teorico della relatività ristretta: a basse velocità v\to 0 rispetto alla velocità della luce, si ha approssimativamente che \Delta t\approx \Delta \tau, cioè il tempo ha la stessa durata per tutti, come siamo abituati nella nostra quotidianità.

Sinistra: grazie alla dilatazione dei tempi, siamo in grado di rivelare i muoni. Destra: se non ci fosse la dilatazione dei tempi, i muoni decadrebbero dopo 600 metri.

L’ esperimento di Rossi e Hall

Nel caso dei muoni, gli eventi “creazione” e “decadimento” del muone avvengono nello stesso punto dello spazio dal punto di vista del muone (secondo il muone, siamo noi a muoverci mentre lui è fermo nel suo sistema di riferimento). Se non esistesse la relatività speciale e il tempo di decadimento del muone fosse quello a riposo, li vedremmo decadere dopo aver percorso solo circa 600-700 metri.

    \[L\approx \underbrace{(0.9\cdot c)}_\text{velocità}\times (2.2*10^{-6})\text{ s}\approx 600\,\text{m}\]

Dato che i muoni vengono prodotti dalle collisioni dei raggi cosmici con l’atmosfera a circa 15 km di altezza rispetto al livello del mare, ciò significherebbe che non saremmo in grado di rivelarli neanche nelle cime montuose più alte del pianeta: decadrebbero ben prima!

Grazie ai suoi apparecchi sperimentali, nel 1940 Rossi riuscì a verificare la seguente relazione tra distanza percorsa L dei muoni e la loro energia E:

m_\mu è la massa del muone, \Delta \tau è il suo tempo di decadimento a riposo, pari a circa 2 microsecondi.

la quale discende direttamente dalle formule della relatività ristretta. Bastava quindi verificare che il rapporto tra distanza percorsa ed energia dei muoni doveva essere una costante pari a \Delta \tau/(m_\mu c). Rossi e Hall eseguirono l’esperimento sia a Echo Lake (3240 metri) che a Denver (1616 metri) in Colorado, e la verifica ebbe successo!

I muoni riuscivano a raggiungere altitudini così basse grazie alla dilatazione temporale: rispetto a noi, il loro tempo di decadimento è più lungo, dunque percorrono una distanza maggiore prima di decadere.

Quindi, 35 anni dopo la sua formulazione, nel 1940 la Relatività Ristretta superò uno dei primissimi test di validità, e tale test riguardava proprio uno degli aspetti più controversi: la dilatazione temporale. Ciò non sarebbe stato possibile senza l’ausilio dei raggi cosmici (che mettono a disposizione una quantità generosa di particelle con cui far “giocare” i fisici) e l’expertise di Rossi e gli altri fisici delle astroparticelle dell’epoca.

La precisione con cui Rossi e i suoi collaboratori riuscirono ad estrarre i parametri dei muoni è lodevole, nonostante fossero esperimenti condotti agli albori dell’elettronica dei rivelatori. Oggi un rivelatore di muoni può essere costruito anche a casa, ad un costo non troppo distante dai 100€, come illustrato qui: http://cosmicwatch.lns.mit.edu/detector#cosmicwatch.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

Quark: uno sguardo sulla Cromo-Dinamica Quantistica

Si sa: più si cerca di semplificare la fisica, più è probabile incappare in incomprensioni e confusione. È quello che nello slang degli economisti si chiama “trade off” : il nostro trade off è che acquisiamo intuizione, ma sacrifichiamo la precisione.
Nella fisica delle particelle la teoria dei Quark (QCD) è la teoria più complessa mai concepita, ma anche una delle più testate sperimentalmente. Divulgare questa teoria è sempre una grande sfida perché è una bestia difficile da addomesticare e si rischia sempre di risultare imprecisi o completamente in errore.

Le interazioni tra i tre quark all’interno di un neutrone.
[Qashqaiilove, Wikimedia Commons]
La realtà è che c'è ben poco di intuitivo nella QCD. Tuttavia ci sono delle circostanze in cui possiamo connettere alcuni concetti con dei fatti di cui abbiamo già familiarità e intuizione nella meccanica classica. 

I Quark sono (per quanto ne sappiamo oggi) i costituenti più fondamentali della materia, conferendo una struttura ben precisa agli elementi del nucleo come protoni e neutroni (i quali sono composti ciascuno da tre quark).
Nonostante ciò è molto difficile intuire che protoni e neutroni siano composti da Quark! Infatti se ne osservano gli effetti solo a distanze sub-nucleari (o equivalentemente, ad energie sufficientemente elevate). Questa conversione tra energia e distanza è molto utile per capirsi nei discorsi che si fanno in questo campo di ricerca: dipende dal principio di indeterminazione moltiplicato per la velocità della luce:

    \[\Delta R \underbrace{\Delta p c}_{\Delta E}\sim \hbar c\]

il quale fornisce un ottimo modo per convertire da distanze \Delta R ad energia E=pc per particelle molto energetiche. La costante fondamentale \hbar c ha un valore preciso, ed è il fattore di conversione tra distanza ed energia. Invertendo la formula

    \[\Delta R\sim \frac{\hbar c}{\Delta E}\]

ne deduciamo che grandi energie corrispondono a piccole distanze, e viceversa. Tieni a mente questa informazione perchè sarà cruciale nel discorso che andremo a fare.

Tra le quattro forze fondamentali (clicca qui per un breve riassunto), i Quark interagiscono tramite l’interazione forte. Il nome non lascia spazio all’immaginazione: a parità di distanza tra due particelle ad esempio la distanza subnucleare, l’interazione forte è 100 volte più intensa di quella elettromagnetica (che a sua volta è molto più intensa della forza debole e della debolissima forza gravitazionale) il che la rende la forza più intensa in Natura.

Così come i fotoni sono i mediatori dell’interazione elettromagnetica, i gluoni (anch’essi senza massa), sono i mediatori dell’interazione forte. Tuttavia i gluoni sono delle bestioline piuttosto difficili rispetto ai fotoni.

Cominciamo dalle similitudini: avendo massa nulla, anche i gluoni si muovono alla velocità della luce.
Così come i fotoni interagiscono solo tra corpi carichi elettricamente, i gluoni interagiscono solo con particelle dotate di una speciale carica: la carica di colore. Al contrario della carica elettrica, la carica di colore è molto meno intuitiva e quantificabile, e rappresenta le “coordinate” di uno spazio astratto che caratterizza lo stato quantistico di un quark.

Se vuoi, questa carica di colore è un’estensione multidimensionale dei due stati di spin (in questo articolo viene discusso il primo esempio di isospin nucleare nella teoria di Heisenberg). Anche se non è detto che questa cosa ti sia d’aiuto, dato che neanche lo spin è intuitivo! (Vedi questo articolo per approfondire).

I fotoni interagiscono molto poco con gli altri fotoni: se fatti scontrare tra loro hanno una grande probabilità di “passarsi attraverso”. Solo a determinate scale di energia più elevate l’interazione fotone-fotone diventa non più trascurabile. Questo fatto favorisce la validità del principio di sovrapposizione delle onde elettromagnetiche, tanto caro all’ingegneria.

I gluoni, d’altra parte, interagiscono con gli altri gluoni anche a scale di energia più basse, accoppiandosi nei modi più disparati possibili. La teoria dell’interazione forte quindi non rispetta il principio di sovrapposizione: c’è ben poco di lineare e semplice nei campi gluonici.

Analogie e differenze tra interazione elettromagnetica e interazione forte.
Entrambi i mediatori hanno massa nulla e si muovono quindi alla velocità della luce.

Le stranezze della forza forte non finiscono qui. Come specificato nell’immagine precedente, l’interazione elettromagnetica ha un range infinito: due cariche elettriche non smettono mai di sentire l’una la presenza dell’altra, indipendentemente dalla distanza che le separa! È l’intensità quella che varia e diminuisce con l’aumentare della separazione.
Succede lo stesso con la gravità (in tal caso la carica elettrica viene sostituita dalla massa). Il potenziale gravitazionale di una massa m posta a distanza r da una sorgente gravitazionale fissa e di massa M è proporzionale a:

    \[V_{\text{gravità}}\propto -\frac{mM}{r}\]

Il grafico della funzione ha il seguente aspetto:

Analogamente, il potenziale elettrostatico di Coulomb percepito da una carica elettrica q nel campo di una carica Q è

    \[V_{\text{e.m.}}\propto -\frac{qQ}{r}\]

Queste funzioni di r ci dicono la stessa cosa: l’interazione diminuisce all’aumentare della distanza. Dal punto di vista della fisica teorica è equivalente a dire che le interazioni diventano via via più deboli al diminuire della scala di energia, e per energie alte (cioè piccole distanze) diventano sempre più intense. Con “scala di energia” intendiamo il contenuto energetico che dobbiamo fornire al nostro esperimento per far scontrare le particelle nel nostro acceleratore.

Tutto ciò è abbastanza intuitivo: se si gioca con i poli dei geomag ci si rende presto conto che è molto difficile resistere all’attrazione di due poli opposti una volta che li si avvicina abbastanza, mentre è molto difficile avvicinare due poli uguali (in particolare più li si avvicina e più diventa difficile). Il magnetismo, naturalmente, fa parte dell’interazione elettromagnetica e si comporta proprio come ci aspettiamo.

L’interazione forte percepita dai quark è molto più controintuitiva: più i Quark sono vicini tra loro e più “si ignorano”, cioè comunicano molto meno, ovvero l’interazione è meno intensa (tutto il contrario delle interazioni a cui siamo abituati!). A questo fatto è stato dato il nome di libertà asintotica: alle alte energie i Quark si comportano come se fossero liberi. D’altra parte se allontaniamo i Quark (quindi abbassiamo la scala di energia) questi interagiscono molto di più tra loro: è la schiavitù infrarossa.

Sulla libertà asintotica Parisi è stato vicinissmo a vincere il Nobel già quando aveva 25 anni. Gli mancava solo intuire che il numero quantico giusto per descrivere l’interazione era la “carica di colore”.

Le peculiarità dei Quark

Ad oggi conosciamo 6 Quark fondamentali (cioè che non derivano da stati legati con altri Quark) a cui sono stati assegnati dei nomi precisi e di cui si conosce la massa, dal più leggero al più pesante.

I Quark up e down costituiscono la struttura interna di protoni e neutroni (nucleoni), tuttavia le loro masse contribuiscono solo a una piccola parte della massa dei nucleoni. La maggior parte della massa deriva invece dalle intricatissime interazioni e scambi energetici tra i Quark stessi, i quali comunicano incessantemente tramite gluoni.

Un’illustrazione molto schematica di quello che succede all’interno di un protone. Gli oggetti “a forma di molla” rappresentano le interazioni di scambio di gluoni.

Detto in maniera molto semplificata e fiabesca, è come se la carica di colore dei Quark accendesse la scintilla che fa scoccare un “incendio energetico” nel campo gluonico che li circonda. Questo incendio “brucia incessantemente” con un’energia E che dà luogo alla maggior parte della massa del protone tramite la celebre E=mc^2.

È sfruttando questo inferno energetico che siamo stati in grado di creare i Quark più pesanti del up e down, facendo scontrare protoni ad altissime energie che hanno rilasciato come prodotto i Quark più pesanti come il top (l’ultimo ad essere stato scoperto, nel 1995 al Fermilab di Chicago).

Dal punto di vista teorico, le complicate interazioni tra i Quark sono una conseguenza della natura relativistica delle teorie quantistiche di campo. Uno può aspettarsi che la descrizione di queste forze diventi leggermente più semplice se usciamo dal regime relativistico (cioè se consideriamo particelle abbastanza pesanti che si muovono a velocità molto più basse di quella della luce).

A noi piace tanto semplificare, quindi questo è quello che faremo! Consideriamo alcuni Quark più ciccioni, ad esempio il bottom e il charm: un sistema molto semplice da studiare in QCD è lo stato legato di quarkonio, il quale è uno stato legato tra Quark e antiQuark. Stiamo quindi parlando, nel nostro caso, dei seguenti sistemi:

  • Charmonium: stato legato di Charm e anti-Charm
  • Bottomonium: stato legato di Bottom e anti-Bottom
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per completezza ricordiamo che un anti-Quark è la anti-particella del Quark corrispondente: ha uguale massa e numeri quantici tutti invertiti, cioè carica elettrica, carica di colore, spin etc. invertiti.

Siccome questi due Quark sono abbastanza massivi, si muvono a velocità più basse rispetto a tutti gli altri, quindi è possibile una trattazione non-relativistica in cui possiamo ignorare i discorsi di Einstein. Stiamo parlando di un’approssimazione.

Questi stati legati sono stati osservati sperimentalmente, dunque i discorsi matematici che seguono, seppur non rigorosissimi dal punto di vista teorico, sono empiricamente verificati.

Il potenziale di Quarkonio

Se r è la distanza che separa Quark e anti-Quark, l’energia potenziale di interazione è data dall’espressione (in cui a e b sono delle costanti di cui non devi preoccuparti)

    \[V_\text{quarkonio}= -\frac{a}{r}+br\]

ed ha il seguente grafico:

A piccole distanze l’interazione si comporta in modo del tutto simile a quella gravitazionale ed elettromagnetica: va giù come 1/r. Non farti però ingannare! A distanze piccolissime (cioè energie elevatissime) questo potenziale non è più una buona approssimazione di quello che sta succedendo, perché entrano in gioco gli effetti relativistici della forza forte, e la conseguenza è la libertà asintotica: invece di continuare ad aumentare infinitamente, ad altissime energie l’interazione forte inizia a indebolirsi sempre più, fino a che i Quark si ignorano del tutto.

[Nota bene: quando diciamo “piccole” o “grandi” distanze ci stiamo riferendo a qualcosa di grande o piccolo rispetto alle dimensioni subnucleari!]

D’altra parte, a grandi distanze il potenziale aumenta invece che diminuire (contrariamente a quanto succede nell’interazione gravitazionale ed elettromagnetica). Il fattore che domina questa peculiarità è parametrizzato dal termine b\,r dove b è una costante e r è la distanza. Questo termine ingloba tutto ciò che ci è difficile conoscere del regime di “schiavitù infrarossa”, regime che può essere studiato solo tramite ingegnose simulazioni al computer (campo di studi noto come QCD su reticolo).

Per capire di che tipo di forza si tratta dal punto di vista della meccanica classica, consideriamo un potentiale molto simile: quello di una molla! Se allunghiamo o accorciamo una molla di una distanza r, il potenziale ha la seguente forma:

    \[V_{\text{molla}}=\frac{1}{2}kr^2\]

dove k è la costante elastica. Confrontiamo ora la forma dei due potenziali nel regime di schiavitù infrarossa (cioè a distanze molto grandi in modo che il termine 1/r risulti trascurabile):

Un tipico eleastico.

Stiamo cioè confrontando una retta con una parabola: entro una certa distanza l’interazione di Quarkonio è più intensa di quella che si avrebbe se fosse puramente elastica, mentre superata una certa soglia, l’interazione elastica diventa più elevata. Quindi lo stato legato di Quarkonio a basse energie ha un’intensità che somiglia un po’ a qualcosa che richiama l’interazione elastica tra due corpi. Tuttavia, a differenza della molla, dal punto di vista classico la forza F=ma non dipende dalla distanza, mentre nella molla vi dipende come F=-kx.

D’accordo, magari la molla non è un’approssimazione ottimale, ma è comunque un buon punto di partenza. In realtà è possibile dimostrare che l’andamento della forza di Quarkonio è molto più simile a quella caratteristica degli elastici! Se prendi un elastico per capelli e lo allunghi di una distanza L, l’energia potentiale di richiamo che stai accumulando risulta proporzionale alla distanza L, esattamente come l’energia potenziale del Quarkonio a grandi distanze!


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

Pontecorvo, il fisico italiano a cui negarono il Nobel

Bruno Pontecorvo (Marina di Pisa 1913- Dubna 1993).

La storia della scienza è cosparsa di scandali riguardanti la negazione di premi importanti a scienziati meritevoli per le più disparate ragioni.

Nel caso di Bruno Pontecorvo (a cui fu negato il Nobel per la Fisica del 1988) le ragioni erano prettamente politiche. In questo articolo dimostriamo perché questo debba ancora oggi risuonare come un vero e proprio scandalo scientifico.

Il “cucciolo” di via Panisperna

Nato a Marina di Pisa nel 1913, Bruno era una persona timida e la sua natura si distingueva da quella degli altri componenti dei gruppi di ricerca poiché, oltre a mostrare grandi doti come fisico sperimentale e teorico, era evidente in lui il profilo di abile fenomenologo, ossia una grande capacità di approfondire applicazioni e ipotesi di lavoro [1].

“A questa opinione soprattutto, io credo, devo la mia timidezza, un complesso di inferiorità che ha pesato su di me per quasi tutta la vita” 

Bruno Pontecorvo

Pontecorvo si riferiva alla seguente opinione che secondo lui i suoi genitori avevano sui loro figli: “il fratello Guido era considerato il più intelligente, Paolo il più serio, Giuliana la più colta e lui, Bruno, il più buono ma il più limitato, come dimostravano i suoi occhi, buoni ma non intelligenti.

Si può dire che Pontecorvo usufruì dell’istruzione universitaria più eccellente che ci fosse: fu ammesso al corso di Fisica sotto la guida di Enrico Fermi e Franco Rasetti nel 1931, all’età di 18 anni, entrando di diritto nel celebre gruppo dei ragazzi di via Panisperna (fu soprannominato “il cucciolo” per la sua giovane età).

