Semplificando…la forza che lega i Quark con gli Anti-Quark

Si sa: più si cerca di semplificare la fisica, più è probabile incappare in incomprensioni e confusione. È quello che nello slang degli economisti si chiama “trade off” : il nostro trade off è che acquisiamo intuizione, ma sacrifichiamo la precisione.
Nella fisica delle particelle la teoria dei Quark (QCD) è la teoria più complessa mai concepita, ma anche una delle più testate sperimentalmente. Divulgare questa teoria è sempre una grande sfida perché è una bestia difficile da addomesticare e si rischia sempre di risultare imprecisi o completamente in errore.

Le interazioni tra i tre quark all’interno di un neutrone.
[Qashqaiilove, Wikimedia Commons]
La realtà è che c'è ben poco di intuitivo nella QCD. Tuttavia ci sono delle circostanze in cui possiamo connettere alcuni concetti con dei fatti di cui abbiamo già familiarità e intuizione nella meccanica classica. 

I Quark sono (per quanto ne sappiamo oggi) i costituenti più fondamentali della materia, conferendo una struttura ben precisa agli elementi del nucleo come protoni e neutroni (i quali sono composti ciascuno da tre quark).
Nonostante ciò è molto difficile intuire che protoni e neutroni siano composti da Quark! Infatti se ne osservano gli effetti solo a distanze sub-nucleari (o equivalentemente, ad energie sufficientemente elevate). Questa conversione tra energia e distanza è molto utile per capirsi nei discorsi che si fanno in questo campo di ricerca: dipende dal principio di indeterminazione moltiplicato per la velocità della luce:

    \[\Delta R \underbrace{\Delta p c}_{\Delta E}\sim \hbar c\]

il quale fornisce un ottimo modo per convertire da distanze \Delta R ad energia E=pc per particelle molto energetiche. La costante fondamentale \hbar c ha un valore preciso, ed è il fattore di conversione tra distanza ed energia. Invertendo la formula

    \[\Delta R\sim \frac{\hbar c}{\Delta E}\]

ne deduciamo che grandi energie corrispondono a piccole distanze, e viceversa. Tieni a mente questa informazione perchè sarà cruciale nel discorso che andremo a fare.

Tra le quattro forze fondamentali (clicca qui per un breve riassunto), i Quark interagiscono tramite l’interazione forte. Il nome non lascia spazio all’immaginazione: a parità di distanza tra due particelle ad esempio la distanza subnucleare, l’interazione forte è 100 volte più intensa di quella elettromagnetica (che a sua volta è molto più intensa della forza debole e della debolissima forza gravitazionale) il che la rende la forza più intensa in Natura.

Così come i fotoni sono i mediatori dell’interazione elettromagnetica, i gluoni (anch’essi senza massa), sono i mediatori dell’interazione forte. Tuttavia i gluoni sono delle bestioline piuttosto difficili rispetto ai fotoni.

Cominciamo dalle similitudini: avendo massa nulla, anche i gluoni si muovono alla velocità della luce.
Così come i fotoni interagiscono solo tra corpi carichi elettricamente, i gluoni interagiscono solo con particelle dotate di una speciale carica: la carica di colore. Al contrario della carica elettrica, la carica di colore è molto meno intuitiva e quantificabile, e rappresenta le “coordinate” di uno spazio astratto che caratterizza lo stato quantistico di un quark.

Se vuoi, questa carica di colore è un’estensione multidimensionale dei due stati di spin (in questo articolo viene discusso il primo esempio di isospin nucleare nella teoria di Heisenberg). Anche se non è detto che questa cosa ti sia d’aiuto, dato che neanche lo spin è intuitivo! (Vedi questo articolo per approfondire).

I fotoni interagiscono molto poco con gli altri fotoni: se fatti scontrare tra loro hanno una grande probabilità di “passarsi attraverso”. Solo a determinate scale di energia più elevate l’interazione fotone-fotone diventa non più trascurabile. Questo fatto favorisce la validità del principio di sovrapposizione delle onde elettromagnetiche, tanto caro all’ingegneria.

I gluoni, d’altra parte, interagiscono con gli altri gluoni anche a scale di energia più basse, accoppiandosi nei modi più disparati possibili. La teoria dell’interazione forte quindi non rispetta il principio di sovrapposizione: c’è ben poco di lineare e semplice nei campi gluonici.

Analogie e differenze tra interazione elettromagnetica e interazione forte.
Entrambi i mediatori hanno massa nulla e si muovono quindi alla velocità della luce.

Le stranezze della forza forte non finiscono qui. Come specificato nell’immagine precedente, l’interazione elettromagnetica ha un range infinito: due cariche elettriche non smettono mai di sentire l’una la presenza dell’altra, indipendentemente dalla distanza che le separa! È l’intensità quella che varia e diminuisce con l’aumentare della separazione.
Succede lo stesso con la gravità (in tal caso la carica elettrica viene sostituita dalla massa). Il potenziale gravitazionale di una massa m posta a distanza r da una sorgente gravitazionale fissa e di massa M è proporzionale a:

    \[V_{\text{gravità}}\propto -\frac{mM}{r}\]

Il grafico della funzione ha il seguente aspetto:

Analogamente, il potenziale elettrostatico di Coulomb percepito da una carica elettrica q nel campo di una carica Q è

    \[V_{\text{e.m.}}\propto -\frac{qQ}{r}\]

Queste funzioni di r ci dicono la stessa cosa: l’interazione diminuisce all’aumentare della distanza. Dal punto di vista della fisica teorica è equivalente a dire che le interazioni diventano via via più deboli al diminuire della scala di energia, e per energie alte (cioè piccole distanze) diventano sempre più intense. Con “scala di energia” intendiamo il contenuto energetico che dobbiamo fornire al nostro esperimento per far scontrare le particelle nel nostro acceleratore.

Tutto ciò è abbastanza intuitivo: se si gioca con i poli dei geomag ci si rende presto conto che è molto difficile resistere all’attrazione di due poli opposti una volta che li si avvicina abbastanza, mentre è molto difficile avvicinare due poli uguali (in particolare più li si avvicina e più diventa difficile). Il magnetismo, naturalmente, fa parte dell’interazione elettromagnetica e si comporta proprio come ci aspettiamo.

L’interazione forte percepita dai quark è molto più controintuitiva: più i Quark sono vicini tra loro e più “si ignorano”, cioè comunicano molto meno, ovvero l’interazione è meno intensa (tutto il contrario delle interazioni a cui siamo abituati!). A questo fatto è stato dato il nome di libertà asintotica: alle alte energie i Quark si comportano come se fossero liberi. D’altra parte se allontaniamo i Quark (quindi abbassiamo la scala di energia) questi interagiscono molto di più tra loro: è la schiavitù infrarossa.

Sulla libertà asintotica Parisi è stato vicinissmo a vincere il Nobel già quando aveva 25 anni. Gli mancava solo intuire che il numero quantico giusto per descrivere l’interazione era la “carica di colore”.

Le peculiarità dei Quark

Ad oggi conosciamo 6 Quark fondamentali (cioè che non derivano da stati legati con altri Quark) a cui sono stati assegnati dei nomi precisi e di cui si conosce la massa, dal più leggero al più pesante.

I Quark up e down costituiscono la struttura interna di protoni e neutroni (nucleoni), tuttavia le loro masse contribuiscono solo a una piccola parte della massa dei nucleoni. La maggior parte della massa deriva invece dalle intricatissime interazioni e scambi energetici tra i Quark stessi, i quali comunicano incessantemente tramite gluoni.

Un’illustrazione molto schematica di quello che succede all’interno di un protone. Gli oggetti “a forma di molla” rappresentano le interazioni di scambio di gluoni.

Detto in maniera molto semplificata e fiabesca, è come se la carica di colore dei Quark accendesse la scintilla che fa scoccare un “incendio energetico” nel campo gluonico che li circonda. Questo incendio “brucia incessantemente” con un’energia E che dà luogo alla maggior parte della massa del protone tramite la celebre E=mc^2.

È sfruttando questo inferno energetico che siamo stati in grado di creare i Quark più pesanti del up e down, facendo scontrare protoni ad altissime energie che hanno rilasciato come prodotto i Quark più pesanti come il top (l’ultimo ad essere stato scoperto, nel 1995 al Fermilab di Chicago).

Dal punto di vista teorico, le complicate interazioni tra i Quark sono una conseguenza della natura relativistica delle teorie quantistiche di campo. Uno può aspettarsi che la descrizione di queste forze diventi leggermente più semplice se usciamo dal regime relativistico (cioè se consideriamo particelle abbastanza pesanti che si muovono a velocità molto più basse di quella della luce).

A noi piace tanto semplificare, quindi questo è quello che faremo! Consideriamo alcuni Quark più ciccioni, ad esempio il bottom e il charm: un sistema molto semplice da studiare in QCD è lo stato legato di quarkonio, il quale è uno stato legato tra Quark e antiQuark. Stiamo quindi parlando, nel nostro caso, dei seguenti sistemi:

  • Charmonium: stato legato di Charm e anti-Charm
  • Bottomonium: stato legato di Bottom e anti-Bottom
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per completezza ricordiamo che un anti-Quark è la anti-particella del Quark corrispondente: ha uguale massa e numeri quantici tutti invertiti, cioè carica elettrica, carica di colore, spin etc. invertiti.

Siccome questi due Quark sono abbastanza massivi, si muvono a velocità più basse rispetto a tutti gli altri, quindi è possibile una trattazione non-relativistica in cui possiamo ignorare i discorsi di Einstein. Stiamo parlando di un’approssimazione.

Questi stati legati sono stati osservati sperimentalmente, dunque i discorsi matematici che seguono, seppur non rigorosissimi dal punto di vista teorico, sono empiricamente verificati.

Il potenziale di Quarkonio

Se r è la distanza che separa Quark e anti-Quark, l’energia potenziale di interazione è data dall’espressione (in cui a e b sono delle costanti di cui non devi preoccuparti)

    \[V_\text{quarkonio}= -\frac{a}{r}+br\]

ed ha il seguente grafico:

A piccole distanze l’interazione si comporta in modo del tutto simile a quella gravitazionale ed elettromagnetica: va giù come 1/r. Non farti però ingannare! A distanze piccolissime (cioè energie elevatissime) questo potenziale non è più una buona approssimazione di quello che sta succedendo, perché entrano in gioco gli effetti relativistici della forza forte, e la conseguenza è la libertà asintotica: invece di continuare ad aumentare infinitamente, ad altissime energie l’interazione forte inizia a indebolirsi sempre più, fino a che i Quark si ignorano del tutto.

[Nota bene: quando diciamo “piccole” o “grandi” distanze ci stiamo riferendo a qualcosa di grande o piccolo rispetto alle dimensioni subnucleari!]

D’altra parte, a grandi distanze il potenziale aumenta invece che diminuire (contrariamente a quanto succede nell’interazione gravitazionale ed elettromagnetica). Il fattore che domina questa peculiarità è parametrizzato dal termine b\,r dove b è una costante e r è la distanza. Questo termine ingloba tutto ciò che ci è difficile conoscere del regime di “schiavitù infrarossa”, regime che può essere studiato solo tramite ingegnose simulazioni al computer (campo di studi noto come QCD su reticolo).

Per capire di che tipo di forza si tratta dal punto di vista della meccanica classica, consideriamo un potentiale molto simile: quello di una molla! Se allunghiamo o accorciamo una molla di una distanza r, il potenziale ha la seguente forma:

    \[V_{\text{molla}}=\frac{1}{2}kr^2\]

dove k è la costante elastica. Confrontiamo ora la forma dei due potenziali nel regime di schiavitù infrarossa (cioè a distanze molto grandi in modo che il termine 1/r risulti trascurabile):

Un tipico eleastico.

Stiamo cioè confrontando una retta con una parabola: entro una certa distanza l’interazione di Quarkonio è più intensa di quella che si avrebbe se fosse puramente elastica, mentre superata una certa soglia, l’interazione elastica diventa più elevata. Quindi lo stato legato di Quarkonio a basse energie ha un’intensità che somiglia un po’ a qualcosa che richiama l’interazione elastica tra due corpi. Tuttavia, a differenza della molla, dal punto di vista classico la forza F=ma non dipende dalla distanza, mentre nella molla vi dipende come F=-kx.

D’accordo, magari la molla non è un’approssimazione ottimale, ma è comunque un buon punto di partenza. In realtà è possibile dimostrare che l’andamento della forza di Quarkonio è molto più simile a quella caratteristica degli elastici! Se prendi un elastico per capelli e lo allunghi di una distanza L, l’energia potentiale di richiamo che stai accumulando risulta proporzionale alla distanza L, esattamente come l’energia potenziale del Quarkonio a grandi distanze!


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

L’intrigante “carattere discriminatorio” del bosone di Higgs

Immagina di reincarnarti in una particella elementare in un istante tra i 10^{-36} e i 10^{-12} secondi dopo il Big Bang.

L’universo ha un aspetto molto diverso da quello odierno, c’è tantissima confusione, un viavai di interazioni, come un vociare assordante.
La sensazione che provi è molto singolare, sei capace di individuare solo il momento in cui “appari” e il momento in cui “scompari”, ma nemmeno riesci a distinguere l’uno o dall’altro. Il problema è che ti muovi alla velocità della luce dato che, come tutte le altre particelle dell’universo, non hai massa. Per questo la tua percezione del tempo è assolutamente insensata, in accordo con le leggi della Relatività Ristretta.

In qualche modo sembra che il momento in cui appari e scompari dall’esistenza sia sempre accompagnato dalla presenza di una particella praticamente identica a te, o almeno questo è ciò che ti ricordi.

Ora i tempi sono cambiati (cambia tutto piuttosto in fretta quando passi da 10^{-36} a 10^{-12} secondi dopo il Big Bang). Ti accorgi che gli eventi iniziano ad avere una forma, tra un inizio e una fine c’è anche un presente.


Sei stata “rallentata” da qualcosa, e inizi a sentire il peso dello scorrere del tempo: non ti muovi più esattamente alla velocità della luce. Tra tutto quel vociare non riesci a prendere coscienza di cosa sia successo, pare che nessuno si sia accorto troppo del cambiamento, eppure inizi a riconoscere che le altre particelle non si comportano tutte come te, alcune sembrano interagire con le altre in un modo molto diverso dal tuo.

Ti viene in mente che questo possa essere connesso con l’esistenza di almeno due interazioni fondamentali diverse.

Inizi a raccogliere qualche indizio: ogni volta che scompari dall’esistenza è sempre coinvolta almeno un’altra particella. Dopo qualche tempo sei capace di individuare che esistono altre due particelle (che chiami signor “Mu” e signor “Tau”) che fanno le stesse cose che fai tu, e anche qualche particella identica a te e che per qualche motivo fa sempre il contrario di quello che fai tu.

Il signor Ni rappresenta il neutrino elettronico.

Non appena il vociare primordiale inizia a calmarsi, inizi a distinguere uno strano ronzio nelle tue orecchie “particellari”. Somiglia giusto a un timido bisbiglio, ed inizi a capire di star rallentando sempre di più la tua corsa frenetica tra un’esistenza e un’altra, forse per via di qualcosa che genera anche questo strano bisbigliare?

Decidi di chiedere informazioni a una delle particelle simili a te. C’è una particella in particolare che abbastanza spesso decide di scambiare qualche parola con te, solo che hai difficoltà a capirla perché è leggermente più frenetica. L’hai soprannominata affettuosamente “Ni”. Di solito “Ni” sembra non avere molto tempo da perdere dietro a domande sciocche come la tua, quindi decidi di chiedere al tuo vicino, il signor Mu.

L’elettrone sente molto più debolmente le interazioni con l’Higgs, al contrario delle sue cugine \mu e \tau.

Il signor Mu sembra leggermente meno frenetico, e si comporta esattamente come te: avete delle personalità così identiche che quasi vi disgustate reciprocamente, quindi di solito circolate un po’ lontano l’uno dall’altra. Tuttavia hai bisogno di informazioni, e ti prometti di parlargli non appena vi scontrerete di nuovo.

Il signor Mu ammette di essere sorpreso che tu ci abbia messo così tanto ad accorgerti del ronzio, lui lo percepisce 200 volte più forte di te.
Sa anche darti qualche informazione in più, perché di recente ha parlato con il signor Tau, il quale percepisce lo stesso ronzio quasi 20 volte più forte di lui.

Per il signor Tau non si tratta di un ronzio, ma di alcune interessantissime comunicazioni da parte del signor “H” , le quali lo invogliano a rallentare la sua corsa frenetica tra un punto e l’altro della sua esistenza, pur di ascoltare con maggiore attenzione ciò che il signor H ha da dirgli.
Non fai in tempo a fare altre domande che il signor Mu svanisce improvvisamente, lasciando il posto ad altre particelle, tra le quali riconosci il tuo amico Ni accompagnato dalla tua copia sputata.

Rimani un po’ perplesso/a dalla spiegazione del signor Mu. Pensavi fosse abbastanza scontato che te, Mu e Tau foste particelle molto simili. Perché mai il signor H si ostina a non volerti parlare a voce più alta? Perché senti a malapena un ronzio in confronto alle interessanti disquisizioni percepite da Mu e Tau?


Perché Mu e Tau svaniscono all’improvviso dopo così poco tempo, e tu sembri restare sempre la stessa, noiosa particella?

Il tempo passa e l’universo diventa più silenzioso. Ti ritrovi sempre più vicina ad altre particelle identiche a te, e inizi a condurre un’esistenza sempre più monotona, assuefatta dalle delicate parole di un interessante signore che qualcuno chiama “Nucleo”, il quale ti invita a stargli vicino.

François Englert e Peter Higgs, premi Nobel per la Fisica 2013, tra gli inventori del meccanismo che dà la massa alle particelle del Modello Standard tramite il campo di Higgs.

Impari che anche le altre particelle identiche a te non riescono a sentire nulla più di un ronzio da parte del signor H, e quindi capisci di appartenere a un’intera famiglia di particelle che sono un po’ “discriminate“.

Questo è uno degli aspetti più intriganti del Modello Standard: il modello non spiega perché il campo di Higgs interagisce più intensamente con alcune particelle e molto, molto più debolmente con altre.

In principio l’elettrone (la particella in cui ti sei reincarnato/a), il muone il tau sono creati praticamente uguali, sono tre cugini con uguale carica elettrica, spin e altri numeri quantici di interazione. Sono distinte giusto da un “cognome” di famiglia, appunto: “e”, “\mu” e “\tau“.

Elettrone, Muone e Tau: le tre particelle “cugine” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Dopo la rottura di simmetria elettrodebole (per la quale rimando al mio articolo), elettrone muone e tau acquistano una massa per via dell’interazione con il campo di Higgs.
Come funziona? L’interazione si scrive in un modo molto simile a questo (le “interazioni” del Modello Standard sono la scorciatoia per dire che due campi appaiono moltiplicati tra loro nelle equazioni del modello, o moltiplicati per un mediatore comune ad entrambi):

Maggiore è la y (chiamata costante di Yukawa), maggiore è la massa acquistata dalla particella per via del campo di Higgs.
Le masse delle particelle elementari del Modello Standard. L’altezza dei parallelepipedi rappresenta la loro massa.