Collaborò quindi alla ricerca sul bombardamento dei nuclei usando neutroni come proiettili, e nel 1934 si accorse assieme ad Edoardo Amaldi che la radioattività indotta da bombardamento di neutroni era circa cento volte più intensa se i neutroni attraversavano prima un filtro di paraffina (Fermi spiegò che questo era per via dell’idrogeno contenuto nel materiale, il cui effetto rallentava i neutroni, aumentando la loro efficacia nel bombardamento). Questa scoperta segnò uno step epocale per la ricerca sull’energia nucleare e valse il Nobel del 1938 ad Enrico Fermi, che ne spiegò il funzionamento.

Dopo il periodo romano, la sua vita fu molto movimentata e ricca di eventi di interesse storico (ricordiamo che Pontecorvo era ebreo).

  • Nel 1936 grazie a una raccomandazione di Fermi, collaborò a Parigi con Frédéric e Irène Joliot-Curie (rispettivamente genero e figlia di Pierre e Marie Curie e vincitori nel 1935 del premio Nobel per la scoperta della radioattività artificiale). Fu nell’effervescente ambiente parigino che iniziò a interessarsi di politica. In particolare si iscrisse al PCI nel 1939.
  • Dopo l’invasione della Francia da parte dei tedeschi, Pontecorvo scappò da Parigi in bicicletta e con un rocambolesco viaggio fatto di varie tappe in treno, raggiunse Lisbona. Da qui si imbarcò per gli Stati Uniti.
  • Nei primi anni ’40 lavorò per una compagnia petrolifera in Oklahoma, dove viveva con la famiglia. Qui applicò per la prima volta la tecnica dei neutroni lenti scoperta dai ragazzi di via Panisperna e inventò la tecnica del “carotaggio neutronico dei pozzi di petrolio“.
  • Nel 1943 si trasferì in Canada per lavorare in un laboratorio che si occupava di raggi cosmici. Fu qui che iniziò il suo studio dei neutrini alle alte energie.
  • Dopo aver lavorato in inghilterra, scappò in Russia con la famiglia nell’estate del 1950 senza avvertire nessuno. Per superare la cortina di ferro i Pontecorvo si divisero: moglie e figli su un’automobile, Bruno nascosto nel bagagliaio di un’altra. 
    Nell’URSS continuò le sue importanti ricerche di fisica delle particelle in un laboratorio di Dubna.

Cosa si capiva, all’epoca, dei neutrini

Per poter dire che “capiamo” tutto di una particella dobbiamo essere in grado di affermare quali siano i suoi numeri quantici, e di solito ci si concentra su questi tre:

  • Carica elettrica
  • Spin
  • Massa

Dei neutrini conosciamo con precisione solo i primi due: sono elettricamente neutri (infatti non interagiscono con la forza elettromagnetica) ed hanno spin 1/2, mentre sorprendentemente non sappiamo ancora con precisione il valore della loro massa. Sappiamo solo che non può essere più grande di un numero molto piccolo, per via delle evidenze sperimentali. All’epoca di Pontecorvo si supponeva che non avessero massa.

Dallo studio dei raggi cosmici (ed in particolare del decadimento del muone) Pontecorvo iniziò a intuire una similitudine tra quanto osservato e una teoria del suo vecchio Maestro: la teoria del decadimento \beta di Enrico Fermi (clicca qui se vuoi saperne di più). In una lettera a Giancarlo Wick del 1947 scrisse:

Deep River, 8 maggio 1947

Caro Giancarlo (…) se ne deduce una similarità tra processi beta e processi di assorbimento ed emissione di muoni, che, assumendo non si tratti di una coincidenza, sembra di carattere fondamentale.

Bruno Pontecorvo

La scoperta di questa analogia fu uno degli step fondamentali che condusse all’introduzione di una nuova forza della natura: la teoria di Fermi passò dall’essere una semplice teoria fenomenologica ad una interazione fondamentale che si andava a sommare alle due già esistenti all’epoca: gravità ed elettromagnetismo.

La questione del neutrino rimaneva invece un vero mistero, specialmente la questione se avesse una massa o meno.
È di fondamentale importanza riuscire a determinare la massa di una particella. Nel Modello Standard la massa è spesso l’unico numero quantico che permette di distinguere tra due particelle che hanno gli altri numeri quantici uguali.

Ad esempio il muone e l’elettrone sono due particelle elementari con la stessa carica elettrica e lo stesso spin, ma il muone è circa 200 volte più pesante dell’elettrone ed è proprio ciò che ci permette di distinguerli nella maggior parte dei casi. Allo stesso modo il tau è la terza “sorella” di muone ed elettrone (fu scoperta nel 1975), in quanto ha stessa carica e stesso spin, ma massa pari a circa 18 volte quella del muone.
Queste tre particelle furono raggruppate in un trio chiamato “leptoni carichi”.

Elettrone, Muone e Tau: le tre particelle “sorelle” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Per spiegare i risultati sperimentali degli anni ’30 e ’50, si associò a ciascun leptone carico (elettrone, muone e tau) un neutrino di tipo corrispondente. Infatti si dimostrò che in ciascun processo di interazione debole di un leptone carico compariva sempre un neutrino, di conseguenza:

  • All’elettrone venne associato un neutrino-elettronico: \nu_e
  • Al muone venne associato un neutrino-muonico: \nu_\mu
  • Al tau venne associato un neutrino-tau: \nu_\tau

Quindi anche i neutrini sono considerati dei leptoni, solo che hanno carica elettrica nulla. Assieme ai leptoni carichi costituiscono i 6 leptoni del Modello Standard.

Fu proprio Bruno Pontecorvo a suggerire questo raggruppamento in famiglie di “sapore”: sapore elettronico, sapore muonico e sapore tauonico. Ipotizzò questa teoria già nel 1947, ma la pubblicò con una dimostrazione rigorosa solo nel 1957.

La distinzione tra leptoni carichi e leptoni neutrini. Nell’immagine i leptoni dello stesso colore appartengono allo stesso “sapore”.

La cosa importante da capire è che siamo in grado di distinguere un neutrino \nu_e da un neutrino \nu_\mu o da un neutrino \nu_\tau: basta guardare qual è il leptone carico coinvolto nelle interazioni (rare) di questi neutrini!

Il modo in cui siamo in grado di dire quale dei tre neutrini stiamo considerando: basta guardare i leptoni carichi che escono fuori dalle interazioni del neutrino con la materia.

In questo senso si parla di conservazione del sapore leptonico: un neutrino di sapore “muonico” è sempre associato, in un’interazione debole, a un muone. Se c’era un sapore elettronico all’inizio, dovrà esserci un sapore elettronico anche alla fine.

Purtroppo, l’acceleratore di particelle di Dubna non era abbastanza potente per verificare le teorie di Pontecorvo sul sapore leptonico. Soltanto pochi anni dopo, agli inizi degli anni Sessanta, gli americani Leon Ledermann, Melvin Schwartz e Jack Steinberger confermarono sperimentalmente le ipotesi del fisico italiano.


Questa scoperta valse ai tre fisici il premio Nobel per la Fisica nel 1988 per “il metodo del fascio di neutrini e la dimostrazione della struttura doppia dei leptoni attraverso la scoperta del neutrino muone”, suscitando lo scalpore di una parte della comunità scientifica internazionale per l’esclusione del fisico teorico italiano che per primo effettuò la previsione parecchi anni prima.

Le oscillazioni di sapore

Pontecorvo continuò il suo studio pionieristico dei neutrini e, in collaborazione con il fisico teorico Vladimir Gribov, nel 1969 presenta in dettaglio il formalismo matematico della teoria delle oscillazioni, che fu proposto come soluzione al problema dei neutrini solari sorto negli esperimenti del 1968.
Pontecorvo sosteneva che i neutrini dovessero avere una massa, seppur piccola, e che questo fosse la spiegazione per il problema dei neutrini solari.

La spiegazione di Pontecorvo si rivelò corretta: alla fine del secolo scorso si scoprì che i neutrini sono in grado di cambiare sapore leptonico durante il loro viaggio tra due punti dello spazio, e fu proprio questo fatto ad evidenziare che i neutrini dovevano avere una massa: senza una massa non è possibile questa oscillazione tra sapori!

Ciò che stupisce è che rispetto alle altre particelle i neutrini hanno una massa così piccola che è difficile da misurare.
Gli esperimenti ci consentono solo di porre dei limiti superiori sempre più piccoli. Per dare un’idea, l’elettrone ha una massa di mezzo milione di elettronvolt, mentre si stima che quella dei neutrini sia inferiore a un solo elettronvolt. Se l’elettrone è considerato la particella carica più leggera del Modello Standard, i neutrini sono davvero dei pesi piuma.

L’oscillazione rompe la conservazione del sapore leptonico!

Ad esempio da un processo debole che coinvolge un elettrone (rivelabile) sappiamo che sbucherà fuori un \nu_e, il quale, dopo una certa distanza, si tramuterà in un \nu_\mu, il quale interagirà facendo comparire un muone, che sarà a sua volta rivelabile e ci permetterà di dire che questa oscillazione è effettivamente avvenuta!

Per spiegare questo effetto vengono introdotti gli “stati di massa” dei neutrini, chiamati \nu_1,\nu_2,\nu_3 a cui vengono associate le masse m_1,m_2,m_3. Ciascun stato di massa “contiene” al suo interno i tre sapori dei neutrini \nu_e,\nu_\mu,\nu_\tau in proporzioni che possono essere studiate sperimentalmente.
Graficamente abbiamo quindi tre neutrini ciascuno contenente al suo interno il mixing di sapori:

Gli autostati di massa dei neutrini con al loro interno i mixing dei sapori.
Celeste: \nu_e, Marroncino: \nu_\mu, Grigio: \nu_\tau.

Questo mixing avviene nel senso quanto-meccanico di sovrapposizione di stati: ciascuno stato di massa è una sovrapposizione delle funzioni d’onda dei sapori leptonici e,\mu,\tau.

Ad esempio dalla figura leggiamo che sperimentalmente è stato verificato che lo stato \nu_1 contiene per la maggior parte il sapore elettronico \nu_e (indicato in blu), mentre il sapore tau \nu_\tau è presente solo in minima parte.

Essendo tutto ciò un effetto quanto-meccanico, a ogni oscillazione tra sapori è associata una certa probabilità che sarà tanto più elevata quanto più grande è il mixing tra sapori negli stati di massa. Questa probabilità è verificabile sperimentalmente: basta chiedersi “se nel punto di partenza ho N neutrini di tipo \nu_e, quanti neutrini di tipo \nu_\mu mi ritroverò a una certa distanza dal punto di partenza?”

Ad esempio la probabilità che un neutrino \nu_e si trasformi in un neutrino \nu_\mu è data dalla seguente formula:

Vengono chiamate “oscillazioni” perché la probabilità dipende da un seno al quadrato, il quale rappresenta graficamente un’oscillazione nelle variabili L,E,\Delta m^2.

in cui \theta è un parametro del Modello Standard che è stato misurato sperimentalmente (e definisce il grado di mixing dei due sapori in questo caso). D’altra parte \Delta m^2=m_2^2-m_1^2 riguarda la differenza tra i quadrati delle masse di \nu_2 e \nu_1, mentre L è la distanza a cui hanno viaggiato i neutrini prima di essere rivelati, ed E è la loro energia.
Nota bene che se questi neutrini avessero la stessa massa, e cioè \Delta m^2=0, non si potrebbero avere oscillazioni (la probabilità sarebbe nulla perché il seno di zero fa zero).

Ad esempio è molto più probabile che un \nu_e si trasformi in un \nu_\mu quando l’argomento del seno è vicino al punto in cui il seno ha un massimo, e cioè in prossimità di 90^{\circ} (o in radianti pi/2), e cioè quando

Da questa formula è possibile capire a che valore del rapporto L/E si è più sensibili per rivelare un’oscillazione da \nu_e in \nu_\mu. Si può quindi ottenere una stima di \Delta m^2.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Studiando l’andamento dell’oscillazione con L/E si può quindi ricavare \Delta m^2 proprio da questa formula.

La differenza tra le masse dei neutrini \nu_2 e \nu_1 è minuscola, ma comunque calcolabile dai dati sperimentali. Allo stesso modo è stata calcolata la differenza tra le masse quadre di \nu_3 e \nu_2, e da ciò si può ricavare la differenza tra le masse quadre di \nu_3 e \nu_1.
Conosciamo solo queste \Delta m^2, ma non i valori singoli di m_3,m_2,m_1, che frustrazione, eh?

Misurando il numero di eventi di neutrini di un certo sapore ad alcuni valori del rapporto L/E si possono ricavare i valori sperimentali di \theta e \Delta m^2. Questo è proprio ciò che si fa da qualche decina di anni: la teoria delle oscillazioni è verificata con un alto grado di accuratezza.

I Nobel dei neutrini

La Fisica dei neutrini inaugurata da Pontecorvo ha portato a ben quattro premi Nobel, ma nessuno è stato vinto da lui. Tre di questi furono però assegnati solo dopo la morte di Pontecorvo (1993), il più recente risale al 2015. L’unico che sarebbe doveroso reclamare per la memoria del fisico teorico italiano sarebbe quello del 1988, inspiegabilmente assegnato ad altri se non per questioni politiche.

Pontecorvo rimane uno dei fisici con il numero di previsioni azzeccate più alto e allo stesso tempo un numero di riconoscimenti piuttosto irrisorio (vinse comunque il premio Lenin nel 1963).

Ciò che fa restare stupiti è la precocità delle sue idee: il campo dei neutrini è particolarmente infelice perché essendo questi così poco interagenti, la loro rivelazione può aversi solo grazie a esperimenti particolarmente costosi e avanzati, spesso traslati di almeno 30-40 anni nel futuro rispetto alla loro teorizzazione. Pontecorvo elaborò negli anni ’60 quasi tutta la fisica dei neutrini che utilizziamo ancora oggi e che ha trovato conferma solo negli ultimi 30 anni.

Se mai inventassero un Nobel postumo, uno dei primi a riceverlo dovrebbe essere Pontecorvo.
[1] Fonte principale: “Il fisico del neutrino”- Jacopo De Tullio.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la laurea specialistica in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

L’intrigante “carattere discriminatorio” del bosone di Higgs

Immagina di reincarnarti in una particella elementare in un istante tra i 10^{-36} e i 10^{-12} secondi dopo il Big Bang.

L’universo ha un aspetto molto diverso da quello odierno, c’è tantissima confusione, un viavai di interazioni, come un vociare assordante.
La sensazione che provi è molto singolare, sei capace di individuare solo il momento in cui “appari” e il momento in cui “scompari”, ma nemmeno riesci a distinguere l’uno o dall’altro. Il problema è che ti muovi alla velocità della luce dato che, come tutte le altre particelle dell’universo, non hai massa. Per questo la tua percezione del tempo è assolutamente insensata, in accordo con le leggi della Relatività Ristretta.

In qualche modo sembra che il momento in cui appari e scompari dall’esistenza sia sempre accompagnato dalla presenza di una particella praticamente identica a te, o almeno questo è ciò che ti ricordi.

Ora i tempi sono cambiati (cambia tutto piuttosto in fretta quando passi da 10^{-36} a 10^{-12} secondi dopo il Big Bang). Ti accorgi che gli eventi iniziano ad avere una forma, tra un inizio e una fine c’è anche un presente.


Sei stata “rallentata” da qualcosa, e inizi a sentire il peso dello scorrere del tempo: non ti muovi più esattamente alla velocità della luce. Tra tutto quel vociare non riesci a prendere coscienza di cosa sia successo, pare che nessuno si sia accorto troppo del cambiamento, eppure inizi a riconoscere che le altre particelle non si comportano tutte come te, alcune sembrano interagire con le altre in un modo molto diverso dal tuo.

Ti viene in mente che questo possa essere connesso con l’esistenza di almeno due interazioni fondamentali diverse.

Inizi a raccogliere qualche indizio: ogni volta che scompari dall’esistenza è sempre coinvolta almeno un’altra particella. Dopo qualche tempo sei capace di individuare che esistono altre due particelle (che chiami signor “Mu” e signor “Tau”) che fanno le stesse cose che fai tu, e anche qualche particella identica a te e che per qualche motivo fa sempre il contrario di quello che fai tu.

Il signor Ni rappresenta il neutrino elettronico.

Non appena il vociare primordiale inizia a calmarsi, inizi a distinguere uno strano ronzio nelle tue orecchie “particellari”. Somiglia giusto a un timido bisbiglio, ed inizi a capire di star rallentando sempre di più la tua corsa frenetica tra un’esistenza e un’altra, forse per via di qualcosa che genera anche questo strano bisbigliare?

Decidi di chiedere informazioni a una delle particelle simili a te. C’è una particella in particolare che abbastanza spesso decide di scambiare qualche parola con te, solo che hai difficoltà a capirla perché è leggermente più frenetica. L’hai soprannominata affettuosamente “Ni”. Di solito “Ni” sembra non avere molto tempo da perdere dietro a domande sciocche come la tua, quindi decidi di chiedere al tuo vicino, il signor Mu.

L’elettrone sente molto più debolmente le interazioni con l’Higgs, al contrario delle sue cugine \mu e \tau.

Il signor Mu sembra leggermente meno frenetico, e si comporta esattamente come te: avete delle personalità così identiche che quasi vi disgustate reciprocamente, quindi di solito circolate un po’ lontano l’uno dall’altra. Tuttavia hai bisogno di informazioni, e ti prometti di parlargli non appena vi scontrerete di nuovo.

Il signor Mu ammette di essere sorpreso che tu ci abbia messo così tanto ad accorgerti del ronzio, lui lo percepisce 200 volte più forte di te.
Sa anche darti qualche informazione in più, perché di recente ha parlato con il signor Tau, il quale percepisce lo stesso ronzio quasi 20 volte più forte di lui.

Per il signor Tau non si tratta di un ronzio, ma di alcune interessantissime comunicazioni da parte del signor “H” , le quali lo invogliano a rallentare la sua corsa frenetica tra un punto e l’altro della sua esistenza, pur di ascoltare con maggiore attenzione ciò che il signor H ha da dirgli.
Non fai in tempo a fare altre domande che il signor Mu svanisce improvvisamente, lasciando il posto ad altre particelle, tra le quali riconosci il tuo amico Ni accompagnato dalla tua copia sputata.

Rimani un po’ perplesso/a dalla spiegazione del signor Mu. Pensavi fosse abbastanza scontato che te, Mu e Tau foste particelle molto simili. Perché mai il signor H si ostina a non volerti parlare a voce più alta? Perché senti a malapena un ronzio in confronto alle interessanti disquisizioni percepite da Mu e Tau?


Perché Mu e Tau svaniscono all’improvviso dopo così poco tempo, e tu sembri restare sempre la stessa, noiosa particella?

Il tempo passa e l’universo diventa più silenzioso. Ti ritrovi sempre più vicina ad altre particelle identiche a te, e inizi a condurre un’esistenza sempre più monotona, assuefatta dalle delicate parole di un interessante signore che qualcuno chiama “Nucleo”, il quale ti invita a stargli vicino.

François Englert e Peter Higgs, premi Nobel per la Fisica 2013, tra gli inventori del meccanismo che dà la massa alle particelle del Modello Standard tramite il campo di Higgs.

Impari che anche le altre particelle identiche a te non riescono a sentire nulla più di un ronzio da parte del signor H, e quindi capisci di appartenere a un’intera famiglia di particelle che sono un po’ “discriminate“.

Questo è uno degli aspetti più intriganti del Modello Standard: il modello non spiega perché il campo di Higgs interagisce più intensamente con alcune particelle e molto, molto più debolmente con altre.

In principio l’elettrone (la particella in cui ti sei reincarnato/a), il muone il tau sono creati praticamente uguali, sono tre cugini con uguale carica elettrica, spin e altri numeri quantici di interazione. Sono distinte giusto da un “cognome” di famiglia, appunto: “e”, “\mu” e “\tau“.

Elettrone, Muone e Tau: le tre particelle “cugine” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Dopo la rottura di simmetria elettrodebole (per la quale rimando al mio articolo), elettrone muone e tau acquistano una massa per via dell’interazione con il campo di Higgs.
Come funziona? L’interazione si scrive in un modo molto simile a questo (le “interazioni” del Modello Standard sono la scorciatoia per dire che due campi appaiono moltiplicati tra loro nelle equazioni del modello, o moltiplicati per un mediatore comune ad entrambi):

Maggiore è la y (chiamata costante di Yukawa), maggiore è la massa acquistata dalla particella per via del campo di Higgs.
Le masse delle particelle elementari del Modello Standard. L’altezza dei parallelepipedi rappresenta la loro massa.

Il tau interagisce molto con l’Higgs, quindi la sua massa è molto più elevata di quella di muone ed elettrone. L’elettrone è quello che prende meno massa. Quanta meno? Tanta. Circa 0.3 millesimi di quella del tau, e 5 millesimi di quella del muone.

La storia non finisce qui: la particella elementare più massiva (il quark top) ha una massa che è quasi 100 volte quella del tau. Perché tutto questo “classismo” da parte del campo di Higgs? Perché sembra comunicare di più con alcune particelle e molto meno con altre?

La faccenda diventa quasi tragicomica nel caso dei neutrini (il famoso amico “Ni” della tua esperienza post-Big Bang). Si stima che la massa di un neutrino sia a sua volta quasi dieci miliardesimi di quella dell’elettrone. Questo aspetto ha suscitato uno scalpore tale da suggerire che il meccanismo di generazione della massa dei neutrini sia leggermente diverso da quello delle particelle “standard”. In particolare, il neutrino acquista massa grazie a processi sempre mediati dall’Higgs, ma che ricevono contributi da particelle non ancora osservate, che dovevano esistere da qualche parte nei primi istanti dopo il Big Bang.

Come possiamo accettare una tale differenza di trattamento? Come è possibile non restare intrigati dal carattere discriminatorio del campo di Higgs? Perché anche tra particelle praticamente del tutto simili come elettrone, muone e tau alle alte energie, c’è tutta questa discriminazione?

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questa è una parte dei compiti della fisica teorica di questo secolo. Non penserai mica che dopo la scoperta del bosone di Higgs nel 2012 siano finiti i suoi misteri? Assolutamente no, anzi si sono moltiplicati. Il bosone di Higgs (simbolo del trionfo intellettuale della fisica teorica del secolo scorso, e del trionfo sperimentale e tecnologico del secolo corrente) è un punto di partenza, non un punto di arrivo.

Il problema della gerarchia delle masse dei leptoni carichi e dei quark rimane ad oggi un mistero per il quale sono state presentate diverse soluzioni teoriche che dovranno superare i test sperimentali del prossimo secolo.
Chi vivrà, vedrà.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in Simmetrie di Sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

“Smarriti nella matematica”? Gli ultimi tristi anni di Albert Einstein

Gli ultimi anni della vita di Einstein furono decisamente poco memorabili (scientificamente parlando). Il più grande fisico del XX secolo fu un po’ vittima dei suoi enormi successi giovanili, i quali lo condussero verso un isolamento intellettuale sempre più marcato.

Einstein sognava di unificare gravità ed elettromagnetismo in un unica, elegante “teoria del tutto”. Ovviamente nella sua epoca non si conoscevano ancora le forze nucleari debole e forte.

Uno dei motivi di questo isolamento era che Einstein rigettava la formulazione convenzionale della meccanica quantistica, che secondo lui era una teoria incompleta, esteticamente “sgraziata” e complicata.
Purtroppo il 99% della ricerca in fisica fondamentale dagli anni 20′ in poi si basava invece proprio sulla meccanica quantistica, quindi Einstein aveva ben pochi alleati su questo fronte.

Un altro motivo era dovuto a una sua ossessione: aveva il sogno di unificare due forze fondamentali, gravità ed elettromagnetismo. Queste due forze erano descritte da quelle che allora erano due teorie classiche di campo molto mature (classiche nel senso che non erano “quantizzate”. La quantizzazione dell’elettromagnetismo fu accuratamente ignorata da Einstein…)

Questa sua ossessione si fondava sul credere che la Natura avesse in serbo una teoria “elegante”, scritta con una matematica “bellissima” che lui era intenzionato a scoprire.


Effettivamente le teorie classiche di gravità ed elettromagnetismo erano due teorie, per certi versi, abbastanza simili (almeno nei temi).

Infatti la Relatività Generale di Einstein e l’Elettrodinamica classica possono essere entrambe costruite richiedendo che le loro equazioni rimangano invariate dopo che si eseguono certi tipi di trasformazioni sui loro campi fondamentali.

La ridondanza elettromagnetica

Il potenziale elettromagnetico quadri-dimensionale con cui viene formulata l’elettrodinamica (che chiamiamo A_\mu) presenta al suo interno un eccesso di informazioni. Che significa? Significa che per formulare l’elettromagnetismo è sufficiente un numero inferiore di parametri teorici rispetto a quelli forniti dalla formulazione 4-dimensionale della teoria (che con successo concilia l’elettromagnetismo di Maxwell con la relatività speciale).

Da un certo potenziale elettromagnetico sono ottenibili, tramite una specifica trasformazione, una serie di altri potenziali elettromagnetici che tuttavia lasciano invariate le leggi di Maxwell scritte con il potenziale originale. Le conclusioni fisiche sono le stesse.

Questo eccesso di informazioni si traduce nella seguente affermazione: il potenziale quadri-dimensionale può essere “traslato” nello spazio-tempo di una certa quantità, e la conseguenza è che l’elettromagnetismo rimane invariato.

Le equazioni non cambiano, la Fisica è la stessa.


Il motivo di ciò fu spiegato dalla teoria quantistica dei campi: quello che succede è che il fotone (la particella mediatrice dell’interazione elettromagnetica) ha massa nulla, e questo fa tutta la differenza del mondo in relatività speciale, perché può quindi muoversi alla velocità della luce (non è un grande sorpresa per te che la luce si muova alla velocità della luce).

I parametri che partecipano alla Fisica dell’elettromagnetismo si chiamano “stati di polarizzazione” (avrai sentito parlare degli occhiali polarizzati, ecco quel “polarizzato” si riferisce alla volontà di sfruttare le polarizzazioni della luce a proprio piacimento). La polarizzazione è per convenzione la direzione di oscillazione della campo elettrico di un’onda elettromagnetica (chiamata comunemente “luce”).

Dal punto di vista teorico, gli stati di polarizzazione possono essere studiati mettendoci nel sistema di riferimento in cui la particella mediatrice è ferma. Questi stati di polarizzazione hanno a che fare con la seguente domanda: che succede se ruoto il campo della particella nel suo sistema di riposo?
Il modo in cui il campo risponde alle rotazioni ci dà un’indicazione sui suoi stati di polarizzazione.

La quantità di moto di un oggetto fermo è nulla (per definizione di oggetto fermo), quindi se ruotiamo i nostri assi cartesiani la quantità di moto rimane la stessa (cioè nulla). Che furbata, eh? Beh questa libertà di ruotare le tre dimensioni si traduce in tre possibili stati di polarizzazione della particella.

Una rotazione attorno ad un asse è specificata da due componenti su un piano. In figura stiamo ruotando attorno all’asse z. Immagina che l’asse z sia la direzione di propagazione del fotone.

Il problema con il fotone è che avendo massa nulla si muove alla velocità della luce e quindi per via della relatività speciale non c’è modo di mettersi in un sistema di riferimento in cui il fotone è fermo: per ogni osservatore la velocità della luce è la stessa! Non riusciremo mai ad andare abbastanza veloci da vedere un fotone fermo! Il valore della velocità della luce non dipende in alcun modo dalla velocità di chi la misura.

Il meglio che possiamo fare è puntare il nostro asse cartesiano nella direzione di propagazione del fotone e studiare le rotazioni dei suoi stati attorno a questo asse. Le rotazioni attorno a un asse avvengono in un piano, il quale, essendo bidimensionale, è rappresentato da due parametri invece che tre. Quindi il fotone è specificato da solo due possibili stati di polarizzazione: solo due stati su tre partecipano alla Fisica dell’elettromagnetismo.

Che ce ne facciamo del terzo parametro che non utilizziamo? Ecco cosa intendevo con “eccesso di informazioni”. In soldoni, quella libertà viene tradotta dicendo che se aggiungiamo (o sottraiamo) al potenziale elettromagnetico una certa quantità arbitraria (la derivata di una funzione che chiamiamo \Lambda), le leggi della Fisica non cambiano. A scopo illustrativo questa è la trasformazione di cui parlo:

Il potenziale viene trasformato sottraendolo alla derivata di una funzione \Lambda. In gergo si parla di “trasformazioni di gauge”.

Dalla richiesta che la fisica non cambi se al potenziale elettromagnetico A_\mu aggiungiamo quella funzione arbitraria \partial_\mu \Lambda, discende la struttura matematica (con tanto di conseguenze fisiche) dell’elettromagnetismo.

Questo concetto è molto elegante: dalla richiesta che ci sia una certa ridondanza nella descrizione dei campi della teoria, discendono le equazioni che descrivono la realtà fisica.

So che risulta astratto da capire, ma tra tutte le forme possibili che possono assumere le leggi della fisica, richiedere che rimangano invariate dopo una trasformazione dei “blocchetti” di cui sono composte vincola parecchio il numero di forme possibili in cui possono presentarsi, assieme alle conseguenze fisiche che predicono. È in questo senso che diciamo “da questa richiesta derivano le leggi della Fisica” .

Questa eleganza stregò (e continua a stregare) i fisici teorici dell’epoca. Einstein fu tra i più colpiti.
Lo colpì soprattutto il fatto che la sua teoria della Relatività Generale (la migliore teoria che abbiamo ancora oggi sulla gravità classica) si basava su un principio molto simile.

Le leggi della gravità di Einstein discendono dalla richiesta che le leggi stesse rimangano invariate se si esegue una trasformazione di coordinate. In sostanza, la Fisica non deve dipendere da che tipo di “unità di misura” stai usando, o non deve dipendere dal fatto che il tuo laboratorio risulti ruotato in una certa direzione rispetto al centro della galassia (per esempio).

A grandi distanze dalla sorgente del campo gravitazionale, che chiamiamo h_{\mu\nu}, la trasformazione di coordinate del campo (la quale viene indicata con il simbolo \partial_\mu \epsilon_\nu) ha la seguente forma:

Magari non sarai familiare con la notazione degli indici spazio-temporali \mu,\nu , ma il punto della faccenda è notare la somiglianza (chiudendo un occhio) con la trasformazione del potenziale elettromagnetico:

Elettrodinamica (sopra) e gravità (sotto) a confronto. Entrambe queste trasformazioni hanno la proprietà di lasciare invariate le leggi della Fisica.

Secondo Einstein, questa somiglianza era una chiara indicazione che doveva esistere una teoria più fondamentale in grado di racchiudere gravità ed elettromagnetismo in un unico, elegantissimo linguaggio matematico.

Risulta interessante il fatto che non fu lui ad arrivare per primo ad un possibile tentativo di unificazione. La teoria di Kaluza-Klein nacque praticamente subito dopo la Relatività Generale, ed Einstein ne rimase estasiato.

Il primo tentativo di unificazione

La Kaluza-Klein si basava sul postulato che allo spaziotempo (già 4-dimensionale) dovesse essere aggiunta un’ulteriore dimensione, portando il totale a cinque. Questa dimensione sarebbe tuttavia troppo piccola per potere avere riscontri sperimentali, e la sua utlilità consiste unicamente nel fatto che in questo modo è possibile unificare gravità ed elettromagnetismo in un’unica elegante equazione di partenza.

La quinta dimensione nella teoria di Kaluza-Klein.

Tutti noi per disegnare un punto su un foglio ruotiamo leggermente la punta della penna per tracciare dei piccoli cerchi concentrici attorno a un punto fisso. Secondo la teoria Kaluza-Klein la quinta dimensione si nasconde nel bordo di ogni cerchio che circonda ciascun punto dello spaziotempo. Questi cerchi hanno un raggio R piccolissimo, molto più piccolo di qualsiasi scala subnucleare, questo è il motivo per cui non si osservano effetti fisici di tutto ciò.

Sfortunatamente la teoria della quinta dimensione ha serie difficoltà teorico-fenomenologiche: ad esempio ignora completamente l’esistenza delle altre interazioni fondamentali come la forza debole, della quale oggi sappiamo che a una certa scala di energia si unisce alla forza elettromagnetica per formare l’interazione elettrodebole.
Chiaramente Kaluza e Klein, avendo formulato la teoria nei primi anni ’20 , conoscevano solo la gravità e l’elettromagnetismo, per cui a detta loro (e anche di Einstein) la teoria era molto promettente.

Furono proprio le scoperte delle altre due forze fondamentali (quelle nucleari debole e forte) a far cadere nel dimenticatoio la Kaluza-Klein per qualche decennio. La teoria quantistica dei campi produceva risultati a un ritmo elevatissimo, spazzando via come un’onda tutte le teorie classiche di campo.

Einstein, che si assicurava di non utilizzare le teorie quantistiche di campo nei suoi lavori, lavorò alla Kaluza-Klein fino agli inizi degli anni ’40. Il suo obbiettivo era di ottenere, dalle soluzioni delle equazioni di campo della teoria a cinque dimensioni, dei campi che descrivevano delle particelle cariche in grado di interagire elettromagneticamente e gravitazionalmente.


Il suo obbiettivo era anche quello di derivare in qualche modo anche la meccanica quantistica a partire dalla sua teoria classica (non quantizzata). Tutto questo era sempre in linea con il suo intuito che la teoria quantistica non fosse completa, e che dovesse derivare da qualcosa di classico e molto più profondo.

Una volta introdotta l’ipotesi ondulatoria di De Broglie, il fisico Klein (uno degli ideatori della Kaluza-Klein) era stato in grado di spiegare anche la discretizzazione della carica elettrica delle particelle, proprio grazie alla quinta dimensione. Einstein evitò con cura di utilizzare l’ipotesi di De Broglie, e non menzionò mai il risultato di Klein. Insomma, se non si era capito, Einstein non apprezzava la teoria quantistica.

In ogni caso, Einstein concluse che la teoria di Kaluza-Klein non era in grado di spiegare un fatto empirico importantissimo: la gravità è estremamente più debole dell’elettromagnetismo. Questo spinse Einstein ad abbandonare per sempre la teoria dopo il 1941.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Continuò quindi a lavorare, assieme a pochissimi altri, a teorie matematiche molto astratte e con pochi risvolti empirici. L’obbiettivo era sempre quello di unificare elettromagnetismo e gravità.