Il tau interagisce molto con l’Higgs, quindi la sua massa è molto più elevata di quella di muone ed elettrone. L’elettrone è quello che prende meno massa. Quanta meno? Tanta. Circa 0.3 millesimi di quella del tau, e 5 millesimi di quella del muone.

La storia non finisce qui: la particella elementare più massiva (il quark top) ha una massa che è quasi 100 volte quella del tau. Perché tutto questo “classismo” da parte del campo di Higgs? Perché sembra comunicare di più con alcune particelle e molto meno con altre?

La faccenda diventa quasi tragicomica nel caso dei neutrini (il famoso amico “Ni” della tua esperienza post-Big Bang). Si stima che la massa di un neutrino sia a sua volta quasi dieci miliardesimi di quella dell’elettrone. Questo aspetto ha suscitato uno scalpore tale da suggerire che il meccanismo di generazione della massa dei neutrini sia leggermente diverso da quello delle particelle “standard”. In particolare, il neutrino acquista massa grazie a processi sempre mediati dall’Higgs, ma che ricevono contributi da particelle non ancora osservate, che dovevano esistere da qualche parte nei primi istanti dopo il Big Bang.

Come possiamo accettare una tale differenza di trattamento? Come è possibile non restare intrigati dal carattere discriminatorio del campo di Higgs? Perché anche tra particelle praticamente del tutto simili come elettrone, muone e tau alle alte energie, c’è tutta questa discriminazione?

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questa è una parte dei compiti della fisica teorica di questo secolo. Non penserai mica che dopo la scoperta del bosone di Higgs nel 2012 siano finiti i suoi misteri? Assolutamente no, anzi si sono moltiplicati. Il bosone di Higgs (simbolo del trionfo intellettuale della fisica teorica del secolo scorso, e del trionfo sperimentale e tecnologico del secolo corrente) è un punto di partenza, non un punto di arrivo.

Il problema della gerarchia delle masse dei leptoni carichi e dei quark rimane ad oggi un mistero per il quale sono state presentate diverse soluzioni teoriche che dovranno superare i test sperimentali del prossimo secolo.
Chi vivrà, vedrà.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in Simmetrie di Sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Sì ma, alla fine, cosa sono ‘sti numeri quantici?

Giusto per ricordare che i gatti sono riusciti a conquistarsi pure la meccanica quantistica, nell’immaginario popolare.

Ciò che frullava nella mia testa quando ho sentito la parola “numeri quantici” per la prima volta, durante una lezione di chimica in terza liceo, era qualcosa tipo:

“Tutto interessante e sembra anche molto logico. Giusto una cosa però: ma alla fine cosa sono 'sti numeri quantici? Proprio terra-terra, in meno parole possibili!"

Dopo aver studiato meccanica quantistica alla triennale credevo di essere praticamente pronto per dare una risposta terra-terra, a una persona non addetta ai lavori come il me stesso della terza liceo, ma poi mi sono accorto che non è tutto così “rapido”.

Non c’è NIENTE di intuitivo nel concetto di “numero quantico”.


Quando mi è stata posta la stessa domanda qualche tempo fa, nel bel mezzo dei miei studi alla magistrale, ho sputato fuori questa risposta un po’ frettolosa:

“Sono dei numeri che usiamo per catalogare delle soluzioni particolarmente semplici per risolvere problemi molto complessi. Sono utili anche perché nei processi "si conservano“, un po' come l'energia di un sistema, e semplificano quindi un po' di calcoli e previsioni."

Non è che fossi tanto convinto di questa risposta, e ancora meno lo era la persona di fronte a me. Mi sono accorto che probabilmente non sapevo dare una risposta più rapida senza coinvolgere dei semestri di algebra lineare, spazi di funzioni e fenomenologia delle interazioni fondamentali.
Se a te questa risposta soddisfa: nessun problema, è comprensibile. Rende comunque l’idea da un punto di vista pragmatico.

Se invece senti ci sia un gap nella divulgazione di questi concetti e provi curiosità, allora questo articolo vuole provare a rimediare.
Per raggiungere più persone possibili sarò molto conciso con ragionamenti “a grandi linee”, con varie licenze tecniche necessarie per un’esposizione di taglio divulgativo. Inoltre, per ragioni logistiche (e per non affaticare il lettore), l’articolo è suddiviso in due parti, questa è la prima parte!


Una tazza di caffè e possiamo iniziare!

Gli operatori della meccanica quantistica

Alla fine tutto l’ambaradan nasce dal fatto che la meccanica quantistica, a differenza della fisica classica, si basa su degli oggetti chiamati operatori. Come suggerisce il nome, questi oggetti operano sugli stati della teoria: prendono in input uno stato e ne restituiscono un altro come output, generalmente diverso dal primo:

Tutte le quantità che in meccanica classica erano dei semplici numeri reali (posizione, quantità di moto, energia, e così via) diventano, in meccanica quantistica, degli operatori: operatore posizione, operatore quantità di moto , operatore dell’energia (altrimenti detto “hamiltoniano”) etc.


Perché sono così necessari gli operatori? (qualsiasi cosa significhi per te in questo momento la parola “operatore”).
In breve, serviva un formalismo matematico capace di spiegare un fatto sperimentale: lo stato di un sistema poteva essere completamente determinato dalla posizione di una particella, ma al contempo la misura della quantità di moto della stessa particella non restituiva un valore ben preciso. È il principio di indeterminazione di Heisenberg.
Un modo per esprimere questo fatto dal punto di vista matematico era quello di trasformare posizione e quantità di moto in degli operatori lineari e scrivere che:

\hbar è la costante di Planck divisa per 2\pi.

Questa relazione racchiude, in un formalismo compatto (e criptico per i non addetti) la chiave per il principio di Heisenberg su posizione e quantità di moto. La compattezza del formalismo e la facilità del calcolo sono due condizioni che spinsero i fisici ad adottare l’approccio operatoriale nella meccanica quantistica, ed è il motivo per cui la matematica di questa teoria è ritenuta essere “più complicata” di quella della fisica classica.

L’operatore più importante

Ciò che nella fisica classica rappresentava un modo alternativo di risolvere i problemi, nella meccanica quantistica diventa l’unico modo matematicamente conveniente di descrivere l’evoluzione di un sistema. Si tratta dell’energia, la quale nel formalismo quantistico diventa l’operatore hamiltoniano.

Nella fisica classica l’energia di un sistema era un semplice numero indicato con la lettera “E”. In meccanica quantistica diventa un operatore chiamato “Hamiltoniano“.


L’energia di un sistema è definita come la somma tra energia cinetica (p^2/2m) ed energia potenziale V. Coloro che prima erano semplici numeri ora diventano due operatori che, come dice il nome, “operano” sugli stati di una particella, comandandone l’evoluzione dinamica.

Ecco come si procede di solito: immagina una particella immersa in un certo spazio e sensibile a certe interazioni fisiche (elettromagnetiche ad esempio, come un elettrone in un campo magnetico, o in prossimità del nucleo di un atomo).

La seguente frase “questa particella si muoverà in questo spazio con una certa velocità e occuperà maggiormente alcune posizioni invece di altre, sulla base delle interazioni che percepisce” viene tradotta quantisticamente nella seguente:

Lo stato di una particella evolve da un valore iniziale a un valore finale grazie all’azione dell’operatore Hamiltoniano, il quale rappresenta le interazioni e il contenuto cinetico che caratterizzano il moto della particella.

Come forse avrai sentito da qualche parte, lo stato di una particella è indicato da una funzione a più valori, nel tempo e nello spazio: \Psi(\vec{x},t). Il fatto che questo stato venga trasformato nel tempo per via delle interazioni è riassunto dalla seguente scrittura molto compatta:

L’esponenziale di un operatore è lo sviluppo in potenze dell’operatore stesso, secondo la regola degli sviluppi di Taylor. Non preoccuparti di questo dettaglio matematico, l’ho messo solo per completezza.

L’operatore hamiltoniano agisce sullo stato iniziale della particella, e per ogni tempo t successivo restituisce un certo stato finale.

Questa è la ricetta prescritta dalla celebre equazione di Schrödinger, la quale governa la dinamica degli stati quantistici di un sistema. Quella che ti ho mostrato è proprio la soluzione dell’equazione: Schrödinger scrisse che, una volta noto l’operatore hamiltoniano, la dinamica del sistema è nota..

Più facile a dirsi che a farsi: è difficile trovare il corretto operatore che riesca a riprodurre gli stati in cui evolvono i sistemi quantistici negli esperimenti. Trovare l’hamiltoniano giusto equivale a trovare la teoria giusta per descrivere il sistema, ed è esattamente il mestiere del fisico.

Se un fisico ha fatto bene il suo mestiere, otterrà una predizione sull’evoluzione temporale dello stato del sistema, e potrà fare previsioni probabilistiche su quale sarà lo stato in cui verrà misurata la particella a un dato istante di tempo dell’esperimento.

Gli autostati di un operatore

A differenza di uno stato normale, l’autostato di un operatore mantiene la sua direzione dopo la trasformazione, e al massimo si allunga o si accorcia.

Possiamo architettare un esperimento con lo scopo di misurare una certa proprietà della particella quantistica di cui abbiamo parlato prima. L’atto della “misurazione” consiste inevitabilmente in una “riorganizzazione” delle informazioni quantistiche dello stato della particella e anche dello stato del rivelatore che stiamo utilizzando per misurare quella proprietà.

Per via di uno dei postulati della meccanica quantistica (i quali fanno sì che la teoria riproduca quanto si osserva negli esperimenti) a ogni osservabile (sono chiamate così le uniche quantità misurabili negli esperimenti) è associato un operatore, e gli stati possibili in cui la particella può essere rivelata nell’esperimento vanno ricercati in alcuni stati molto speciali che hanno la particolarità di rimanere “quasi inalterati” sotto l’azione dell’operatore.

Per spiegarlo in termini semplici, immagina che lo stato sia una freccia nello spazio: l’operatore in generale può far compiere alla freccia una certa rotazione (il che corrisponde al trasformare lo stato in un altro stato diverso dal primo). Tuttavia alcune frecce speciali vengono trasformate dall’operatore in modo che al massimo si allungano o si accorciano, ma senza ruotare:: la direzione rimane la stessa. Questi stati speciali sono chiamati autostati.

In generale ogni operatore ha il suo set di autostati “personale”.

In sostanza gli autostati di un operatore ci semplificano la vita perché trasformano in maniera molto semplice: significa meno calcoli da fare!

Un esempio preso in prestito dalla geometria: in alcuni casi gli operatori della meccanica quantistica e le matrici sono praticamente la stessa cosa (se non sai come funziona una matrice, vai a questo articolo). Una matrice come quella di rotazione attorno all’asse z sul piano x-y ha il compito di ruotare un vettore di un certo angolo. Siccome la rotazione si svolge attorno all’asse z, la componente z del vettore rimane inalterata. Il vettore di componenti (0,0,1) viene quindi mandato in se stesso, cioè è un autovettore di questa particolare matrice di rotazione.

Il vettore (0,0,1) viene trasformato in se stesso dalla rotazione attorno all’asse z.

La scrittura che ci semplifica tanto la vita, e che ricerchiamo continuamente in meccanica quantistica, è

La costante \lambda è chiamata, in gergo, “autovalore” dell’autostato. A ogni autostato viene associato il suo “autovalore”, il suo numerino personale da utilizzare come etichetta. Possono esserci anche più autostati aventi lo stesso autovalore, ma non vedrai due autovalori diversi associati allo stesso autostato.

Questa scrittura è un vero sospiro di sollievo: l’esistenza di stati che rimangono praticamente invariati sotto l’azione degli operatori rappresenta una semplificazione incredibile per i calcoli della teoria. Invece di chiederci come trasforma qualsiasi stato dell’universo sotto l’operatore (una pretesa diabolicamente assurda), ci interessiamo solo a quegli stati che invece “cambiano molto poco”.

Il motivo di ciò va ricercato in uno dei postulati fondamentali della meccanica quantistica, già accennato sopra:

Le quantità che misuriamo sperimentalmente corrispondono agli autostati della particolare osservabile a cui siamo interessati. Lo so che suona strano e inutilmente astratto, ma è grazie a questo postulato che vengono riprodotti i risultati sperimentali.

La cattiva notizia: non tutti gli stati della teoria sono autostati dell’operatore che ci interessa.


La buona notizia: gli autostati dell’operatore che ci interessa possono essere usati come blocchetti elementari per costruire gli stati più generici della particella.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.


Questo è il principio di sovrapposizione degli stati: ogni stato può essere costruito sovrapponendo tra loro tanti altri stati.

In generale conviene, anzi è proprio mandatorio, utilizzare come blocchetti elementari gli autostati dell’operatore che ci interessa. Ti conviene pensare agli autostati proprio come a dei “Lego” con cui costruire uno stato più generico possibile (la struttura fatta coi Lego è lo stato generico).

Questi autostati andranno a comporre lo stato della particella, ciascuno con un proprio peso statistico, come specificato dalle regole della meccanica quantistica (la quantistica è praticamente una teoria della probabilità, camuffata)

La tipica struttura di uno stato generico, sviluppato come somma di autostati di un certo operatore di nostro interesse. I numeri a_i sono i pesi statistici, cioè il loro modulo al quadrato, ad esempio |a_2|^2, rappresenta la probabilità che la particella, inizialmente nello stato generico “\ket{\Psi}“, venga misurata in un ‘autostato \ket{p_2}.

Il risultato della misurazione (misurazione dell’osservabile, associata a sua volta a un certo operatore della teoria) è il famigerato, e ancora dinamicamente poco compreso, “collasso della funzione d’onda”, il quale seleziona uno degli autostati dell’operatore associato all’osservabile coinvolta:

La particella viene rivelata in UNO solo degli autostati possibili dell’operatore associato all’osservabile.
Prima aveva una probabilità ben precisa di trovarsi in ciascuno degli autostati possibili, mentre DOPO la misura la probabilità di ritrovarla nello stesso autostato sarà il 100%.

ed è proprio questo a cui ci si riferisce quando si parla di “collasso della \Psi“.

Il numero che si misura nell’esperimento coincide con la costante \lambda, cioè l’autovalore dell’autostato in cui è stata rivelata la particella.

Un esempio rapido di quanto detto: un’osservabile di una particella può essere il suo spin (che sperimentalmente si misura grazie all’effetto di un campo magnetico sulla traiettoria della particella). A questo effetto osservabile è associato un operatore di spin.
Se ad esempio sperimentalmente si osserva che alcune particelle possono avere solo due tipi di deflessioni in un campo magnetico allora all’operatore di spin della teoria verranno associati due autostati.

Un tipico esperimento in cui è possibile misurare lo spin di una particella: Stern-Gerlach.

Prima di misurare la deflessione tramite l’accensione del campo magnetico, dal punto di vista della nostra interpretazione la particella si trova in una sovrapposizione di autostati di spin, e con la misurazione (l’accensione del campo magnetico) viene “selezionato un autostato” con una certa probabilità calcolabile quantisticamente.

Tutto questo discorso è importante per capire il seguito, e cioè capire perché ci interessiamo a specifici numeri quantici associati ad operatori accuratamente selezionati della teoria.

I numeri quantici non sono altro che gli autovalori di specifici operatori della teoria, accuratamente selezionati affinché soddisfino delle proprietà che ci permettono di semplificare il modo in cui possiamo fare previsioni verificabili con l’esperimento.

In ogni caso, non basta essere un autovalore di un’osservabile per essere un buon numero quantico!

Un buon numero quantico ci semplifica la vita negli esperimenti, e nella parte II di questa serie vedremo perché!
(Per chi si incuriosice: ha a che fare con il teorema di una famosa matematica tedesca…)


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come Fermi scoprì la statistica degli elettroni assieme a Dirac

Per capire l’entità del contributo di Enrico Fermi in ciò che servì ad ispirare una delle scoperte più importanti dell’umanità (la teoria dei semiconduttori), è necessario fare qualche passo indietro e considerare il contesto storico-scientifico dell’epoca.

Negli anni ’20 del secolo scorso si sapeva molto poco sulle strutture fondamentali della materia. Le teorie dell’atomo erano giovanissime e l’unico metodo di indagine consisteva nell’osservare l’assorbimento luminoso di alcuni gas della tavola periodica.

Ludwig Boltzmann (1844-1906), uno dei padri fondatori della fisica statistica.

Proprio sui gas si sapeva dire un po’ di più, essendo una collezione di atomi che potevano essere trattati (in certe condizioni di densità e temperatura) come un grosso insieme di biglie microscopiche su cui, tramite la fisica statistica di Maxwell, Boltzmann e Gibbs, si potevano fare previsioni termodinamiche verificabili sperimentalmente.

Una particolarità interessante della teoria statistica di Maxwell e Boltzmann era il contenuto minimale di ipotesi sulla natura fisica di queste “biglie microscopiche”. Stiamo parlando di una teoria formulata nella seconda metà del secolo XIX, un periodo in cui non era ancora riconosciuta l’esistenza dell’atomo!

Trattandosi tuttavia di atomi, nemmeno la teoria di Maxwell e Boltzmann uscì indenne dalla rivoluzione della teoria dei quanti, iniziata con Planck nel 1900.

La teoria dei quanti funzionò sia da completamento che da antidoto per la vecchia fisica statistica. Da antidoto perché aiutò ad indagare meglio alcuni problemi matematici della teoria di Maxwell e Boltzmann, i quali conducevano a calcoli errati nella trattazione di particelle tra loro indistinguibili, e davano dei risultati impossibili per alcune quantità come l’entropia dei gas a basse temperature.

Un problema statistico dell’entropia

Queste difficoltà erano dovute al fatto che la fisica statistica si basa essenzialmente sul “contare, per tutte le particelle, tutte le possibili configurazioni microscopiche che conducono alla stessa situazione fisica del gas“, come illustrato in figura:

Lo schema concettuale che sta alla base della teoria statistica dei gas.

Pressione, volume, temperatura (P,V,T), sono tutte quantità macroscopiche misurabili sperimentalmente. In fisica statistica ci immaginiamo di conoscere le posizioni e velocità di tutte le particelle del gas in ciascuna configurazione possibile ammessa dalle condizioni ambientali (cosa non possibile da un punto di vista computazionale, ma che facciamo finta di poter fare comunque).