Non che fosse in torto nel perseguire questa sua ricerca, dato che l’obbiettivo delle teorie di grande unificazione che studiamo oggi è proprio quello di conciliare gravità e teorie quantistiche di campo (quindi non solo gravità ed elettromagnetismo, ma gravità e le altre tre interazioni fondamentali. Per una breve esposizione delle quattro interazioni, rimando al mio articolo).

Tuttavia fu proprio il suo ostentato rifiuto delle teorie quantistiche di campo a isolarlo sempre di più dal panorama scientifico internazionale. Anche se avesse fatto in tempo ad assistere alla sua nascita, Einstein non avrebbe mai approvato il nostro Modello Standard: in tale modello lavoriamo con teorie quantistiche basate solo sulla relatività speciale, ignorando completamente la gravità e lasciandola da parte in un settore chiamato “Relatività Generale”.
Invece secondo lui la gravità doveva avere un ruolo di primaria importanza negli sforzi dei fisici teorici:

Cosa sarebbe la Fisica senza la gravitazione?

Albert Einstein

Lavorò alla grande unificazione fino all’ultimo dei suoi giorni, facendo fede sulla sua convinzione (appartenente a un pensiero illuminista oggi superato) che una singola mente umana è in grado di scoprire ogni mistero dell’universo.

Sono comunque sicuro che a lui piacesse parecchio ciò che faceva, e non poteva esserci una fine più lieta per il più grande fisico del secolo scorso: morire “smarrito nella matematica”.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Sì ma, alla fine, cosa sono ‘sti numeri quantici?

Giusto per ricordare che i gatti sono riusciti a conquistarsi pure la meccanica quantistica, nell’immaginario popolare.

Ciò che frullava nella mia testa quando ho sentito la parola “numeri quantici” per la prima volta, durante una lezione di chimica in terza liceo, era qualcosa tipo:

“Tutto interessante e sembra anche molto logico. Giusto una cosa però: ma alla fine cosa sono 'sti numeri quantici? Proprio terra-terra, in meno parole possibili!"

Dopo aver studiato meccanica quantistica alla triennale credevo di essere praticamente pronto per dare una risposta terra-terra, a una persona non addetta ai lavori come il me stesso della terza liceo, ma poi mi sono accorto che non è tutto così “rapido”.

Non c’è NIENTE di intuitivo nel concetto di “numero quantico”.


Quando mi è stata posta la stessa domanda qualche tempo fa, nel bel mezzo dei miei studi alla magistrale, ho sputato fuori questa risposta un po’ frettolosa:

“Sono dei numeri che usiamo per catalogare delle soluzioni particolarmente semplici per risolvere problemi molto complessi. Sono utili anche perché nei processi "si conservano“, un po' come l'energia di un sistema, e semplificano quindi un po' di calcoli e previsioni."

Non è che fossi tanto convinto di questa risposta, e ancora meno lo era la persona di fronte a me. Mi sono accorto che probabilmente non sapevo dare una risposta più rapida senza coinvolgere dei semestri di algebra lineare, spazi di funzioni e fenomenologia delle interazioni fondamentali.
Se a te questa risposta soddisfa: nessun problema, è comprensibile. Rende comunque l’idea da un punto di vista pragmatico.

Se invece senti ci sia un gap nella divulgazione di questi concetti e provi curiosità, allora questo articolo vuole provare a rimediare.
Per raggiungere più persone possibili sarò molto conciso con ragionamenti “a grandi linee”, con varie licenze tecniche necessarie per un’esposizione di taglio divulgativo. Inoltre, per ragioni logistiche (e per non affaticare il lettore), l’articolo è suddiviso in due parti, questa è la prima parte!


Una tazza di caffè e possiamo iniziare!

Gli operatori della meccanica quantistica

Alla fine tutto l’ambaradan nasce dal fatto che la meccanica quantistica, a differenza della fisica classica, si basa su degli oggetti chiamati operatori. Come suggerisce il nome, questi oggetti operano sugli stati della teoria: prendono in input uno stato e ne restituiscono un altro come output, generalmente diverso dal primo:

Tutte le quantità che in meccanica classica erano dei semplici numeri reali (posizione, quantità di moto, energia, e così via) diventano, in meccanica quantistica, degli operatori: operatore posizione, operatore quantità di moto , operatore dell’energia (altrimenti detto “hamiltoniano”) etc.


Perché sono così necessari gli operatori? (qualsiasi cosa significhi per te in questo momento la parola “operatore”).
In breve, serviva un formalismo matematico capace di spiegare un fatto sperimentale: lo stato di un sistema poteva essere completamente determinato dalla posizione di una particella, ma al contempo la misura della quantità di moto della stessa particella non restituiva un valore ben preciso. È il principio di indeterminazione di Heisenberg.
Un modo per esprimere questo fatto dal punto di vista matematico era quello di trasformare posizione e quantità di moto in degli operatori lineari e scrivere che:

\hbar è la costante di Planck divisa per 2\pi.

Questa relazione racchiude, in un formalismo compatto (e criptico per i non addetti) la chiave per il principio di Heisenberg su posizione e quantità di moto. La compattezza del formalismo e la facilità del calcolo sono due condizioni che spinsero i fisici ad adottare l’approccio operatoriale nella meccanica quantistica, ed è il motivo per cui la matematica di questa teoria è ritenuta essere “più complicata” di quella della fisica classica.

L’operatore più importante

Ciò che nella fisica classica rappresentava un modo alternativo di risolvere i problemi, nella meccanica quantistica diventa l’unico modo matematicamente conveniente di descrivere l’evoluzione di un sistema. Si tratta dell’energia, la quale nel formalismo quantistico diventa l’operatore hamiltoniano.

Nella fisica classica l’energia di un sistema era un semplice numero indicato con la lettera “E”. In meccanica quantistica diventa un operatore chiamato “Hamiltoniano“.


L’energia di un sistema è definita come la somma tra energia cinetica (p^2/2m) ed energia potenziale V. Coloro che prima erano semplici numeri ora diventano due operatori che, come dice il nome, “operano” sugli stati di una particella, comandandone l’evoluzione dinamica.

Ecco come si procede di solito: immagina una particella immersa in un certo spazio e sensibile a certe interazioni fisiche (elettromagnetiche ad esempio, come un elettrone in un campo magnetico, o in prossimità del nucleo di un atomo).

La seguente frase “questa particella si muoverà in questo spazio con una certa velocità e occuperà maggiormente alcune posizioni invece di altre, sulla base delle interazioni che percepisce” viene tradotta quantisticamente nella seguente:

Lo stato di una particella evolve da un valore iniziale a un valore finale grazie all’azione dell’operatore Hamiltoniano, il quale rappresenta le interazioni e il contenuto cinetico che caratterizzano il moto della particella.

Come forse avrai sentito da qualche parte, lo stato di una particella è indicato da una funzione a più valori, nel tempo e nello spazio: \Psi(\vec{x},t). Il fatto che questo stato venga trasformato nel tempo per via delle interazioni è riassunto dalla seguente scrittura molto compatta:

L’esponenziale di un operatore è lo sviluppo in potenze dell’operatore stesso, secondo la regola degli sviluppi di Taylor. Non preoccuparti di questo dettaglio matematico, l’ho messo solo per completezza.

L’operatore hamiltoniano agisce sullo stato iniziale della particella, e per ogni tempo t successivo restituisce un certo stato finale.

Questa è la ricetta prescritta dalla celebre equazione di Schrödinger, la quale governa la dinamica degli stati quantistici di un sistema. Quella che ti ho mostrato è proprio la soluzione dell’equazione: Schrödinger scrisse che, una volta noto l’operatore hamiltoniano, la dinamica del sistema è nota..

Più facile a dirsi che a farsi: è difficile trovare il corretto operatore che riesca a riprodurre gli stati in cui evolvono i sistemi quantistici negli esperimenti. Trovare l’hamiltoniano giusto equivale a trovare la teoria giusta per descrivere il sistema, ed è esattamente il mestiere del fisico.

Se un fisico ha fatto bene il suo mestiere, otterrà una predizione sull’evoluzione temporale dello stato del sistema, e potrà fare previsioni probabilistiche su quale sarà lo stato in cui verrà misurata la particella a un dato istante di tempo dell’esperimento.

Gli autostati di un operatore

A differenza di uno stato normale, l’autostato di un operatore mantiene la sua direzione dopo la trasformazione, e al massimo si allunga o si accorcia.

Possiamo architettare un esperimento con lo scopo di misurare una certa proprietà della particella quantistica di cui abbiamo parlato prima. L’atto della “misurazione” consiste inevitabilmente in una “riorganizzazione” delle informazioni quantistiche dello stato della particella e anche dello stato del rivelatore che stiamo utilizzando per misurare quella proprietà.

Per via di uno dei postulati della meccanica quantistica (i quali fanno sì che la teoria riproduca quanto si osserva negli esperimenti) a ogni osservabile (sono chiamate così le uniche quantità misurabili negli esperimenti) è associato un operatore, e gli stati possibili in cui la particella può essere rivelata nell’esperimento vanno ricercati in alcuni stati molto speciali che hanno la particolarità di rimanere “quasi inalterati” sotto l’azione dell’operatore.

Per spiegarlo in termini semplici, immagina che lo stato sia una freccia nello spazio: l’operatore in generale può far compiere alla freccia una certa rotazione (il che corrisponde al trasformare lo stato in un altro stato diverso dal primo). Tuttavia alcune frecce speciali vengono trasformate dall’operatore in modo che al massimo si allungano o si accorciano, ma senza ruotare:: la direzione rimane la stessa. Questi stati speciali sono chiamati autostati.

In generale ogni operatore ha il suo set di autostati “personale”.

In sostanza gli autostati di un operatore ci semplificano la vita perché trasformano in maniera molto semplice: significa meno calcoli da fare!

Un esempio preso in prestito dalla geometria: in alcuni casi gli operatori della meccanica quantistica e le matrici sono praticamente la stessa cosa (se non sai come funziona una matrice, vai a questo articolo). Una matrice come quella di rotazione attorno all’asse z sul piano x-y ha il compito di ruotare un vettore di un certo angolo. Siccome la rotazione si svolge attorno all’asse z, la componente z del vettore rimane inalterata. Il vettore di componenti (0,0,1) viene quindi mandato in se stesso, cioè è un autovettore di questa particolare matrice di rotazione.

Il vettore (0,0,1) viene trasformato in se stesso dalla rotazione attorno all’asse z.

La scrittura che ci semplifica tanto la vita, e che ricerchiamo continuamente in meccanica quantistica, è

La costante \lambda è chiamata, in gergo, “autovalore” dell’autostato. A ogni autostato viene associato il suo “autovalore”, il suo numerino personale da utilizzare come etichetta. Possono esserci anche più autostati aventi lo stesso autovalore, ma non vedrai due autovalori diversi associati allo stesso autostato.

Questa scrittura è un vero sospiro di sollievo: l’esistenza di stati che rimangono praticamente invariati sotto l’azione degli operatori rappresenta una semplificazione incredibile per i calcoli della teoria. Invece di chiederci come trasforma qualsiasi stato dell’universo sotto l’operatore (una pretesa diabolicamente assurda), ci interessiamo solo a quegli stati che invece “cambiano molto poco”.

Il motivo di ciò va ricercato in uno dei postulati fondamentali della meccanica quantistica, già accennato sopra:

Le quantità che misuriamo sperimentalmente corrispondono agli autostati della particolare osservabile a cui siamo interessati. Lo so che suona strano e inutilmente astratto, ma è grazie a questo postulato che vengono riprodotti i risultati sperimentali.

La cattiva notizia: non tutti gli stati della teoria sono autostati dell’operatore che ci interessa.


La buona notizia: gli autostati dell’operatore che ci interessa possono essere usati come blocchetti elementari per costruire gli stati più generici della particella.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.


Questo è il principio di sovrapposizione degli stati: ogni stato può essere costruito sovrapponendo tra loro tanti altri stati.

In generale conviene, anzi è proprio mandatorio, utilizzare come blocchetti elementari gli autostati dell’operatore che ci interessa. Ti conviene pensare agli autostati proprio come a dei “Lego” con cui costruire uno stato più generico possibile (la struttura fatta coi Lego è lo stato generico).

Questi autostati andranno a comporre lo stato della particella, ciascuno con un proprio peso statistico, come specificato dalle regole della meccanica quantistica (la quantistica è praticamente una teoria della probabilità, camuffata)

La tipica struttura di uno stato generico, sviluppato come somma di autostati di un certo operatore di nostro interesse. I numeri a_i sono i pesi statistici, cioè il loro modulo al quadrato, ad esempio |a_2|^2, rappresenta la probabilità che la particella, inizialmente nello stato generico “\ket{\Psi}“, venga misurata in un ‘autostato \ket{p_2}.

Il risultato della misurazione (misurazione dell’osservabile, associata a sua volta a un certo operatore della teoria) è il famigerato, e ancora dinamicamente poco compreso, “collasso della funzione d’onda”, il quale seleziona uno degli autostati dell’operatore associato all’osservabile coinvolta:

La particella viene rivelata in UNO solo degli autostati possibili dell’operatore associato all’osservabile.
Prima aveva una probabilità ben precisa di trovarsi in ciascuno degli autostati possibili, mentre DOPO la misura la probabilità di ritrovarla nello stesso autostato sarà il 100%.

ed è proprio questo a cui ci si riferisce quando si parla di “collasso della \Psi“.

Il numero che si misura nell’esperimento coincide con la costante \lambda, cioè l’autovalore dell’autostato in cui è stata rivelata la particella.

Un esempio rapido di quanto detto: un’osservabile di una particella può essere il suo spin (che sperimentalmente si misura grazie all’effetto di un campo magnetico sulla traiettoria della particella). A questo effetto osservabile è associato un operatore di spin.
Se ad esempio sperimentalmente si osserva che alcune particelle possono avere solo due tipi di deflessioni in un campo magnetico allora all’operatore di spin della teoria verranno associati due autostati.

Un tipico esperimento in cui è possibile misurare lo spin di una particella: Stern-Gerlach.

Prima di misurare la deflessione tramite l’accensione del campo magnetico, dal punto di vista della nostra interpretazione la particella si trova in una sovrapposizione di autostati di spin, e con la misurazione (l’accensione del campo magnetico) viene “selezionato un autostato” con una certa probabilità calcolabile quantisticamente.

Tutto questo discorso è importante per capire il seguito, e cioè capire perché ci interessiamo a specifici numeri quantici associati ad operatori accuratamente selezionati della teoria.

I numeri quantici non sono altro che gli autovalori di specifici operatori della teoria, accuratamente selezionati affinché soddisfino delle proprietà che ci permettono di semplificare il modo in cui possiamo fare previsioni verificabili con l’esperimento.

In ogni caso, non basta essere un autovalore di un’osservabile per essere un buon numero quantico!

Un buon numero quantico ci semplifica la vita negli esperimenti, e nella parte II di questa serie vedremo perché!
(Per chi si incuriosice: ha a che fare con il teorema di una famosa matematica tedesca…)


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Quando Heisenberg propose che Protone e Neutrone fossero due stati della stessa particella

Nel 1932 James Chadwick scoprì una nuova particella, era elettricamente neutra e aveva circa la stessa massa del protone. Essendo la prima particella neutra scoperta, venne battezzata “neutrone” per ovvi motivi.

Werner Heisenberg (1901-1976), premio Nobel per la Fisica 1932.

Meno ovvia era invece la natura intrinseca di questa particella, specialmente in un epoca dicotomica come quella, anni in cui protone ed elettrone erano lo yin e lo yang della fisica particellare. Tutto doveva essere composto di pochissimi costituenti elementari: il protone e l’elettrone rappresentavano l’unità di carica positiva e negativa per antonomasia.

Quindi ogni altra particella di qualsiasi carica doveva essere una composizione di protoni ed elettroni. Ah, se solo i fisici di quegli anni avessero potuto immaginare il gigantesco zoo di particelle che sarebbe apparso solo 20 anni dopo!

Sempre nel 1932 il fisico teorico Werner Heisenberg (lo stesso del famoso principio di indeterminazione) fu uno dei primi a lavorare su una interpretazione teorica del neutrone. Il suo obbiettivo era una teoria delle interazioni nucleari (materia su cui si sapeva ancora pochissimo e le idee erano molto confuse). Si cercava di rispondere a domande come: cosa compone i nuclei? Da cosa sono tenuti assieme? Come si possono modificare o trasformare?

Addirittura prima del 1932 si credeva che i nuclei fossero composti da protoni ed elettroni (i secondi avevano lo scopo di neutralizzare parte della carica del nucleo), cosa che non poteva essere più distante dalla realtà.

Fu Heisenberg a introdurre un po’ di ordine: sfruttò subito la scoperta del neutrone per inserirlo all’interno dei nuclei. In questo modo non servivano gli elettroni dentro il nucleo: invece di mettere il doppio dei protoni era sufficiente che ce ne fosse solo la metà che corrisponde alla carica elettrica nucleare, la restante parte della massa che serviva a raggiungere l’accordo con gli esperimenti era garantita dalla presenza di alcuni neutroni.