Siccome non sappiamo in quale configurazione microscopica precisa si trovi il gas in ciascun istante di tempo (non è misurabile sperimentalmente), immaginiamo di avere N copie del nostro gas e di fare delle estrazioni per contare quante volte esce una certa configurazione piuttosto che un’altra. La distribuzione di queste estrazioni definisce alcune quantità macroscopiche (P_i,V_i,T_i) associate alla specifica configurazione microscopica i estratta un numero N_i di volte. Le quantità macroscopiche (P,V,T) che misuriamo sperimentalmente possono quindi essere pensate come la media di tutte le (P_i,V_i,T_i) pesate con la probabilità di estrazione N_i/N.

La misura sperimentale di (P,V,T) ci dà quindi informazioni sulla distribuzione delle configurazioni microscopiche del nostro gas.


Immaginando il gas in equilibrio termico a una certa energia interna, il numero di configurazioni del gas corrispondenti a tale energia possono essere contate, dal punto di vista teorico, sommando tutte le possibili accoppiate di posizione-velocità (x,y,z),(v_x,v_y,v_z) nelle tre dimensioni spaziali, e ciò deve essere fatto per tutte le particelle del gas.

Siccome il numero di possibili accoppiate è virtualmente infinito, i padri fondatori della fisica statistica immaginarono di dividere lo spazio dei possibili valori di posizione e velocità in cellette elementari di dimensione finita che chiamiamo \tau. In questo modo due stati dinamici specificati da (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) che caschino nella stessa celletta di questo spazio sono considerati essere lo stesso stato dinamico. È come se ammettessimo, in un certo senso, di non sapere distinguere tra (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) nel caso appartengano alla stessa cella, è un’approssimazione.

La suddivisione in cellette dello spazio di posizioni e velocità per le particelle. Secondo questa suddivisione due set di posizioni e velocità che appartengono alla stessa celletta non sono distinguibili (qui non distinguiamo il rosa dal celeste), mentre sono distinguibili da quella in verde, dato che appartiene a un’altra celletta.

Dal punto di vista statistico, l’entropia del gas è pensabile come una misura di quanti stati dinamici microscopici sono associabili a un certo stato termodinamico macroscopico, una misura della nostra “ignoranza” sull’effettiva configurazione microscopica del gas.

Il problema era che la dimensione \tau della celletta elementare era del tutto arbitraria, e ciò influiva pesantemente sul conteggio delle configurazioni. Essendo il numero delle configurazioni direttamente collegato alla definizione statistica di entropia, una scelta di \tau troppo piccola conduceva a valori infiniti per l’entropia del gas. Questa indeterminazione sulla scelta di \tau impediva inoltre di calcolare, statisticamente, il valore della costante dell’entropia alla temperatura dello zero assoluto.

Il problema della costante dell’entropia stava molto a cuore ai fisici dell’epoca. Nella termodinamica ottocentesca ci si interessava solo alle differenze di entropia, e quindi era di scarso interesse pratico domandarsi quale fosse il valore assoluto dell’entropia a una determinata temperatura come T=0\,\text{K}, e in ogni caso questa costante spariva quando si faceva la differenza \Delta S=S(B)-S(A) tra due stati termodinamici B e A.
Tuttavia con l’arrivo del teorema di Nernst e quindi del terzo principio della termodinamica (il quale postula che l’entropia allo zero assoluto sia esattamente zero) si rivelò essenziale determinare il valore di questa costante.

Un altro problema fastidioso era quello che riguardava il conteggio di particelle indistinguibili: quando si contavano tutte le configurazioni possibili di tutte le particelle del gas si finiva per contare più volte la stessa configurazione per via del fatto che non è possibile distinguere una particella dall’altra. Per via di ciò si arrivava a dei paradossi che riguardavano l’entropia di mescolamento dei gas.
Di questo problema si interessò Gibbs, il quale propose di dividere i conteggi per il fattore combinatorico N! dove N è il numero di particelle e con “!” si intende il fattoriale N!=N(N-1)(N-2)....
Tuttavia anche questa soluzione non risolveva tutti i problemi…

La teoria dei quanti sistemò i problemi dell’entropia. Si dimostrò che la dimensione \tau delle cellette elementari doveva essere pari alla costante di Planck h: la natura discreta della teoria quantistica si sposava bene con l’ipotesi delle cellette elementari della fisica statistica.

Il punto è che gli effetti quantistici delle particelle non sono più trascurabili a basse temperature. In fisica statistica esiste una quantità chiamata lunghezza d’onda termica di De Broglie, la quale ha la seguente espressione per un gas perfetto monoatomico:

La lunghezza termica delle particelle di un gas, dove h è la costante di Planck, m la massa delle particelle, k_B la costante di Boltzmann che converte da dimensioni di energia a dimensioni di temperatura tramite E=k_BT, e T la temperatura del gas.

Questa lunghezza d’onda deriva dalla formulazione ondulatoria di De Broglie per le particelle quantistiche.
Secondo De Broglie, a ogni particella avente quantità di moto p è associabile una lunghezza d’onda \lambda=h/p. Se come p si prende la quantità di moto termica delle particelle del gas si ottiene la \lambda_T riportata sopra.
A temperature normali questa lunghezza d’onda è molto più piccola della distanza media tra gli atomi di un gas. Vediamo però che al diminuire di T, la relazione di inversa proporzionalità \lambda_T\propto 1/\sqrt{T} aiuta a far crescere questa lunghezza d’onda. Per temperature sufficientemente basse la lunghezza d’onda \lambda_T diventa comparabile con le distanze inter-atomiche del gas.

Man mano che si abbassa la temperatura del sistema, aumenta la lunghezza d’onda di De Broglie e dominano le interferenze quantistiche tra le funzioni d’onda delle particelle.
Nel caso in figura sono mostrati dei bosoni.

Quindi, per via delle loro proprietà quantistiche, le particelle iniziano ad interferire tra loro come tante onde, e questo succede quando la loro lunghezza d’onda diventa almeno comparabile con la distanza tra una particella e l’altra, a temperature molto basse.

Siccome parliamo di funzioni d’onda che creano interferenze, l’indistinguibilità delle particelle gioca un ruolo centrale in questo processo quantistico, e ciò sta alla base di tutte le difficoltà teoriche della vecchia fisica statistica, la quale non teneva conto di queste proprietà quantistiche. Fino alla prima metà degli anni ’20, questa sottigliezza quantistica non era ancora stata compresa in profondità.

Statistica quantistica: la strada di Fermi

Enrico Fermi (1901-1954). Premio Nobel per la Fisica nel 1938.

Ancora fresco di laurea, Fermi divenne particolarmente ossessionato dal problema della costante dell’entropia, pubblicando diversi articoli tra il 1924 e il 1926.

Aveva intuito che il problema risiedesse nella natura quantistica delle particelle, in particolare dal punto di vista della loro indistinguibilità, ma mancava ancora qualche pezzo del puzzle.

Il pezzo mancante fu messo a disposizione da Pauli con la formulazione del principio di esclusione: non possiamo avere due elettroni con tutti i numeri quantici uguali tra loro. Gli elettroni sono particelle indistinguibili, quindi Fermi si ispirò al loro comportamento per provare a quantizzare un gas di particelle a temperature sufficientemente basse.

Possiamo immaginarci un Fermi che lavora assiduamente all’alba (il suo momento preferito per studiare e lavorare su nuovi articoli) in qualche fredda mattina di Firenze, nell’inverno del 1925-26, sforzandosi di sfruttare il principio di Pauli per ottenere la costante corretta dell’entropia allo zero assoluto.

La prima pagina dell’articolo di Fermi, presentato all’accademia dei Lincei nel febbraio del 1926.

Nel suo articolo “Sulla quantizzazione del gas perfetto monoatomico” uscito nel febbraio del 1926, Fermi ipotizzò che un gas ideale si comportasse proprio come gli elettroni del principio di Pauli e cambiò completamente il modo di contare le configurazioni possibili in fisica statistica: in ciascuno stato dinamico possono esserci zero o al massimo una sola particella, mai due nello stesso stato.
Immaginò poi che il gas potesse essere caratterizzato da determinati livelli energetici discreti, proprio come si faceva nella quantizzazione dell’atomo di idrogeno. Questa spaziatura tra i livelli energetici era tanto più rilevante per la fisica del problema quanto più era bassa la temperatura del gas, essenzialmente per il motivo enunciato sopra. Ad alte temperature gli effetti quantistici devono essere trascurabili e si ritorna alla termodinamica dell’ottocento.

La conseguenza di questo nuovo modo di contare era che ciascuno stato i era occupato da un numero medio di particelle in funzione dell’energia E_i dello stato, secondo la seguente espressione:

Il numero di nepero e (o Eulero), l’energia E_i dello stato, la temperatura T, la costante di Boltzmann k_B. Il parametro \mu è noto come “potenziale chimico” e allo zero assoluto corrisponde all’energia di Fermi: E_F.

Usando questa informazione, Fermi calcolò l’espressione della costante dell’entropia, la quale coincideva con il valore sperimentale dedotto da Sackur e Tetrode nel 1912. La sua teoria era un successo!

Tuttavia, come confermato anche da alcuni studiosi (Belloni, Perez et al), Fermi non si interessò delle radici quantistiche di questa nuova statistica, cioè non provò a collegare il principio di Pauli con la natura ondulatoria della materia. Inoltre non esisteva, al tempo, un gas capace di comportarsi come gli elettroni dell’articolo di Fermi. La soluzione di Fermi voleva andare nella direzione della statistica quantistica, ma con un approccio molto cauto sulle ipotesi alla base. Fermi utilizzò la sua intuizione per dare una nuova soluzione a dei problemi annosi di fisica statistica (già risolti recentemente da Bose e Einstein con la loro statistica) e dedusse una statistica completamente nuova.

Tuttavia, al contrario di quanto si dice solitamente in giro, Fermi non applicò direttamente questa nuova statistica al problema degli elettroni nei metalli (cosa che fu fatta da altri e che condusse alla teoria dei semiconduttori).

La statistica di Fermi-Dirac

La distribuzione trovata da Fermi è dipendente dalla temperatura. Abbiamo già anticipato che gli effetti quantistici diventano preponderanti a temperature vicine allo zero assoluto. In questo caso il principio di Pauli emerge direttamente dalla forma analitica della distribuzione, riportata in figura:

La formula di Fermi al variare della temperatura.

Man mano che la temperatura del gas di elettroni si avvicina a T=0\,\text{K}, la distribuzione di Fermi si avvicina sempre di più alla “funzione gradino”

La funzione gradino, cioè il limite a basse temperature della formula di Fermi.

Allo zero assoluto, gli elettroni occupano i livelli energetici riempiendoli dal più basso fino a un’energia chiamata “energia di Fermi”, indicata con E_F.
Puoi notare come a T=0 il numero medio di occupazione dello stato a energia E_i sia esattamente 1: non può esserci più di un elettrone per stato, è il principio di esclusione di Pauli in tutta la sua gloria. Nota anche che non ci sono elettroni che occupano stati a energia maggiore di quella di Fermi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo comportamento è essenzialmente verificato anche per temperature più alte di T=0, basta solo che sia T\ll T_F dove T_F è detta “temperatura di Fermi”, ed è pari a T_F=E_F/k_B. Nelle situazioni di interesse fisico (come nei metalli), la condizione T\ll T_F è praticamente sempre soddisfatta, essendo T_F di solito dell’ordine di alcune centinaia di migliaia di gradi kelvin.

I gas di elettroni sono fortemente influenzati dal principio di Pauli: è un po’ come se ci fosse una forza “repulsiva” tra gli elettroni, la quale gli impedisce di occupare lo stesso stato energetico. Questa è anche un’interpretazione euristica del fatto che la pressione di un gas di Fermi sia più elevata di un gas classico: è difficile comprimere un gas di elettroni perché non vogliono mai “occupare lo stesso punto spaziale”.

Come mai questa statistica è chiamata “Fermi-Dirac” e non solo “Fermi”?
È noto che Dirac pubblicò la stessa formula alla fine dell’estate del 1926, mentre Fermi l’aveva presentata nella primavera dello stesso anno. Dirac, su sollecito scritto da parte del fisico italiano, ammise di aver letto il lavoro di Fermi, ma sostenne di averlo completamente scordato.

In difesa di Dirac va detto che il suo lavoro (“On the Theory of Quantum Mechanics“) è molto più generale di quello presentato da Fermi, il quale si era invece proposto di risolvere un problema particolare (quello dell’entropia) che c’entrava poco con i postulati della meccanica quantistica.

Dirac giustificò in maniera elegante il principio di esclusione di Pauli notando che la meccanica quantistica era il luogo naturale per trattare i sistemi di particelle indistinguibili, grazie al formalismo delle funzioni d’onda.

La chiave del ragionamento di Dirac si trova proprio nel fatto che le particelle elementari possono essere considerate indistinguibili. La conseguenza quanto-meccanicistica è che se consideriamo due particelle non interagenti tra loro, e che possono occupare gli stati A e B, la funzione d’onda che le descrive collettivamente è data dal prodotto delle due funzioni d’onda

    \[\psi(x_1;x_2)=\psi_A(x_1)\psi_B(x_2)\]

in cui x_1 e x_2 sono le posizioni delle due particelle. Se scambiamo le due particelle, e cioè le portiamo dallo stato A allo stato B e viceversa, otteniamo la funzione d’onda modificata

    \[\psi'(x_1;x_2)=\psi_B(x_1)\psi_A(x_2)\]

Ma se assumiamo che le particelle siano indistinguibili, la densità di probabilità deve restare la stessa (ricordiamo che è data dal modulo al quadrato della funzione d’onda):

    \[|\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2\]

Quindi al massimo possiamo avere che \psi' è diversa da \psi per un fattore \eta

    \[\psi'(x_1;x_2)=\eta \psi(x_1;x_2)\]

in cui \eta è un numero tale che |\eta|^2=1 in modo da soddisfare |\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2 (verifica pure!).

Se ri-scambiamo le due particelle, torniamo punto e a capo, e cioè deve essere \psi''(x_1;x_2)=\psi(x_1;x_2)

    \[\psi''(x_1;x_2)=\eta \psi'(x_1;x_2)=\eta^2\psi(x_1;x_2)=\psi(x_1;x_2)\]

ovvero \eta^2=1, la quale ha soluzione \eta=\pm 1.
Se \eta=-1 stiamo parlando di particelle con funzioni d’onda antisimmetriche (cioè lo scambio delle particelle produce un segno meno moltiplicativo nella funzione d’onda totale). Una conseguenza è che se parliamo dello stesso stato A=B allora lo scambio delle particelle produce la seguente relazione

    \[\psi_A(x_1)\psi_A(x_2)=-\psi_A(x_1)\psi_A(x_2)\]

la quale implica identicamente \psi_A(x_1)\psi_A(x_2)=0, cioè non esiste uno stato quantistico in cui queste particelle hanno gli stessi numeri quantici. Questa è la giustificazione quanto-meccanicistica del principio di Pauli, e condusse Dirac a ricavare la stessa formula di Fermi per la statistica degli elettroni.

La lettera in cui Fermi richiamò l’attenzione di Dirac sul suo articolo del febbraio precedente.


Fermi si limitò all’applicazione del principio di esclusione su un problema specifico, senza provare a darne un’interpretazione quanto-meccanicistica.

In ogni caso, Dirac riconobbe comunque l’importanza del lavoro di Fermi, e propose di chiamare la nuova statistica “Fermi-Dirac”, mettendo il nome di Fermi al primo posto.

Oggi le particelle (come gli elettroni) che obbediscono alla statistica di Fermi-Dirac sono note come “fermioni”, sempre in onore di Fermi. I fermioni sono tutte quelle particelle caratterizzate da uno spin semi-intero. Per un teorema rigorosamente dimostrabile in teoria quantistica dei campi, tutte le particelle a spin semi-intero obbediscono alla statistica di Fermi-Dirac, mentre quelle a spin intero (note come “bosoni“) obbediscono alla statistica di Bose-Einstein (sono le particelle con \eta=1 dopo uno scambio).

Alle basse temperature i bosoni possono occupare tutti lo stesso stato a energia più bassa, mentre i fermioni sono forzati ad occupare stati a energia crescente fino all’energia di Fermi (nella figura sono presenti al massimo due fermioni per via del numero quantico di spin, il quale assume due valori possibili se lo spin è 1/2).

Alle alte temperature (dove gli effetti quantistici sono meno preponderanti) sia fermioni che bosoni tornano ad obbedire alla statistica di Maxwell-Boltzmann e Gibbs.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come la gravità ci impedisce di misurare distanze più piccole della lunghezza di Planck

Uno dei punti fondamentali per la conquista dell’unificazione tra gravità e meccanica quantistica riguarda la comprensione dello spaziotempo a una scala subatomica di lunghezza.

Lo spaziotempo è essenzialmente un concetto classico: possiamo immaginarcelo come una struttura invisibile che può essere descritta utilizzando i numeri reali (cioè quelli della quotidianità: 2.3, 0.01, \pi, e^{-\pi/2}, -3/4, 2.9999...).

Come immaginiamo la griglia dello spaziotempo curvata dalla massa.

I numeri reali costituiscono un insieme non numerabile, in parole povere non solo abbiamo a disposizione un’infinità di numeri da -\infty a +\infty, ma anche che tra due numeri come 0 e 1 è compresa un’altra infinità di numeri. Inoltre è anche un insieme continuo, cioè dato un certo numero x, è sempre possibile trovare un altro numero y sufficientemente “vicino” al primo in modo che la distanza x-y tra i due si avvicini a zero fino alla cifra decimale che si desidera.
Nei numeri interi, invece, la distanza tra due numeri può solo coincidere con lo zero nel caso in cui i due numeri siano uguali, altrimenti esiste una distanza minima che è quella che riguarda due numeri consecutivi come 4 e 5.

Ecco, classicamente si pensa che lo spaziotempo possa essere descritto con un insieme di numeri reali piuttosto che di numeri naturali. Non è definita una distanza minima se non quella uguale a zero.

Cosa succede quando tiriamo in ballo la meccanica quantistica?

Ispirato dal seguente brillante articolo di Calmet, Graesser e Hsu pubblicato nella Physical Review Letters, ho deciso di volgarizzare un ragionamento che ho trovato molto intrigante, dato che su questi temi si discute sempre pochino e male.

Immaginiamo di avere un certo detector per rivelare la distanza tra due punti x(t) e x(0) nella griglia dello spaziotempo, uno al tempo t=0 e l’altro al tempo t.
Supponiamo per semplicità che il detector, di grandezza L e massa M, misuri questi due punti spostandosi con una velocità v=p/M dove p è la sua quantità di moto. Avremo cioè

Il discorso che sto per fare ora si basa su un’approssimazione euristica al fine di scongiurare l’introduzione di operatori quantistici, dato che aggiungerebbero poco o niente alla sostanza del discorso principale.