Si spiega più semplicemente guardando questo esempio:

Lo stesso nucleo descritto prima e dopo la scoperta del neutrone.
Prima del 1932, al fine di spiegare la massa misurata sperimentalmente era necessario introdurre il doppio dei protoni. Ma per compensare la carica elettrica in eccesso si doveva postulare la presenza di elettroni nel nucleo.

In ogni caso Heisenberg aveva anche l’obbiettivo di provare a interpretare la natura del neutrone utilizzando lo “yin e lo yang”. D’altronde questa particella aveva lo stesso spin e circa la stessa massa del protone, saranno mica così diversi?
Immaginò quindi che il neutrone potesse essere composto da un protone e da una specie di “elettrone con spin nullo”. In questo modo carica positiva più carica negativa fa zero, e lo spin (che è 1/2 per il protone) sommato con lo spin zero di quella specie di elettrone ipotetico, faceva correttamente 1/2.

Questa teoria fu abbandonata quasi subito, ma l’elettrone e il suo spin rimasero comunque la principale fonte di ispirazione per il vero guizzo creativo di Heisenberg.

Anzitutto il fisico si soffermò su un aspetto peculiare:

Le masse di protone e neutrone sono quasi uguali: differiscono solo dello 0.14%.

In particolare, Heisenberg notò che se in un esperimento la strumentazione di laboratorio non fosse abbastanza sensibile da distinguere questa differenza in massa, e se fossimo in grado di “spegnere” ogni tipo di interazione elettromagnetica, non saremmo nemmeno in grado di distinguere un protone da un neutrone!

Anzi, Heisenberg fece un passo ancora più lungo: la piccolissima differenza in massa tra protone e neutrone può essere ricondotta all’elettromagnetismo: il protone, essendo carico elettricamente, riceve dei contributi elettromagnetici che abbassano leggermente la sua massa rispetto a quella del neutrone (così si pensava all’epoca).

Come anticipato, Heisenberg prese ispirazione dal problema dello spin di un elettrone.
Già dagli anni ’20 si sapeva che lo spin di un elettrone era una quantità speciale che poteva assumere solo due valori distinti, per convenzione +1/2 e -1/2.

Una rappresentazione grafica dei due possibili valori di spin dell’elettrone.

Lo spin era un numero quantico aggiuntivo che serviva a distinguere i possibili stati occupabili dagli elettroni negli orbitali atomici, e aveva a che fare con il comportamento degli elettroni in un campo magnetico.

In particolare si osservava che sotto l’azione di un campo magnetico gli atomi di un gas sviluppavano dei livelli energetici (sovrapposti a quelli già presenti) che prima non c’erano, segno che gli elettroni avevano interagito, tramite il loro spin, con questo campo magnetico: in base ai due possibili valori dello spin degli elettroni si ottenevano due nuovi livelli energetici molto vicini tra loro (vedi Effetto Zeeman).

In sostanza è come se una certa variabile nascosta (lo spin dell’elettrone) fosse venuta allo scoperto solo durante l’interazione elettromagnetica con il campo esterno.
Un fisico, per spiegare la separazione dei livelli energetici, avrebbe dovuto anzi postulare l’esistenza di questo nuovo numero quantico, e assegnargli precisamente due valori possibili.

Detto ciò, ad Heisenberg bastò tenere a mente la celebre equazione per l’energia a riposo di una particella, dovuta ad Einstein (E=mc^2 ) per fare un collegamento molto interessante: la piccola differenza in massa (\Delta m) tra protone e neutrone si traduce in una certa differenza in energia:

    \[\Delta E=\Delta mc^2\]

A suo dire, questa differenza in energia era dovuta all’interazione elettromagnetica, allo stesso modo in cui la differenza in energia di due livelli atomici nell’effetto Zeeman era dovuta all’interazione con il campo magnetico.

Nel caso dell’effetto Zeeman, il tutto era spiegabile con l’introduzione di un nuovo numero quantico, lo spin.
Prima dell’accensione del campo magnetico, il livello energetico è lo stesso, dopo l’accensione, il livello si separa in due livelli.

Protone e neutrone potevano essere pensati come lo stesso livello energetico, la cui separazione è indotta (secondo Heisenberg) dalle interazioni elettromagnetiche!

L’analogia è evidenziata in questa figura:

Analogia tra effetto Zeeman e la teoria di Heisenberg su protone e neutrone.

Doveva allora esserci un nuovo numero quantico interno in grado di distinguere protone e neutrone durante i normali esperimenti, proprio come lo spin.

I fisici dell’epoca chiamarono isospin questo nuovo numero quantico, proprio per via dell’analogia con lo spin. In questo modo protone e neutrone non erano altro che due stati diversi della stessa particella, la quale fu battezzata nucleone. Per convenzione, al neutrone venne assegnato isospin -1/2 e al protone +1/2.

Heisenberg sfruttò l’isospin per costruire una delle prime teorie sull’interazione nucleare. Il fisico tedesco sapeva bene che la forza nucleare doveva essere ben diversa da quella elettromagnetica fino ad allora conosciuta. Doveva essere una forza attrattiva, certo, se no il nucleo come fa a stare assieme? Però il tipo di attrazione non poteva essere simile a quello elettromagnetico.
Ciò era evidenziato da fatti sperimentali: proprio in quegli anni venivano condotti degli studi sulle energie di legame dei nuclei, e si scoprì che queste non crescevano come sarebbero cresciute se l’interazione nei nuclei fosse stata elettromagnetica.

La differenza tra il comportamento nucleare e quello elettromagnetico.

Inoltre, i dati sperimentali suggerivano che la carica elettrica del protone non influiva quasi per niente sui livelli energetici del nucleo. Quindi secondo Heisenberg i nucleoni contenuti all’interno dei nuclei dovevano interagire in maniera molto speciale, non tramite forze di tipo puramente coulombiano, ma tramite quelle che chiamò forze di scambio.

Queste forze di scambio potevano essere parametrizzate tramite degli operatori di isospin, del tutto simili agli operatori di spin della meccanica quantistica, i quali governavano le interazioni spin-obita e spin-spin tra i vari costituenti dell’atomo.

In questo formalismo lo stato quantistico di protone o neutrone poteva essere indicato con un vettore a due componenti:

Ma in realtà i nomi “protone” e “neutrone” divengono dei segnaposto per parlare di due stati della stessa particella: stato “isospin in alto” e stato “isospin in basso” (nota come ciò si traduce nella posizione del numero 1 nella componente alta e bassa del vettore).

Nella teoria delle forze di scambio nucleare non è possibile distinguere tra protone e neutrone, cioè la teoria, globalmente, “non distingue” tra la carica elettrica del protone e quella del neutrone. Vengono visti come due facce della stessa medaglia, e sono interscambiabili senza che cambi nulla.

In questo senso si parla di simmetria di isospin delle forze nucleari

Per capire meglio come funziona questa teoria occorre fare un ripasso di algebra lineare in due dimensioni.

Un vettore 2D può essere rappresentato sul piano cartesiano (x,y) come una freccia uscente dall’origine:

La rappresentazione cartesiana del vettore (1,1). Le sue componenti sono v1=1 sull’asse x, e v2=1 sull’asse y.

Ad esempio per costruire un vettore di componenti (1,1), cioè v_1=1 sull’asse x, e v_2=1 sull’asse y, parto dall’origine e mi sposto di 1 sull’asse x, poi mi sposto di 1 sull’asse y. Il punto in cui arrivo è la testa del vettore. Collegando la testa con la coda (cioè l’origine) ottengo una linea diagonale che chiamo “vettore”.
Un vettore può essere trasformato da una matrice usando la seguente ricetta di composizione:

Il risultato della trasformazione di un vettore è un nuovo vettore le cui componenti possono essere ottenute dalla ricetta contenuta nella matrice.

Il vettore trasformato ha le sue componenti che nascono mischiando le componenti del vettore di partenza, secondo una particolare ricetta descritta dalla matrice-operatore.
Anche il non fare niente è una trasformazione: prende il nome di matrice identità, la sua azione mi fa ottenere di nuovo il vettore di partenza. Puoi verificare anche tu con la ricetta data sopra che il seguente calcolo lascia invariato il vettore di partenza:

La matrice identità lascia il vettore invariato.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Infatti in questo caso l’operatore è tale che a_1=1, \,\,a_2=0\,\, a_3=0,\,\,a_4=1, e sostituendo nella ricetta di sopra otteniamo proprio che il vettore rimane invariato.

Per passare da uno stato all’altro del nucleone, cioè da protone a neutrone, si utilizzano gli operatori di salita e di discesa chiamati \tau_+ e \tau_{-}, le quali sono matrici 2\times 2 che agiscono sui vettori proprio come abbiamo visto sopra.

Puoi fare il conto anche tu e verificare che:

Trasformazione di un protone in un neutrone
Trasformazione di un neutrone in un protone

In generale lo stato di un nucleone è parametrizzato dalla sovrapposizione degli stati di protone e neutrone:

Lo stato più generico di un nucleone. \alpha e \beta sono parametri costanti.

Nella teoria di Heisenberg l’interazione tra due nucleoni deve tenere conto dei loro possibili stati di isospin. In particolare in un processo generico deve conservarsi l’isospin totale dei due nucleoni. La richiesta di questa conservazione permetteva di fare alcune previsioni su alcuni nuclei leggeri per mezzo di calcoli piuttosto semplici.

Alla fine la simmetria di isospin serviva a questo, era una semplificazione per i calcoli: tra tutte le possibili interazioni tra i nucleoni sono permesse solo quelle che conservano l’isospin totale, mentre vanno scartate tutte le altre.

Una simmetria imperfetta

La teoria dell’isospin di Heisenberg fu un buon colpo di genio, ma si rivelò piuttosto insoddisfacente a lungo andare. La verità è che a livello subnucleare protone e neutrone hanno una massa ben distinta! Ciò non è dovuto solo all’interazione elettromagnetica, ma anche alla composizione in quark di protone e neutrone (inutile dire che all’epoca di Heisenberg non si conoscevano i quark).

Se avessero masse uguali allora la simmetria di isospin sarebbe perfetta, quindi l’isospin sarebbe un numero quantico al pari dello spin degli elettroni. Questa differenza nella massa fa sì che la simmetria sia imperfetta, cioè consente di fare previsioni corrette solo entro un certo grado di approssimazione.

Nonostante ciò, l’idea delle simmetrie interne (come l’isospin) cambiò per sempre il modo di fare fisica delle particelle. Le simmetrie imperfette furono utilizzate per raggruppare alcuni gruppi di particelle che sbucavano fuori dagli esperimenti sui raggi cosmici e dagli acceleratori degli anni ’50 e ’60. In questo contesto le particelle di massa molto simile venivano catalogate come stati di una stessa particella con numeri quantici diversi (se ti incuriosisce: la via dell’ottetto).

Le simmetrie imperfette servirono ad ispirare Gell-Mann e altri fisici nella costruzione di una simmetria perfetta, che è quella della cromodinamica quantistica e che riguarda i quark. Ma di questo parleremo magari in un altro articolo…


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come Fermi scoprì la statistica degli elettroni assieme a Dirac

Per capire l’entità del contributo di Enrico Fermi in ciò che servì ad ispirare una delle scoperte più importanti dell’umanità (la teoria dei semiconduttori), è necessario fare qualche passo indietro e considerare il contesto storico-scientifico dell’epoca.

Negli anni ’20 del secolo scorso si sapeva molto poco sulle strutture fondamentali della materia. Le teorie dell’atomo erano giovanissime e l’unico metodo di indagine consisteva nell’osservare l’assorbimento luminoso di alcuni gas della tavola periodica.

Ludwig Boltzmann (1844-1906), uno dei padri fondatori della fisica statistica.

Proprio sui gas si sapeva dire un po’ di più, essendo una collezione di atomi che potevano essere trattati (in certe condizioni di densità e temperatura) come un grosso insieme di biglie microscopiche su cui, tramite la fisica statistica di Maxwell, Boltzmann e Gibbs, si potevano fare previsioni termodinamiche verificabili sperimentalmente.

Una particolarità interessante della teoria statistica di Maxwell e Boltzmann era il contenuto minimale di ipotesi sulla natura fisica di queste “biglie microscopiche”. Stiamo parlando di una teoria formulata nella seconda metà del secolo XIX, un periodo in cui non era ancora riconosciuta l’esistenza dell’atomo!

Trattandosi tuttavia di atomi, nemmeno la teoria di Maxwell e Boltzmann uscì indenne dalla rivoluzione della teoria dei quanti, iniziata con Planck nel 1900.

La teoria dei quanti funzionò sia da completamento che da antidoto per la vecchia fisica statistica. Da antidoto perché aiutò ad indagare meglio alcuni problemi matematici della teoria di Maxwell e Boltzmann, i quali conducevano a calcoli errati nella trattazione di particelle tra loro indistinguibili, e davano dei risultati impossibili per alcune quantità come l’entropia dei gas a basse temperature.

Un problema statistico dell’entropia

Queste difficoltà erano dovute al fatto che la fisica statistica si basa essenzialmente sul “contare, per tutte le particelle, tutte le possibili configurazioni microscopiche che conducono alla stessa situazione fisica del gas“, come illustrato in figura:

Lo schema concettuale che sta alla base della teoria statistica dei gas.

Pressione, volume, temperatura (P,V,T), sono tutte quantità macroscopiche misurabili sperimentalmente. In fisica statistica ci immaginiamo di conoscere le posizioni e velocità di tutte le particelle del gas in ciascuna configurazione possibile ammessa dalle condizioni ambientali (cosa non possibile da un punto di vista computazionale, ma che facciamo finta di poter fare comunque).


Siccome non sappiamo in quale configurazione microscopica precisa si trovi il gas in ciascun istante di tempo (non è misurabile sperimentalmente), immaginiamo di avere N copie del nostro gas e di fare delle estrazioni per contare quante volte esce una certa configurazione piuttosto che un’altra. La distribuzione di queste estrazioni definisce alcune quantità macroscopiche (P_i,V_i,T_i) associate alla specifica configurazione microscopica i estratta un numero N_i di volte. Le quantità macroscopiche (P,V,T) che misuriamo sperimentalmente possono quindi essere pensate come la media di tutte le (P_i,V_i,T_i) pesate con la probabilità di estrazione N_i/N.

La misura sperimentale di (P,V,T) ci dà quindi informazioni sulla distribuzione delle configurazioni microscopiche del nostro gas.


Immaginando il gas in equilibrio termico a una certa energia interna, il numero di configurazioni del gas corrispondenti a tale energia possono essere contate, dal punto di vista teorico, sommando tutte le possibili accoppiate di posizione-velocità (x,y,z),(v_x,v_y,v_z) nelle tre dimensioni spaziali, e ciò deve essere fatto per tutte le particelle del gas.

Siccome il numero di possibili accoppiate è virtualmente infinito, i padri fondatori della fisica statistica immaginarono di dividere lo spazio dei possibili valori di posizione e velocità in cellette elementari di dimensione finita che chiamiamo \tau. In questo modo due stati dinamici specificati da (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) che caschino nella stessa celletta di questo spazio sono considerati essere lo stesso stato dinamico. È come se ammettessimo, in un certo senso, di non sapere distinguere tra (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) nel caso appartengano alla stessa cella, è un’approssimazione.

La suddivisione in cellette dello spazio di posizioni e velocità per le particelle. Secondo questa suddivisione due set di posizioni e velocità che appartengono alla stessa celletta non sono distinguibili (qui non distinguiamo il rosa dal celeste), mentre sono distinguibili da quella in verde, dato che appartiene a un’altra celletta.

Dal punto di vista statistico, l’entropia del gas è pensabile come una misura di quanti stati dinamici microscopici sono associabili a un certo stato termodinamico macroscopico, una misura della nostra “ignoranza” sull’effettiva configurazione microscopica del gas.

Il problema era che la dimensione \tau della celletta elementare era del tutto arbitraria, e ciò influiva pesantemente sul conteggio delle configurazioni. Essendo il numero delle configurazioni direttamente collegato alla definizione statistica di entropia, una scelta di \tau troppo piccola conduceva a valori infiniti per l’entropia del gas. Questa indeterminazione sulla scelta di \tau impediva inoltre di calcolare, statisticamente, il valore della costante dell’entropia alla temperatura dello zero assoluto.

Il problema della costante dell’entropia stava molto a cuore ai fisici dell’epoca. Nella termodinamica ottocentesca ci si interessava solo alle differenze di entropia, e quindi era di scarso interesse pratico domandarsi quale fosse il valore assoluto dell’entropia a una determinata temperatura come T=0\,\text{K}, e in ogni caso questa costante spariva quando si faceva la differenza \Delta S=S(B)-S(A) tra due stati termodinamici B e A.
Tuttavia con l’arrivo del teorema di Nernst e quindi del terzo principio della termodinamica (il quale postula che l’entropia allo zero assoluto sia esattamente zero) si rivelò essenziale determinare il valore di questa costante.

Un altro problema fastidioso era quello che riguardava il conteggio di particelle indistinguibili: quando si contavano tutte le configurazioni possibili di tutte le particelle del gas si finiva per contare più volte la stessa configurazione per via del fatto che non è possibile distinguere una particella dall’altra. Per via di ciò si arrivava a dei paradossi che riguardavano l’entropia di mescolamento dei gas.
Di questo problema si interessò Gibbs, il quale propose di dividere i conteggi per il fattore combinatorico N! dove N è il numero di particelle e con “!” si intende il fattoriale N!=N(N-1)(N-2)....
Tuttavia anche questa soluzione non risolveva tutti i problemi…

La teoria dei quanti sistemò i problemi dell’entropia. Si dimostrò che la dimensione \tau delle cellette elementari doveva essere pari alla costante di Planck h: la natura discreta della teoria quantistica si sposava bene con l’ipotesi delle cellette elementari della fisica statistica.

Il punto è che gli effetti quantistici delle particelle non sono più trascurabili a basse temperature. In fisica statistica esiste una quantità chiamata lunghezza d’onda termica di De Broglie, la quale ha la seguente espressione per un gas perfetto monoatomico:

La lunghezza termica delle particelle di un gas, dove h è la costante di Planck, m la massa delle particelle, k_B la costante di Boltzmann che converte da dimensioni di energia a dimensioni di temperatura tramite E=k_BT, e T la temperatura del gas.

Questa lunghezza d’onda deriva dalla formulazione ondulatoria di De Broglie per le particelle quantistiche.
Secondo De Broglie, a ogni particella avente quantità di moto p è associabile una lunghezza d’onda \lambda=h/p. Se come p si prende la quantità di moto termica delle particelle del gas si ottiene la \lambda_T riportata sopra.
A temperature normali questa lunghezza d’onda è molto più piccola della distanza media tra gli atomi di un gas. Vediamo però che al diminuire di T, la relazione di inversa proporzionalità \lambda_T\propto 1/\sqrt{T} aiuta a far crescere questa lunghezza d’onda. Per temperature sufficientemente basse la lunghezza d’onda \lambda_T diventa comparabile con le distanze inter-atomiche del gas.

Man mano che si abbassa la temperatura del sistema, aumenta la lunghezza d’onda di De Broglie e dominano le interferenze quantistiche tra le funzioni d’onda delle particelle.
Nel caso in figura sono mostrati dei bosoni.

Quindi, per via delle loro proprietà quantistiche, le particelle iniziano ad interferire tra loro come tante onde, e questo succede quando la loro lunghezza d’onda diventa almeno comparabile con la distanza tra una particella e l’altra, a temperature molto basse.

Siccome parliamo di funzioni d’onda che creano interferenze, l’indistinguibilità delle particelle gioca un ruolo centrale in questo processo quantistico, e ciò sta alla base di tutte le difficoltà teoriche della vecchia fisica statistica, la quale non teneva conto di queste proprietà quantistiche. Fino alla prima metà degli anni ’20, questa sottigliezza quantistica non era ancora stata compresa in profondità.

Statistica quantistica: la strada di Fermi

Enrico Fermi (1901-1954). Premio Nobel per la Fisica nel 1938.

Ancora fresco di laurea, Fermi divenne particolarmente ossessionato dal problema della costante dell’entropia, pubblicando diversi articoli tra il 1924 e il 1926.

Aveva intuito che il problema risiedesse nella natura quantistica delle particelle, in particolare dal punto di vista della loro indistinguibilità, ma mancava ancora qualche pezzo del puzzle.

Il pezzo mancante fu messo a disposizione da Pauli con la formulazione del principio di esclusione: non possiamo avere due elettroni con tutti i numeri quantici uguali tra loro. Gli elettroni sono particelle indistinguibili, quindi Fermi si ispirò al loro comportamento per provare a quantizzare un gas di particelle a temperature sufficientemente basse.

Possiamo immaginarci un Fermi che lavora assiduamente all’alba (il suo momento preferito per studiare e lavorare su nuovi articoli) in qualche fredda mattina di Firenze, nell’inverno del 1925-26, sforzandosi di sfruttare il principio di Pauli per ottenere la costante corretta dell’entropia allo zero assoluto.

La prima pagina dell’articolo di Fermi, presentato all’accademia dei Lincei nel febbraio del 1926.

Nel suo articolo “Sulla quantizzazione del gas perfetto monoatomico” uscito nel febbraio del 1926, Fermi ipotizzò che un gas ideale si comportasse proprio come gli elettroni del principio di Pauli e cambiò completamente il modo di contare le configurazioni possibili in fisica statistica: in ciascuno stato dinamico possono esserci zero o al massimo una sola particella, mai due nello stesso stato.
Immaginò poi che il gas potesse essere caratterizzato da determinati livelli energetici discreti, proprio come si faceva nella quantizzazione dell’atomo di idrogeno. Questa spaziatura tra i livelli energetici era tanto più rilevante per la fisica del problema quanto più era bassa la temperatura del gas, essenzialmente per il motivo enunciato sopra. Ad alte temperature gli effetti quantistici devono essere trascurabili e si ritorna alla termodinamica dell’ottocento.

La conseguenza di questo nuovo modo di contare era che ciascuno stato i era occupato da un numero medio di particelle in funzione dell’energia E_i dello stato, secondo la seguente espressione:

Il numero di nepero e (o Eulero), l’energia E_i dello stato, la temperatura T, la costante di Boltzmann k_B. Il parametro \mu è noto come “potenziale chimico” e allo zero assoluto corrisponde all’energia di Fermi: E_F.

Usando questa informazione, Fermi calcolò l’espressione della costante dell’entropia, la quale coincideva con il valore sperimentale dedotto da Sackur e Tetrode nel 1912. La sua teoria era un successo!

Tuttavia, come confermato anche da alcuni studiosi (Belloni, Perez et al), Fermi non si interessò delle radici quantistiche di questa nuova statistica, cioè non provò a collegare il principio di Pauli con la natura ondulatoria della materia. Inoltre non esisteva, al tempo, un gas capace di comportarsi come gli elettroni dell’articolo di Fermi. La soluzione di Fermi voleva andare nella direzione della statistica quantistica, ma con un approccio molto cauto sulle ipotesi alla base. Fermi utilizzò la sua intuizione per dare una nuova soluzione a dei problemi annosi di fisica statistica (già risolti recentemente da Bose e Einstein con la loro statistica) e dedusse una statistica completamente nuova.

Tuttavia, al contrario di quanto si dice solitamente in giro, Fermi non applicò direttamente questa nuova statistica al problema degli elettroni nei metalli (cosa che fu fatta da altri e che condusse alla teoria dei semiconduttori).

La statistica di Fermi-Dirac

La distribuzione trovata da Fermi è dipendente dalla temperatura. Abbiamo già anticipato che gli effetti quantistici diventano preponderanti a temperature vicine allo zero assoluto. In questo caso il principio di Pauli emerge direttamente dalla forma analitica della distribuzione, riportata in figura:

La formula di Fermi al variare della temperatura.

Man mano che la temperatura del gas di elettroni si avvicina a T=0\,\text{K}, la distribuzione di Fermi si avvicina sempre di più alla “funzione gradino”

La funzione gradino, cioè il limite a basse temperature della formula di Fermi.

Allo zero assoluto, gli elettroni occupano i livelli energetici riempiendoli dal più basso fino a un’energia chiamata “energia di Fermi”, indicata con E_F.
Puoi notare come a T=0 il numero medio di occupazione dello stato a energia E_i sia esattamente 1: non può esserci più di un elettrone per stato, è il principio di esclusione di Pauli in tutta la sua gloria. Nota anche che non ci sono elettroni che occupano stati a energia maggiore di quella di Fermi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo comportamento è essenzialmente verificato anche per temperature più alte di T=0, basta solo che sia T\ll T_F dove T_F è detta “temperatura di Fermi”, ed è pari a T_F=E_F/k_B. Nelle situazioni di interesse fisico (come nei metalli), la condizione T\ll T_F è praticamente sempre soddisfatta, essendo T_F di solito dell’ordine di alcune centinaia di migliaia di gradi kelvin.

I gas di elettroni sono fortemente influenzati dal principio di Pauli: è un po’ come se ci fosse una forza “repulsiva” tra gli elettroni, la quale gli impedisce di occupare lo stesso stato energetico. Questa è anche un’interpretazione euristica del fatto che la pressione di un gas di Fermi sia più elevata di un gas classico: è difficile comprimere un gas di elettroni perché non vogliono mai “occupare lo stesso punto spaziale”.

Come mai questa statistica è chiamata “Fermi-Dirac” e non solo “Fermi”?
È noto che Dirac pubblicò la stessa formula alla fine dell’estate del 1926, mentre Fermi l’aveva presentata nella primavera dello stesso anno. Dirac, su sollecito scritto da parte del fisico italiano, ammise di aver letto il lavoro di Fermi, ma sostenne di averlo completamente scordato.

In difesa di Dirac va detto che il suo lavoro (“On the Theory of Quantum Mechanics“) è molto più generale di quello presentato da Fermi, il quale si era invece proposto di risolvere un problema particolare (quello dell’entropia) che c’entrava poco con i postulati della meccanica quantistica.

Dirac giustificò in maniera elegante il principio di esclusione di Pauli notando che la meccanica quantistica era il luogo naturale per trattare i sistemi di particelle indistinguibili, grazie al formalismo delle funzioni d’onda.

La chiave del ragionamento di Dirac si trova proprio nel fatto che le particelle elementari possono essere considerate indistinguibili. La conseguenza quanto-meccanicistica è che se consideriamo due particelle non interagenti tra loro, e che possono occupare gli stati A e B, la funzione d’onda che le descrive collettivamente è data dal prodotto delle due funzioni d’onda

    \[\psi(x_1;x_2)=\psi_A(x_1)\psi_B(x_2)\]

in cui x_1 e x_2 sono le posizioni delle due particelle. Se scambiamo le due particelle, e cioè le portiamo dallo stato A allo stato B e viceversa, otteniamo la funzione d’onda modificata

    \[\psi'(x_1;x_2)=\psi_B(x_1)\psi_A(x_2)\]

Ma se assumiamo che le particelle siano indistinguibili, la densità di probabilità deve restare la stessa (ricordiamo che è data dal modulo al quadrato della funzione d’onda):

    \[|\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2\]

Quindi al massimo possiamo avere che \psi' è diversa da \psi per un fattore \eta

    \[\psi'(x_1;x_2)=\eta \psi(x_1;x_2)\]

in cui \eta è un numero tale che |\eta|^2=1 in modo da soddisfare |\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2 (verifica pure!).

Se ri-scambiamo le due particelle, torniamo punto e a capo, e cioè deve essere \psi''(x_1;x_2)=\psi(x_1;x_2)

    \[\psi''(x_1;x_2)=\eta \psi'(x_1;x_2)=\eta^2\psi(x_1;x_2)=\psi(x_1;x_2)\]

ovvero \eta^2=1, la quale ha soluzione \eta=\pm 1.
Se \eta=-1 stiamo parlando di particelle con funzioni d’onda antisimmetriche (cioè lo scambio delle particelle produce un segno meno moltiplicativo nella funzione d’onda totale). Una conseguenza è che se parliamo dello stesso stato A=B allora lo scambio delle particelle produce la seguente relazione

    \[\psi_A(x_1)\psi_A(x_2)=-\psi_A(x_1)\psi_A(x_2)\]

la quale implica identicamente \psi_A(x_1)\psi_A(x_2)=0, cioè non esiste uno stato quantistico in cui queste particelle hanno gli stessi numeri quantici. Questa è la giustificazione quanto-meccanicistica del principio di Pauli, e condusse Dirac a ricavare la stessa formula di Fermi per la statistica degli elettroni.

La lettera in cui Fermi richiamò l’attenzione di Dirac sul suo articolo del febbraio precedente.


Fermi si limitò all’applicazione del principio di esclusione su un problema specifico, senza provare a darne un’interpretazione quanto-meccanicistica.

In ogni caso, Dirac riconobbe comunque l’importanza del lavoro di Fermi, e propose di chiamare la nuova statistica “Fermi-Dirac”, mettendo il nome di Fermi al primo posto.

Oggi le particelle (come gli elettroni) che obbediscono alla statistica di Fermi-Dirac sono note come “fermioni”, sempre in onore di Fermi. I fermioni sono tutte quelle particelle caratterizzate da uno spin semi-intero. Per un teorema rigorosamente dimostrabile in teoria quantistica dei campi, tutte le particelle a spin semi-intero obbediscono alla statistica di Fermi-Dirac, mentre quelle a spin intero (note come “bosoni“) obbediscono alla statistica di Bose-Einstein (sono le particelle con \eta=1 dopo uno scambio).

Alle basse temperature i bosoni possono occupare tutti lo stesso stato a energia più bassa, mentre i fermioni sono forzati ad occupare stati a energia crescente fino all’energia di Fermi (nella figura sono presenti al massimo due fermioni per via del numero quantico di spin, il quale assume due valori possibili se lo spin è 1/2).

Alle alte temperature (dove gli effetti quantistici sono meno preponderanti) sia fermioni che bosoni tornano ad obbedire alla statistica di Maxwell-Boltzmann e Gibbs.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Il neutrino sterile: la particella “fantasma” che arrovella i fisici da decenni

I neutrini sono a tutti gli effetti le particelle che abbiamo capito meno in tutto il Modello Standard.

In sintesi, le difficoltà sorgono dal fatto che queste particelle interagiscono con una sola delle interazioni fondamentali (senza contare la gravità), e questa è sfortunatamente l‘interazione debole. Alle tipiche energie dei nostri esperimenti questa interazione è fortemente soppressa (ecco perché si chiama “debole”), per cui è molto difficile produrre o far interagire dei neutrini:

In media, un neutrino interagisce una sola volta dopo aver percorso 100 miliardi di volte un diametro terrestre.

Nonostante ciò, i neutrini sono stati scoperti sperimentalmente e vengono studiati con cura dagli anni ’50, questo perché sono state impiegate sorgenti che ne emettono grandi quantità: in questo modo si contrasta la scarsa probabilità di interazione con l’enorme numero di “proiettili”. È la stessa filosofia di comprare un centinaio di “gratta e vinci” per aumentare le chances di pescarne almeno uno vincente.

Cosa non capiamo dei neutrini?

Per poter dire che “capiamo” tutto di una particella dobbiamo essere in grado di affermare quali siano i suoi numeri quantici, e di solito ci si concentra su questi tre:

  • Carica elettrica
  • Spin
  • Massa

Dei neutrini conosciamo con precisione solo i primi due: sono elettricamente neutri (infatti non interagiscono con la forza elettromagnetica) ed hanno spin 1/2, mentre sorprendentemente non sappiamo ancora con precisione il valore della loro massa. Sappiamo solo che non può essere più grande di un numero molto piccolo, per via delle evidenze sperimentali.

Ciò che stupisce è che rispetto alle altre particelle hanno una massa stupidamente minuscola, così piccola che è difficile da misurare: gli esperimenti ci consentono solo di porre dei limiti superiori sempre più piccoli. Per dare un’idea, l’elettrone ha una massa di mezzo milione di elettronvolt, mentre si stima che quella dei neutrini sia inferiore a un solo elettronvolt. Se l’elettrone è considerato la particella carica più leggera del Modello Standard, i neutrini sono davvero dei pesi piuma.

È di fondamentale importanza riuscire a determinare la massa di una particella. Nel Modello Standard la massa è spesso l’unico numero quantico che permette di distinguere tra due particelle che hanno gli altri numeri quantici uguali.

Ad esempio il muone e l’elettrone sono due particelle elementari con la stessa carica elettrica e lo stesso spin, ma il muone è circa 200 volte più pesante dell’elettrone ed è proprio ciò che ci permette di distinguerli nella maggior parte dei casi. Allo stesso modo il tau è la terza “sorella” di muone ed elettrone, in quanto ha stessa carica e stesso spin, ma massa pari a circa 18 volte quella del muone.
Queste tre particelle furono raggruppate in un trio chiamato “leptoni carichi”.

Elettrone, Muone e Tau: le tre particelle “sorelle” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Per spiegare i risultati sperimentali degli anni ’30 e ’50, si associò a ciascun leptone carico (elettrone, muone e tau) un neutrino di tipo corrispondente. Infatti si dimostrò che in ciascun processo di interazione debole di un leptone carico compariva sempre un neutrino, di conseguenza:

  • All’elettrone venne associato un neutrino-elettronico: \nu_e
  • Al muone venne associato un neutrino-muonico: \nu_\mu
  • Al tau venne associato un neutrino-tau: \nu_\tau

Quindi anche i neutrini sono considerati dei leptoni, solo che hanno carica elettrica nulla. Assieme ai leptoni carichi costituiscono i 6 leptoni del Modello Standard.

La cosa importante da capire è che siamo in grado di distinguere un neutrino \nu_e da un neutrino \nu_\mu o da un neutrino \nu_\tau: basta guardare qual è il leptone carico coinvolto nelle interazioni (rare) di questi neutrini!

Il modo in cui siamo in grado di dire quale dei tre neutrini stiamo considerando: basta guardare i leptoni carichi che escono fuori dalle interazioni del neutrino con la materia.

In questo senso si parla di conservazione del sapore leptonico: un neutrino di sapore “muonico” è sempre associato, in un’interazione debole, a un muone. Se c’era un sapore elettronico all’inizio, dovrà esserci un sapore leptonico anche alla fine.

Le oscillazioni di sapore

Alla fine del secolo scorso si scoprì che i neutrini sono in grado di cambiare sapore leptonico durante il loro viaggio tra due punti dello spazio, e fu proprio questo fatto ad evidenziare che i neutrini dovevano avere una massa: senza una massa non è possibile questa oscillazione tra sapori!

L’oscillazione rompe la conservazione del sapore leptonico!