Una volta misurate le posizioni x(t) e x(0) con una certa incertezza \Delta x(t) e \Delta x(0), possiamo anche stimare l’incertezza sulla quantità di moto \Delta p usando le formule sulla propagazione delle incertezze:

Considerando ad esempio il punto x(t), varrà il principio di indeterminazione di Heisenberg:

A questo punto sostituiamo dentro il principio di Heisenberg l’espressione di \Delta p=(M/t)[\Delta x(t)+\Delta x(0)] trovata con la propagazione delle incertezze. Trascurando termini quadratici del tipo (\Delta x(t))^2 essendo più piccoli di un ordine di grandezza, si arriva a una relazione interessante:

Le incertezze sulla posizione iniziale e finale sono legate da un principio di indeterminazione, il cui valore aumenta all’aumentare del tempo. Di sicuro questa è una relazione interessante.
Ancora più interessante è chiedersi quale sia l’incertezza sulla distanza tra x(t) e x(0), cioè s=x(t)-x(0). Anche ora, per via della propagazione degli errori, si ha che

    \[\Delta s=\Delta x(t)+\Delta x(0)\]

Se \Delta x(t) diminuisce allora \Delta x(0) aumenta al fine di mantenere vera la \Delta x(0)\Delta x(t)\ge \frac{\hbar t}{2M}, quindi \Delta s è limitato dal valore più grande tra \Delta x(0) e \Delta x(t).

Nel caso in cui \Delta x(t)\approx \Delta x(0) cioè misuriamo i punti x(t) e x(0) con incertezze circa uguali, il principio di indeterminazione fornisce:

Quindi da un punto di vista quantistico possiamo misurare una lunghezza spaziale con una precisione

Dove ricordiamo, t è il tempo che abbiamo lasciato correre tra una misura e l’altra, e M è la massa del nostro detector (che abbiamo fatto interagire con lo spazio attorno a sé lasciandolo muovere liberamente).
Controllando questi due parametri possiamo rendere \Delta s piccolo a piacere. Possiamo costruire un detector molto massivo e fare tante misure consecutive separate da intervalli di tempo t molto piccoli.
Rendendo piccolo il rapporto t/M possiamo rendere \Delta s piccolo a piacere.

Tutto ciò andrebbe bene in un mondo in cui non esiste la gravità. Questo è il messaggio da portare a casa! Se non ci fosse di mezzo la gravità, come puoi vedere, nulla impedirebbe di rendere \Delta s piccolo a piacere (anche se non può mai essere nullo, per via del principio di Heisenberg).

L’intervento della gravità

Ho mentito, non possiamo rendere t piccolo a piacere! Se L è la dimensione del nostro detector, dobbiamo considerare dei tempi t tali che t>L/c cioè maggiori del tempo impiegato dalla luce a percorrere il nostro detector (altrimenti solo una frazione del detector può essere considerato “detector”).

Inoltre non possiamo rendere M grande a piacere: se rendiamo M troppo grande rispetto alle dimensioni L del detector, questi potrebbe collassare in un buco nero, e ciò impedirebbe di leggere qualsiasi informazione sulle misure del nostro esperimento. Il parametro di lunghezza fondamentale di un buco nero è dato dall’orizzonte degli eventi

    \[r_s\sim \frac{GM}{c^2}\]

dove G è la costante di gravitazione di Newton e c la velocità della luce.

Affinché il detector non sia un buco nero da cui non escono informazioni, desideriamo che sia L>r_s. Mettendo tutto assieme avremo quindi

La quantità risultante è identificata come lunghezza di Planck \ell_p, definita come:

La lunghezza di Planck, costante fondamentale della Fisica.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non c’è nessun parametro che possiamo controllare nella formula della lunghezza di Planck: è composta da costanti fondamentali della Fisica come G, \hbar, c (costante di gravitazione di Newton, costante di Planck e velocità della luce). Quindi \Delta s\ge \ell_p è un limite inferiore che non possiamo sormontare in alcun modo ingegnoso: la gravità impedisce di misurare distanze più piccole della lunghezza di Planck.

Se vuoi sapere da dove spunta fuori la lunghezza di Planck da un punto di vista storico, ho scritto un articolo a riguardo.

Quanto è piccola una lunghezza di Planck nelle nostre unità di misura quotidiane? \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

Il punto fondamentale è che se non ci fosse la gravità, non esisterebbe una lunghezza minima misurabile e potremmo rendere piccola a piacere l’incertezza quantistica della misura!

Ad avere l’ultima parola sulle dimensioni spaziali subatomiche non è quindi la quantistica, ma la gravità!
Questo risultato è molto significativo per la Fisica! Perché?

Quando si effettuano esperimenti di Fisica delle interazioni fondamentali (come le collisioni tra particelle) si esplorano scale di energia sempre più alte (che equivale a dire: si esplorano regioni di spazio sempre più piccole). La presenza di una scala di lunghezza sotto la quale non si può andare implica anche l’esistenza di una scala di energia sopra la quale non si può andare (perché la gravità diventerebbe rilevante e si inizierebbe a parlare di collasso in buco nero, avendo accumulato tanta energia in una regione di dimensioni molto ridotte). Un altro pezzo del puzzle per la lunga scalata che ci porterà verso la gravità quantistica?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché secondo Rovelli la Relatività suggerisce di abbandonare il concetto di spaziotempo

Durante il secolo scorso, la Relatività Generale si è presentata con il più grande colpo di scena che la Fisica abbia mai visto:

L’interpretazione ortodossa della relatività generale: esiste uno spaziotempo che viene curvato dalle sorgenti di massa.
Le altre masse non possono fare altro che “seguire la curvatura” e quindi essere attratte.

Il campo gravitazionale non esiste, la gravità è il risultato della curvatura dello spaziotempo.

Chiunque si sia mai interessato di relatività generale si è quindi abituato a visualizzare questa affermazione con la splendida rappresentazione dello spaziotempo “curvato”.

Lo spaziotempo è per noi una “griglia immaginaria” che esiste fin dal Big Bang, una qualche costruzione geometrica su cui si collocano tutti gli eventi della nostra realtà.
Questi eventi possono essere descritti con le coordinate che vogliamo, e queste coordinate vanno a strutturare il palcoscenico matematico a cui diamo il nome “spaziotempo” dal punto di vista dei calcoli. Ma in ogni caso stiamo sempre assumendo che questa griglia invisibile e sottostante esista sempre, e in genere diamo anche a lei il nome di spaziotempo.


Di sicuro è una rappresentazione che ci consente di fare i conti in maniera molto comoda, ma ciò ha un determinato prezzo da pagare.

Questa rappresentazione assume in qualche modo che lo spaziotempo esista indipendentemente dalla materia e da ogni altra sorgente di energia, e questo è proprio ciò che sancisce il divorzio completo con la visione “quantistica” delle interazioni, come illustrato nel seguente schema:

Ciò pone non pochi problemi dal punto di vista della gravità quantistica, la quale si ritrova a dover mediare tra due visioni nettamente diverse! Nonostante ciò, entrambe le teorie funzionano in maniera impeccabile nei loro rispettivi campi di applicazione. In particolare anche la relatività generale ha ricevuto l’ennesima schiacciante conferma di validità secondo i dati recenti sull’osservazione del buco nero al centro della nostra galassia (EHT).

Eppure, nonostante sia data per scontata, questa interpretazione dello spaziotempo in relatività generale è tutt’altro che definitiva.

Di recente mi è capitato di studiare dei paragrafi del testo specialistico “Quantum Gravity” di Carlo Rovelli, incappando in un’osservazione che ritengo di altissimo valore concettuale e che aiuta a risolvere un importante paradosso delle equazioni di Einstein.

In realtà questa argomentazione non è dovuta solo a Rovelli, ma risale fino agli albori della relatività generale. È il cosidetto “hole argument” di Einstein, il quale giunse alle importanti conclusioni illustrate anche da Rovelli.

Un paradosso molto arguto

Immaginati una regione nello spaziotempo senza sorgenti di gravità, cioè senza massa o altre forme di energia come quella elettromagnetica. Magari questa regione di spaziotempo la prendiamo piccola a piacere per non complicarci le idee.

Con il simbolo delle tre ondine increspate, intendiamo uno spaziotempo curvo in quel punto.

Considera ora due punti A e B in questa regione vuota, e supponi di essere in grado di misurare la curvatura dello spaziotempo in entrambi i punti. Per intenderci, definiamo lo spaziotempo con il simbolo g_{\mu\nu}.

Per via di una particolarissima disposizione delle sorgenti esterne alla regione che stiamo considerando, supponi che lo spaziotempo sia curvo nel punto A e piatto nel punto B.

Ora usufruiremo del nome “Relatività Generale”, che non è stato assegnato a caso! Questo nome testimonia il postulato fondamentale su cui è basata tutta la teoria: la Fisica non può dipendere dalle coordinate di chi la osserva. Quando passiamo da un sistema di coordinate ad un altro stiamo eseguendo una trasformazione che chiamiamo \phi. Quando lasciamo agire \phi su una quantità “e“, otteniamo il suo trasformato \bar{e}=\phi\,e indicato con \bar{e}. Le quantità importanti della relatività generale non cambiano sotto la trasformazione \phi.

Se io calcolo una soluzione delle equazioni di Einstein che mi restituisce il valore della curvatura dello spaziotempo, il quale dipende da g_{\mu\nu}(x) in ogni suo punto x, allora un cambiamento di coordinate ottenuto con la trasformazione \phi genererà un’altra soluzione delle stesse equazioni, che ha la stessa validità della soluzione precedente.

Il punto è che \bar{g}_{\mu\nu} risolve le stesse equazioni di Einstein con le stesse sorgenti, non è cambiato nulla rispetto a prima. Cambia solo il linguaggio in cui abbiamo espresso g_{\mu\nu} (cioè le coordinate particolari che utilizziamo).