Ad esempio da un processo debole che coinvolge un elettrone (rivelabile) sappiamo che sbucherà fuori un \nu_e, il quale, dopo una certa distanza, si tramuterà in un \nu_\mu, il quale interagirà facendo comparire un muone, che sarà a sua volta rivelabile e ci permetterà di dire che questa oscillazione è effettivamente avvenuta!

Per spiegare questo effetto vengono introdotti gli “stati di massa” dei neutrini, chiamati \nu_1,\nu_2,\nu_3 a cui vengono associate le masse m_1,m_2,m_3. Ciascun stato di massa “contiene” al suo interno i tre sapori dei neutrini \nu_e,\nu_\mu,\nu_\tau in proporzioni che possono essere studiate sperimentalmente.
Graficamente abbiamo quindi tre neutrini ciascuno contenente al suo interno il mixing di sapori:

Gli autostati di massa dei neutrini con al loro interno i mixing dei sapori.
Celeste: \nu_e, Marroncino: \nu_\mu, Grigio: \nu_\tau.

Questo mixing avviene nel senso quanto-meccanico di sovrapposizione di stati: ciascuno stato di massa è una sovrapposizione delle funzioni d’onda dei sapori leptonici e,\mu,\tau.

Ad esempio dalla figura leggiamo che sperimentalmente è stato verificato che lo stato \nu_1 contiene per la maggior parte il sapore elettronico \nu_e (indicato in blu), mentre il sapore tau \nu_\tau è presente solo in minima parte.

Essendo tutto ciò un effetto quanto-meccanico, a ogni oscillazione tra sapori è associata una certa probabilità che sarà tanto più elevata quanto più grande è il mixing tra sapori negli stati di massa. Questa probabilità è verificabile sperimentalmente: basta chiedersi “se nel punto di partenza ho N neutrini di tipo \nu_e, quanti neutrini di tipo \nu_\mu mi ritroverò a una certa distanza dal punto di partenza?”

Ad esempio la probabilità che un neutrino \nu_e si trasformi in un neutrino \nu_\mu è data dalla seguente formula:

Vengono chiamate “oscillazioni” perché la probabilità dipende da un seno al quadrato, il quale rappresenta graficamente un’oscillazione nelle variabili L,E,\Delta m^2.

in cui \theta è un parametro del Modello Standard che è stato misurato sperimentalmente (e definisce il grado di mixing dei due sapori in questo caso). D’altra parte \Delta m^2=m_2^2-m_1^2 riguarda la differenza tra i quadrati delle masse di \nu_2 e \nu_1, mentre L è la distanza a cui hanno viaggiato i neutrini prima di essere rivelati, ed E è la loro energia.
Nota bene che se questi neutrini avessero la stessa massa, e cioè \Delta m^2=0, non si potrebbero avere oscillazioni (la probabilità sarebbe nulla perché il seno di zero fa zero).

Ad esempio è molto più probabile che un \nu_e si trasformi in un \nu_\mu quando l’argomento del seno è vicino al punto in cui il seno ha un massimo, e cioè in prossimità di 90^{\circ} (o in radianti pi/2), e cioè quando

Da questa formula è possibile capire a che valore del rapporto L/E si è più sensibili per rivelare un’oscillazione da \nu_e in \nu_\mu. Si può quindi ottenere una stima di \Delta m^2.

Studiando l’andamento dell’oscillazione con L/E si può quindi ricavare \Delta m^2 proprio da questa formula.

La differenza tra le masse dei neutrini \nu_2 e \nu_1 è minuscola, ma comunque calcolabile dai dati sperimentali. Allo stesso modo è stata calcolata la differenza tra le masse quadre di \nu_3 e \nu_2, e da ciò si può ricavare la differenza tra le masse quadre di \nu_3 e \nu_1.
Conosciamo solo queste \Delta m^2, ma non i valori singoli di m_3,m_2,m_1, che frustrazione, eh?

Misurando il numero di eventi di neutrini di un certo sapore ad alcuni valori del rapporto L/E si possono ricavare i valori sperimentali di \theta e \Delta m^2. Questo è proprio ciò che si fa da qualche decina di anni: la teoria delle oscillazioni è verificata con un alto grado di accuratezza, tranne per qualche anomalia…

Le anomalie delle oscillazioni

Immagina di stare conducendo un esperimento in cui produci dei neutrini \nu_\mu, li fai viaggiare per una certa distanza L e ti aspetti che si trasformino in neutrini \nu_e con una probabilità data dalla formula vista sopra: P_{\nu_e\to\nu_\mu}=\sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right), solo che con sorpresa ti ritrovi a rivelare più neutrini \nu_e di quelli che ti aspettavi, un eccesso rispetto alla previsione teorica.

Questo è proprio quello che capitò nell’esperimento LSND degli anni ’90 (immagine di copertina): comparvero più neutrini \nu_e di quelli previsti dal modello delle oscillazioni a tre stati di massa \nu_1,\nu_2,\nu_3.

Questo fenomeno fu spiegato con l’introduzione di un quarto stato di massa \nu_4, avente massa m_4 apparentemente molto più grande di m_1,m_2,m_3.

Questo \nu_4 permetteva l’oscillazione di \nu_\mu in \nu_e a un ritmo più elevato, dato dalla formula modificata:

Stavolta \Delta m^2_{41}=m_4^2-m_1^2, e non più \Delta m^2=m_2^2-m_1^2.

in cui si trovò che, appunto, \Delta m_{41}^2\gg \Delta m_{21}^2: il quarto stato di massa doveva avere una massa molto più elevata degli altri tre stati di neutrini.

Ricorda però che ad ogni stato \nu_1,\nu_2,\nu_3 avevamo associato un certo mixing di sapori \nu_e,\nu_\mu,\nu_\tau, quindi aggiungendo un \nu_4 dobbiamo aggiungere anche un nuovo sapore \nu_s. Questo è necessario per far quadrare i conti della teoria dei mixing.

Il Modello Standard però proibisce (con misure sperimentalmente verificate) un numero di sapori di neutrini superiore a tre! Cioè possono esistere solo i sapori “canonici”: \nu_e,\nu_\mu,\nu_\tau.

Il nuovo sapore \nu_s associato alla comparsa di \nu_4 dovrà allora essere completamente sconnesso dal Modello Standard, e cioè dovrà essere sterile rispetto a tutte le interazioni fondamentali. Questo suo essere sterile proibisce una rivelazione diretta del neutrino, e i suoi effetti compaiono solo come eccessi di oscillazioni, come nell’esperimento LSND.

Il nuovo mixing dei neutrini usando un quarto stato di massa \nu_4 e un nuovo sapore sterile (indicato in rosa). Notare come \nu_4 contenga il nuovo sapore per la maggior parte, mentre una componente sterile è presente in quantità molto piccole negli altri stati \nu_1,\nu_2,\nu_3.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Se già i neutrini di sapore tradizionale erano difficili da rivelare, il neutrino sterile è quindi una vera e propria particella fantasma. Non ne vediamo l’effetto diretto, ma solo quello indiretto sulle oscillazioni tra gli altri sapori “attivi” \nu_e,\nu_\mu,\nu_\tau.
Tuttavia anche questi “eccessi” nelle oscillazioni sono abbastanza misteriosi, ad oggi non è detto che il neutrino sterile esista per forza.

Ci sono parecchie discordanze sulle anomalie rivelate da LSND, dato che gli esperimenti successivi non sono riusciti a confermarle, ma nemmeno a smentirle! Anche al Gran Sasso (esperimento GALLEX) furono misurate delle anomalie nelle oscillazioni, e ad oggi pure queste anomalie restano senza conferma da altri esperimenti, nonostante siano però difficili da smentire.

La scoperta del neutrino sterile segnerebbe il primo passo verso il superamento definitivo del Modello Standard

Questo perché essendo sterile non potrebbe accoppiarsi nemmeno con il campo di Higgs per sviluppare la massa dello stato m_4, dunque servirebbe un nuovo meccanismo che implicherebbe l’utilizzo di teorie oltre il Modello Standard.

Per mettere la parola definitiva sul neutrino sterile sono previsti esperimenti sempre più sensibili, ma al contempo sempre più difficili da costruire, con tecnologie all’avanguardia ancora da inventare.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come la gravità ci impedisce di misurare distanze più piccole della lunghezza di Planck

Uno dei punti fondamentali per la conquista dell’unificazione tra gravità e meccanica quantistica riguarda la comprensione dello spaziotempo a una scala subatomica di lunghezza.

Lo spaziotempo è essenzialmente un concetto classico: possiamo immaginarcelo come una struttura invisibile che può essere descritta utilizzando i numeri reali (cioè quelli della quotidianità: 2.3, 0.01, \pi, e^{-\pi/2}, -3/4, 2.9999...).

Come immaginiamo la griglia dello spaziotempo curvata dalla massa.

I numeri reali costituiscono un insieme non numerabile, in parole povere non solo abbiamo a disposizione un’infinità di numeri da -\infty a +\infty, ma anche che tra due numeri come 0 e 1 è compresa un’altra infinità di numeri. Inoltre è anche un insieme continuo, cioè dato un certo numero x, è sempre possibile trovare un altro numero y sufficientemente “vicino” al primo in modo che la distanza x-y tra i due si avvicini a zero fino alla cifra decimale che si desidera.
Nei numeri interi, invece, la distanza tra due numeri può solo coincidere con lo zero nel caso in cui i due numeri siano uguali, altrimenti esiste una distanza minima che è quella che riguarda due numeri consecutivi come 4 e 5.

Ecco, classicamente si pensa che lo spaziotempo possa essere descritto con un insieme di numeri reali piuttosto che di numeri naturali. Non è definita una distanza minima se non quella uguale a zero.

Cosa succede quando tiriamo in ballo la meccanica quantistica?

Ispirato dal seguente brillante articolo di Calmet, Graesser e Hsu pubblicato nella Physical Review Letters, ho deciso di volgarizzare un ragionamento che ho trovato molto intrigante, dato che su questi temi si discute sempre pochino e male.

Immaginiamo di avere un certo detector per rivelare la distanza tra due punti x(t) e x(0) nella griglia dello spaziotempo, uno al tempo t=0 e l’altro al tempo t.
Supponiamo per semplicità che il detector, di grandezza L e massa M, misuri questi due punti spostandosi con una velocità v=p/M dove p è la sua quantità di moto. Avremo cioè

Il discorso che sto per fare ora si basa su un’approssimazione euristica al fine di scongiurare l’introduzione di operatori quantistici, dato che aggiungerebbero poco o niente alla sostanza del discorso principale.

Una volta misurate le posizioni x(t) e x(0) con una certa incertezza \Delta x(t) e \Delta x(0), possiamo anche stimare l’incertezza sulla quantità di moto \Delta p usando le formule sulla propagazione delle incertezze:

Considerando ad esempio il punto x(t), varrà il principio di indeterminazione di Heisenberg:

A questo punto sostituiamo dentro il principio di Heisenberg l’espressione di \Delta p=(M/t)[\Delta x(t)+\Delta x(0)] trovata con la propagazione delle incertezze. Trascurando termini quadratici del tipo (\Delta x(t))^2 essendo più piccoli di un ordine di grandezza, si arriva a una relazione interessante:

Le incertezze sulla posizione iniziale e finale sono legate da un principio di indeterminazione, il cui valore aumenta all’aumentare del tempo. Di sicuro questa è una relazione interessante.
Ancora più interessante è chiedersi quale sia l’incertezza sulla distanza tra x(t) e x(0), cioè s=x(t)-x(0). Anche ora, per via della propagazione degli errori, si ha che

    \[\Delta s=\Delta x(t)+\Delta x(0)\]

Se \Delta x(t) diminuisce allora \Delta x(0) aumenta al fine di mantenere vera la \Delta x(0)\Delta x(t)\ge \frac{\hbar t}{2M}, quindi \Delta s è limitato dal valore più grande tra \Delta x(0) e \Delta x(t).

Nel caso in cui \Delta x(t)\approx \Delta x(0) cioè misuriamo i punti x(t) e x(0) con incertezze circa uguali, il principio di indeterminazione fornisce:

Quindi da un punto di vista quantistico possiamo misurare una lunghezza spaziale con una precisione

Dove ricordiamo, t è il tempo che abbiamo lasciato correre tra una misura e l’altra, e M è la massa del nostro detector (che abbiamo fatto interagire con lo spazio attorno a sé lasciandolo muovere liberamente).
Controllando questi due parametri possiamo rendere \Delta s piccolo a piacere. Possiamo costruire un detector molto massivo e fare tante misure consecutive separate da intervalli di tempo t molto piccoli.
Rendendo piccolo il rapporto t/M possiamo rendere \Delta s piccolo a piacere.

Tutto ciò andrebbe bene in un mondo in cui non esiste la gravità. Questo è il messaggio da portare a casa! Se non ci fosse di mezzo la gravità, come puoi vedere, nulla impedirebbe di rendere \Delta s piccolo a piacere (anche se non può mai essere nullo, per via del principio di Heisenberg).

L’intervento della gravità

Ho mentito, non possiamo rendere t piccolo a piacere! Se L è la dimensione del nostro detector, dobbiamo considerare dei tempi t tali che t>L/c cioè maggiori del tempo impiegato dalla luce a percorrere il nostro detector (altrimenti solo una frazione del detector può essere considerato “detector”).

Inoltre non possiamo rendere M grande a piacere: se rendiamo M troppo grande rispetto alle dimensioni L del detector, questi potrebbe collassare in un buco nero, e ciò impedirebbe di leggere qualsiasi informazione sulle misure del nostro esperimento. Il parametro di lunghezza fondamentale di un buco nero è dato dall’orizzonte degli eventi

    \[r_s\sim \frac{GM}{c^2}\]

dove G è la costante di gravitazione di Newton e c la velocità della luce.

Affinché il detector non sia un buco nero da cui non escono informazioni, desideriamo che sia L>r_s. Mettendo tutto assieme avremo quindi

La quantità risultante è identificata come lunghezza di Planck \ell_p, definita come:

La lunghezza di Planck, costante fondamentale della Fisica.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non c’è nessun parametro che possiamo controllare nella formula della lunghezza di Planck: è composta da costanti fondamentali della Fisica come G, \hbar, c (costante di gravitazione di Newton, costante di Planck e velocità della luce). Quindi \Delta s\ge \ell_p è un limite inferiore che non possiamo sormontare in alcun modo ingegnoso: la gravità impedisce di misurare distanze più piccole della lunghezza di Planck.

Se vuoi sapere da dove spunta fuori la lunghezza di Planck da un punto di vista storico, ho scritto un articolo a riguardo.

Quanto è piccola una lunghezza di Planck nelle nostre unità di misura quotidiane? \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

Il punto fondamentale è che se non ci fosse la gravità, non esisterebbe una lunghezza minima misurabile e potremmo rendere piccola a piacere l’incertezza quantistica della misura!

Ad avere l’ultima parola sulle dimensioni spaziali subatomiche non è quindi la quantistica, ma la gravità!
Questo risultato è molto significativo per la Fisica! Perché?

Quando si effettuano esperimenti di Fisica delle interazioni fondamentali (come le collisioni tra particelle) si esplorano scale di energia sempre più alte (che equivale a dire: si esplorano regioni di spazio sempre più piccole). La presenza di una scala di lunghezza sotto la quale non si può andare implica anche l’esistenza di una scala di energia sopra la quale non si può andare (perché la gravità diventerebbe rilevante e si inizierebbe a parlare di collasso in buco nero, avendo accumulato tanta energia in una regione di dimensioni molto ridotte). Un altro pezzo del puzzle per la lunga scalata che ci porterà verso la gravità quantistica?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché secondo Rovelli la Relatività suggerisce di abbandonare il concetto di spaziotempo

Durante il secolo scorso, la Relatività Generale si è presentata con il più grande colpo di scena che la Fisica abbia mai visto:

L’interpretazione ortodossa della relatività generale: esiste uno spaziotempo che viene curvato dalle sorgenti di massa.
Le altre masse non possono fare altro che “seguire la curvatura” e quindi essere attratte.

Il campo gravitazionale non esiste, la gravità è il risultato della curvatura dello spaziotempo.

Chiunque si sia mai interessato di relatività generale si è quindi abituato a visualizzare questa affermazione con la splendida rappresentazione dello spaziotempo “curvato”.

Lo spaziotempo è per noi una “griglia immaginaria” che esiste fin dal Big Bang, una qualche costruzione geometrica su cui si collocano tutti gli eventi della nostra realtà.
Questi eventi possono essere descritti con le coordinate che vogliamo, e queste coordinate vanno a strutturare il palcoscenico matematico a cui diamo il nome “spaziotempo” dal punto di vista dei calcoli. Ma in ogni caso stiamo sempre assumendo che questa griglia invisibile e sottostante esista sempre, e in genere diamo anche a lei il nome di spaziotempo.


Di sicuro è una rappresentazione che ci consente di fare i conti in maniera molto comoda, ma ciò ha un determinato prezzo da pagare.

Questa rappresentazione assume in qualche modo che lo spaziotempo esista indipendentemente dalla materia e da ogni altra sorgente di energia, e questo è proprio ciò che sancisce il divorzio completo con la visione “quantistica” delle interazioni, come illustrato nel seguente schema:

Ciò pone non pochi problemi dal punto di vista della gravità quantistica, la quale si ritrova a dover mediare tra due visioni nettamente diverse! Nonostante ciò, entrambe le teorie funzionano in maniera impeccabile nei loro rispettivi campi di applicazione. In particolare anche la relatività generale ha ricevuto l’ennesima schiacciante conferma di validità secondo i dati recenti sull’osservazione del buco nero al centro della nostra galassia (EHT).

Eppure, nonostante sia data per scontata, questa interpretazione dello spaziotempo in relatività generale è tutt’altro che definitiva.

Di recente mi è capitato di studiare dei paragrafi del testo specialistico “Quantum Gravity” di Carlo Rovelli, incappando in un’osservazione che ritengo di altissimo valore concettuale e che aiuta a risolvere un importante paradosso delle equazioni di Einstein.

In realtà questa argomentazione non è dovuta solo a Rovelli, ma risale fino agli albori della relatività generale. È il cosidetto “hole argument” di Einstein, il quale giunse alle importanti conclusioni illustrate anche da Rovelli.

Un paradosso molto arguto

Immaginati una regione nello spaziotempo senza sorgenti di gravità, cioè senza massa o altre forme di energia come quella elettromagnetica. Magari questa regione di spaziotempo la prendiamo piccola a piacere per non complicarci le idee.

Con il simbolo delle tre ondine increspate, intendiamo uno spaziotempo curvo in quel punto.

Considera ora due punti A e B in questa regione vuota, e supponi di essere in grado di misurare la curvatura dello spaziotempo in entrambi i punti. Per intenderci, definiamo lo spaziotempo con il simbolo g_{\mu\nu}.

Per via di una particolarissima disposizione delle sorgenti esterne alla regione che stiamo considerando, supponi che lo spaziotempo sia curvo nel punto A e piatto nel punto B.

Ora usufruiremo del nome “Relatività Generale”, che non è stato assegnato a caso! Questo nome testimonia il postulato fondamentale su cui è basata tutta la teoria: la Fisica non può dipendere dalle coordinate di chi la osserva. Quando passiamo da un sistema di coordinate ad un altro stiamo eseguendo una trasformazione che chiamiamo \phi. Quando lasciamo agire \phi su una quantità “e“, otteniamo il suo trasformato \bar{e}=\phi\,e indicato con \bar{e}. Le quantità importanti della relatività generale non cambiano sotto la trasformazione \phi.

Se io calcolo una soluzione delle equazioni di Einstein che mi restituisce il valore della curvatura dello spaziotempo, il quale dipende da g_{\mu\nu}(x) in ogni suo punto x, allora un cambiamento di coordinate ottenuto con la trasformazione \phi genererà un’altra soluzione delle stesse equazioni, che ha la stessa validità della soluzione precedente.

Il punto è che \bar{g}_{\mu\nu} risolve le stesse equazioni di Einstein con le stesse sorgenti, non è cambiato nulla rispetto a prima. Cambia solo il linguaggio in cui abbiamo espresso g_{\mu\nu} (cioè le coordinate particolari che utilizziamo).

Supponiamo di trasformare le nostre coordinate in modo da mandare il punto A nel punto B e lasciare invariati tutti gli altri punti al di fuori del buco. Anche la soluzione delle equazioni di Einstein trasformerà come \bar{g}=\phi\,g. In sostanza, abbiamo fatto la seguente cosa:

Una trasformazione che lascia invariato tutto lo spazio tranne i punti all’interno della regione vuota. Dopo la trasformazione lo spaziotempo presenta una curvatura nel punto B , mentre la curvatura è nulla nel punto A.

Nelle nuove coordinate lo spaziotempo nel punto A è quindi piatto, mentre ora è curvo nel punto B.

Ripeto, \bar{g}_{\mu\nu} è una soluzione altrettanto valida, e la trasformazione che abbiamo fatto è consentita dalle leggi della Relatività Generale.

Ma allora lo spaziotempo nel punto A è piatto oppure curvo? Ci troviamo di fronte a un paradosso, come se le equazioni di Einstein fossero completamente inutili perché non sono in grado di descrivere lo spaziotempo univocamente.

Questo aspetto turbò gravemente Einstein in persona, tanto da fargli dubitare più volte che il principio di relatività generale avesse senso fisico.

In realtà, come fa notare Rovelli, la soluzione del paradosso sta nel ripensare la nozione di “punto dello spaziotempo”, o in generale: smetterla di attribuire tanta importanza a una griglia immaginaria come lo spaziotempo.

In realtà stavamo risolvendo un problema sbagliato.

La domanda fondamentale “com’è lo spaziotempo nel punto A? Ha in realtà meno significato di quello che pensavamo. Il problema era mal posto, o meglio, non aveva senso considerarlo un problema.

In Relatività Generale assumiamo l’esistenza di questa griglia invisibile chiamata “spaziotempo”, dandole un significato intrinseco che è maggiore di quello che realmente ha.
Nonostante accettiamo senza problemi il fatto che possiamo usare qualsiasi tipo di coordinate vogliamo per elencare i punti di questa griglia, qualcosa nella nostra intuizione ci porta a credere che la griglia abbia davvero un significato fisico.

Una rappresentazione bidimensionale della griglia spaziotemporale che ci immaginiamo nella nostra testa.

Il concetto di griglia ha però, come molti altri concetti, solo una natura strumentale. Spesso ci permette di capire ciò che stiamo facendo, ma non dovremmo dargli un significato ontologicamente maggiore di quello strumentale, o almeno questo è il suggerimento di Einstein e Rovelli.

Hai visto come il domandarci quale fosse la curvatura dello spaziotempo in uno specifico punto ci ha portato al paradosso che le equazioni di Einstein descrivono due cose diverse con due soluzioni che dicono in realtà la stessa cosa? Stavamo risolvendo un problema sbagliato, questo è l’errore a cui siamo condotti se non seguiamo il suggerimento.

Considera invece questa situazione: supponiamo che nel punto A si incrocino anche le traiettorie spaziotemporali di due particelle (cioè le loro geodetiche):

Le geodetiche delle particelle sono indicate con la linea tratteggiata blu.

Le coordinate con cui descriviamo il punto A adesso racchiudono non solo l’informazione sulla curvatura dello spazio tempo g_{\mu\nu}, ma anche l’informazione “si sono incrociate le geodetiche delle due particelle!“.
Anche le geodetiche dipendono dalle coordinate che utilizziamo, quindi se ora eseguiamo la stessa trasformazione di coordinate di prima, cioè mappiamo un punto nell’altro, dobbiamo spostare anche il punto di incontro delle geodetiche!

Come vedi ora sia la curvatura dello spaziotempo sia il punto di incontro delle geodetiche sono stati trasportati dal punto A al punto B. Supponiamo di voler rispondere, grazie alle equazioni di Einstein, alla seguente domanda:

“Com’è la curvatura dello spaziotempo nel punto in cui si incontrano le geodetiche delle due particelle?”

Questa domanda, a differenza di prima, è tutta un’altra questione: è ben posta ed ha una soluzione univoca data dalla soluzione delle equazioni di Einstein. Come puoi vedere, sia prima che dopo la trasformazione di coordinate esiste una curvatura nel punto di incontro delle due geodetiche. Lo spaziotempo è curvo nel punto in cui le due geodetiche si incontrano. Questa informazione non dipende da quali coordinate stiamo utilizzando. Quindi è questa la vera domanda da porsi in una situazione simile.

La Relatività Generale ci suggerisce che la griglia immaginaria ha molto meno significato fisico di quello che credevamo: ha poco senso fisico chiedersi quale sia il valore della curvatura dello spaziotempo in un suo specifico punto senza introdurre campi di materia o interazioni tra particelle che possano interagire in quel punto.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Uno spaziotempo senza materia e particelle non ha significato fisico, la realtà non è composta da spaziotempo e campi, ma da campi su campi, secondo Rovelli. Possiamo fare affermazioni fisicamente sensate solo nel momento in cui iniziamo a relazionare campi di materia con altri campi di materia (come l’incrocio delle due geodetiche visto nell’esempio).

Questo punto di vista capovolge ancora una volta il significato che attribuiamo alla Relatività Generale: non è che la gravità non esiste ed è solo lo spaziotempo a farci sembrare che ci sia, sono le interazioni con le particelle che danno un significato fisico allo spaziotempo. Lo spaziotempo emerge grazie alle particelle, e non il contrario. Per la gravità quantistica questa interpretazione è nettamente più favorevole in quanto il mediatore smette di essere indipendente dalla materia che interagisce (vedi lo schema fatto all’inizio).

Gli oggetti non sono immersi nello spazio. Gli oggetti costituiscono lo spazio. Come un matrimonio: non è che marito e moglie “percepiscono il matrimonio”, loro sono il matrimonio, lo costituiscono. […] Allo spazio non rimane nulla se togli tutte le cose che lo abitano. Lo spazio è costituito dalle cose.

Carlo Rovelli

Si nasconde forse qui il segreto per iniziare a conciliare gravità e meccanica quantistica?

Secondo me questo paradosso meriterebbe di essere illustrato maggiormente nei libri di testo introduttivi di Relatività Generale, perché nasconde il cuore concettuale della materia. Per questo motivo ho pensato di portare in superficie l’osservazione di Rovelli, uno dei pochi autori moderni che ha scelto di parlarne a un secolo di distanza.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come la Relatività si intuisce meglio attraverso la geometria

Sono trascorsi quasi 117 anni da quando l’umanità ha capito che la nostra realtà è meglio descritta utilizzando una struttura concettuale che lega indissolubilmente spazio e tempo: lo spaziotempo.
Siamo cioè passati da una concezione tridimensionale della nostra realtà a una concezione quadridimensionale.

Infatti, anche se non sappiamo ancora cosa siano oggettivamente spazio e tempo e quindi ne possiamo avere solo un’interpretazione che ci aiuta comunque a fare previsioni molto precise sulla realtà, sappiamo per certo che non sono due entità distinte: spazio e tempo sono malleabili, e dal punto di vista di osservatori diversi possono anche mischiarsi tra loro.

Ritengo che oggi questo argomento debba essere divulgato con la stessa semplicità e chiarezza con cui nelle scuole divulghiamo tanti altri fatti scientifici. Infatti dopo quasi 117 anni non possiamo più catalogare la Relatività Ristretta come “fisica moderna”, proprio allo stesso modo in cui Einstein nel 1905 non si riferiva alla meccanica lagrangiana del 1790 con il nome di “fisica moderna”.

Il modo migliore per spiegare la nostra comprensione dello spaziotempo è quello di fare un passo indietro e studiare come la pensavamo qualche secolo fa.

I quattro numeri della nostra realtà

Un oggetto tridimensionale della nostra realtà.

La nostra intuizione sensoriale ci suggerisce che viviamo in uno spazio tridimensionale, infatti gli oggetti hanno una lunghezza, larghezza e altezza. Per descrivere un oggetto a un’altra persona senza fargli vedere una sua fotografia possiamo misurarlo e poi dirle quanto è lungo, largo e alto: tre numeri, niente di più e niente di meno, perché tre sono le dimensioni che percepiamo dello spazio attorno a noi.

Allo stesso modo, quando vogliamo descrivere i fenomeni che accadono intorno a noi dobbiamo essere in grado di dire dove si sono verificati e in che istante di tempo. Per capirsi tutti al volo sul “dove”, sono state inventate le mappe e i sistemi di coordinate che scandiscono lo spazio intorno a noi con dei numeri ben precisi, mentre per essere tutti d’accordo sul “quando” è stato inventato l’orologio, che scandisce con altri numeri ben precisi lo scorrere di una misteriosa entità che chiamiamo “tempo”.

Un evento è per definizione l’unione tra le tre informazioni spaziali sul “dove” e la singola informazione temporale sul “quando”. Quando diciamo “alle 15:06 di ieri si è rotto il vaso nella veranda di nonna” stiamo assegnando all’evento “Rottura del vaso” le coordinate geografiche “veranda di nonna” e la coordinata temporale “ora locale 15:06″. In totale sono quattro numeri: tre spaziali e uno temporale.

In totale un evento è descritto da quattro numeri: per seguire i fenomeni che accadono intorno a noi non possiamo usare meno di quattro numeri o rischieremmo di non farci comprendere dagli altri.

Lo spazio e il tempo prima del XX secolo

In passato i fisici si fecero guidare dall’intuizione e immaginarono spazio e tempo come due entità separate. Questo perché nulla nell’esperienza di tutti i giorni ci farebbe intuire il contrario. Per quei fisici, l’immagine mentale del “tempo” è proprio la stessa che intuiamo dalla vita di tutti i giorni:

La freccia del tempo.

Il tempo è una retta infinita che si estende dall’infinito passato fino all’infinito futuro, ma che ha un’unica orientazione: scorre solo verso il futuro.

Per i fisici del passato esisteva un’unica freccia del tempo universale: ogni evento dell’universo accadeva in un preciso istante di tempo su cui potenzialmente tutti possono concordare.

Vediamo la conseguenza del ragionamento di quei fisici. Supponiamo che una persona si metta d’accordo con un astronauta prima della sua partenza e che sincronizzino i propri telefoni in modo da far partire una suoneria ogni 8 ore per il resto della loro vita. In questo modo quando l’astronauta si troverà su Marte e sentirà la suoneria del proprio telefono, saprà che in quel preciso istante di tempo il suo amico sulla Terra avrà sentito la stessa suoneria. I due amici potranno quindi definire un istante chiamato “presente”, cioè una nozione di “adesso”.
Se non vedi nulla di strano in questa conseguenza, è perfettamente comprensibile! Siamo abituati a concepire il tempo in questo modo, cioè come un’entità universale che scorre allo stesso modo per tutti, e i fisici del passato non erano comunque scemi nonostante pensassero ciò!

Il moto di una pallina in una sola dimensione può in principio essere studiato con righello e cronometro.

Spazio e tempo non sarebbero comunque granché utili se non li facessimo “cooperare” per provare a fare delle previsioni sul mondo che ci circonda.
Per studiare il moto di una pallina su un tavolo potremmo ad esempio utilizzare un righello per tracciare la sua posizione, e un cronometro per tenere traccia del tempo che passa. Così facendo, finiamo per collezionare un insieme di eventi come “pallina nel punto 2.5 cm all’istante 1.51 s” o “pallina nel punto 4.7 cm all’istante 2.05 s” che messi in successione tra loro costituiscono la traiettoria della pallina.

Usiamo una sola coordinata spaziale per semplicità: il moto si svolge su una sola dimensione spaziale..

Se sei familiare con il concetto di piano cartesiano, possiamo scegliere di rappresentare gli eventi raccolti su di esso, solo che al posto di “y” mettiamo il tempo “t” trascorso. A differenza di un piano geometrico bidimensionale, abbiamo ora davanti un piano spaziotemporale (in gergo “1+1 dimensionale“, cioè una dimensione spaziale, che è la “x”, e una dimensione temporale):

Un diagramma spazio-tempo per il moto di una pallina.

Se collezionassimo tantissimi eventi per il moto della pallina e collegassimo tutti i puntini blu con una linea continua, troveremmo quella che è nota essere la traiettoria della pallina.
Se la pallina fosse ferma in ogni istante di tempo, la sua traiettoria nello spazio-tempo sarebbe la seguente

Il grafico spazio-tempo di una pallina ferma nel punto x=2.5 cm.

Questo perché la coordinata “x“, per definizione di “fermo”, non deve cambiare nel tempo. Il tempo scorre in verticale, e la posizione rimane fissa sul punto x=2.5 cm.
Un pallina che si muove con velocità costante avrebbe invece il seguente grafico:

A parità di intervallo di tempo passato, la pallina percorre sempre porzioni uguali di spazio: la velocità è allora costante.

Potremmo anche non limitarci al moto dei corpi e usare i diagrammi spaziotempo per raccogliere tutti gli eventi della nostra realtà!

Ad esempio tutti gli eventi dello spazio che avvengono allo stesso istante di tempo si ottengono tracciando la retta parallela all’asse “x”. Questa retta è detta “linea di simultaneità

Tutti gli eventi spaziali che avvengono all’istante “t=2 s” fanno parte della linea di simultaneità in arancione.

Scorrendo con il dito lungo la retta arancione, il tempo non cambia, è sempre fisso a “t=2 s”, mentre lo spazio cambia. Stiamo esplorando tutti i punti dello spazio che esistono nel medesimo istante di tempo.

Allo stesso modo possiamo raccogliere tutti gli eventi che avvengono nello stesso punto dello spazio tracciando la retta parallela all’asse “t”, come fatto nel caso della pallina ferma.

Il punto importante da capire però è che lo spaziotempo esiste indipendentemente dal nostro diagramma cartesiano. Il diagramma con cui scegliamo di catalogare gli eventi si chiama “sistema di riferimento” ed è totalmente arbitrario. Decido io quando far iniziare il conteggio del cronometro e decido io dov’è il punto di partenza in cui mettere lo zero del righello. Nonostante ciò, il moto della pallina avviene comunque in uno spaziotempo “invisibile”, e le coordinate che uso per descriverlo non sono altro che una mia personale interpretazione con cui posso fare delle previsioni.

L’evento nello spaziotempo esiste anche se non c’è nessun sistema di riferimento che lo descrive. Lo spaziotempo esiste indipendentemente dai sistemi di riferimento.

Proprio per questo motivo, la Fisica prevede che le sue leggi si mantengano vere indipendentemente dalle coordinate di chi le sta utilizzando. Non avrebbe proprio senso se la realtà dipendesse dal tipo di righello o cronometro che uso!

Le trasformazioni di Galileo