Supponiamo di trasformare le nostre coordinate in modo da mandare il punto A nel punto B e lasciare invariati tutti gli altri punti al di fuori del buco. Anche la soluzione delle equazioni di Einstein trasformerà come \bar{g}=\phi\,g. In sostanza, abbiamo fatto la seguente cosa:

Una trasformazione che lascia invariato tutto lo spazio tranne i punti all’interno della regione vuota. Dopo la trasformazione lo spaziotempo presenta una curvatura nel punto B , mentre la curvatura è nulla nel punto A.

Nelle nuove coordinate lo spaziotempo nel punto A è quindi piatto, mentre ora è curvo nel punto B.

Ripeto, \bar{g}_{\mu\nu} è una soluzione altrettanto valida, e la trasformazione che abbiamo fatto è consentita dalle leggi della Relatività Generale.

Ma allora lo spaziotempo nel punto A è piatto oppure curvo? Ci troviamo di fronte a un paradosso, come se le equazioni di Einstein fossero completamente inutili perché non sono in grado di descrivere lo spaziotempo univocamente.

Questo aspetto turbò gravemente Einstein in persona, tanto da fargli dubitare più volte che il principio di relatività generale avesse senso fisico.

In realtà, come fa notare Rovelli, la soluzione del paradosso sta nel ripensare la nozione di “punto dello spaziotempo”, o in generale: smetterla di attribuire tanta importanza a una griglia immaginaria come lo spaziotempo.

In realtà stavamo risolvendo un problema sbagliato.

La domanda fondamentale “com’è lo spaziotempo nel punto A? Ha in realtà meno significato di quello che pensavamo. Il problema era mal posto, o meglio, non aveva senso considerarlo un problema.

In Relatività Generale assumiamo l’esistenza di questa griglia invisibile chiamata “spaziotempo”, dandole un significato intrinseco che è maggiore di quello che realmente ha.
Nonostante accettiamo senza problemi il fatto che possiamo usare qualsiasi tipo di coordinate vogliamo per elencare i punti di questa griglia, qualcosa nella nostra intuizione ci porta a credere che la griglia abbia davvero un significato fisico.

Una rappresentazione bidimensionale della griglia spaziotemporale che ci immaginiamo nella nostra testa.

Il concetto di griglia ha però, come molti altri concetti, solo una natura strumentale. Spesso ci permette di capire ciò che stiamo facendo, ma non dovremmo dargli un significato ontologicamente maggiore di quello strumentale, o almeno questo è il suggerimento di Einstein e Rovelli.

Hai visto come il domandarci quale fosse la curvatura dello spaziotempo in uno specifico punto ci ha portato al paradosso che le equazioni di Einstein descrivono due cose diverse con due soluzioni che dicono in realtà la stessa cosa? Stavamo risolvendo un problema sbagliato, questo è l’errore a cui siamo condotti se non seguiamo il suggerimento.

Considera invece questa situazione: supponiamo che nel punto A si incrocino anche le traiettorie spaziotemporali di due particelle (cioè le loro geodetiche):

Le geodetiche delle particelle sono indicate con la linea tratteggiata blu.

Le coordinate con cui descriviamo il punto A adesso racchiudono non solo l’informazione sulla curvatura dello spazio tempo g_{\mu\nu}, ma anche l’informazione “si sono incrociate le geodetiche delle due particelle!“.
Anche le geodetiche dipendono dalle coordinate che utilizziamo, quindi se ora eseguiamo la stessa trasformazione di coordinate di prima, cioè mappiamo un punto nell’altro, dobbiamo spostare anche il punto di incontro delle geodetiche!

Come vedi ora sia la curvatura dello spaziotempo sia il punto di incontro delle geodetiche sono stati trasportati dal punto A al punto B. Supponiamo di voler rispondere, grazie alle equazioni di Einstein, alla seguente domanda:

“Com’è la curvatura dello spaziotempo nel punto in cui si incontrano le geodetiche delle due particelle?”

Questa domanda, a differenza di prima, è tutta un’altra questione: è ben posta ed ha una soluzione univoca data dalla soluzione delle equazioni di Einstein. Come puoi vedere, sia prima che dopo la trasformazione di coordinate esiste una curvatura nel punto di incontro delle due geodetiche. Lo spaziotempo è curvo nel punto in cui le due geodetiche si incontrano. Questa informazione non dipende da quali coordinate stiamo utilizzando. Quindi è questa la vera domanda da porsi in una situazione simile.

La Relatività Generale ci suggerisce che la griglia immaginaria ha molto meno significato fisico di quello che credevamo: ha poco senso fisico chiedersi quale sia il valore della curvatura dello spaziotempo in un suo specifico punto senza introdurre campi di materia o interazioni tra particelle che possano interagire in quel punto.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Uno spaziotempo senza materia e particelle non ha significato fisico, la realtà non è composta da spaziotempo e campi, ma da campi su campi, secondo Rovelli. Possiamo fare affermazioni fisicamente sensate solo nel momento in cui iniziamo a relazionare campi di materia con altri campi di materia (come l’incrocio delle due geodetiche visto nell’esempio).

Questo punto di vista capovolge ancora una volta il significato che attribuiamo alla Relatività Generale: non è che la gravità non esiste ed è solo lo spaziotempo a farci sembrare che ci sia, sono le interazioni con le particelle che danno un significato fisico allo spaziotempo. Lo spaziotempo emerge grazie alle particelle, e non il contrario. Per la gravità quantistica questa interpretazione è nettamente più favorevole in quanto il mediatore smette di essere indipendente dalla materia che interagisce (vedi lo schema fatto all’inizio).

Gli oggetti non sono immersi nello spazio. Gli oggetti costituiscono lo spazio. Come un matrimonio: non è che marito e moglie “percepiscono il matrimonio”, loro sono il matrimonio, lo costituiscono. […] Allo spazio non rimane nulla se togli tutte le cose che lo abitano. Lo spazio è costituito dalle cose.

Carlo Rovelli

Si nasconde forse qui il segreto per iniziare a conciliare gravità e meccanica quantistica?

Secondo me questo paradosso meriterebbe di essere illustrato maggiormente nei libri di testo introduttivi di Relatività Generale, perché nasconde il cuore concettuale della materia. Per questo motivo ho pensato di portare in superficie l’osservazione di Rovelli, uno dei pochi autori moderni che ha scelto di parlarne a un secolo di distanza.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come la Relatività si intuisce meglio attraverso la geometria

Sono trascorsi quasi 117 anni da quando l’umanità ha capito che la nostra realtà è meglio descritta utilizzando una struttura concettuale che lega indissolubilmente spazio e tempo: lo spaziotempo.
Siamo cioè passati da una concezione tridimensionale della nostra realtà a una concezione quadridimensionale.

Infatti, anche se non sappiamo ancora cosa siano oggettivamente spazio e tempo e quindi ne possiamo avere solo un’interpretazione che ci aiuta comunque a fare previsioni molto precise sulla realtà, sappiamo per certo che non sono due entità distinte: spazio e tempo sono malleabili, e dal punto di vista di osservatori diversi possono anche mischiarsi tra loro.

Ritengo che oggi questo argomento debba essere divulgato con la stessa semplicità e chiarezza con cui nelle scuole divulghiamo tanti altri fatti scientifici. Infatti dopo quasi 117 anni non possiamo più catalogare la Relatività Ristretta come “fisica moderna”, proprio allo stesso modo in cui Einstein nel 1905 non si riferiva alla meccanica lagrangiana del 1790 con il nome di “fisica moderna”.

Il modo migliore per spiegare la nostra comprensione dello spaziotempo è quello di fare un passo indietro e studiare come la pensavamo qualche secolo fa.

I quattro numeri della nostra realtà

Un oggetto tridimensionale della nostra realtà.

La nostra intuizione sensoriale ci suggerisce che viviamo in uno spazio tridimensionale, infatti gli oggetti hanno una lunghezza, larghezza e altezza. Per descrivere un oggetto a un’altra persona senza fargli vedere una sua fotografia possiamo misurarlo e poi dirle quanto è lungo, largo e alto: tre numeri, niente di più e niente di meno, perché tre sono le dimensioni che percepiamo dello spazio attorno a noi.

Allo stesso modo, quando vogliamo descrivere i fenomeni che accadono intorno a noi dobbiamo essere in grado di dire dove si sono verificati e in che istante di tempo. Per capirsi tutti al volo sul “dove”, sono state inventate le mappe e i sistemi di coordinate che scandiscono lo spazio intorno a noi con dei numeri ben precisi, mentre per essere tutti d’accordo sul “quando” è stato inventato l’orologio, che scandisce con altri numeri ben precisi lo scorrere di una misteriosa entità che chiamiamo “tempo”.

Un evento è per definizione l’unione tra le tre informazioni spaziali sul “dove” e la singola informazione temporale sul “quando”. Quando diciamo “alle 15:06 di ieri si è rotto il vaso nella veranda di nonna” stiamo assegnando all’evento “Rottura del vaso” le coordinate geografiche “veranda di nonna” e la coordinata temporale “ora locale 15:06″. In totale sono quattro numeri: tre spaziali e uno temporale.

In totale un evento è descritto da quattro numeri: per seguire i fenomeni che accadono intorno a noi non possiamo usare meno di quattro numeri o rischieremmo di non farci comprendere dagli altri.

Lo spazio e il tempo prima del XX secolo

In passato i fisici si fecero guidare dall’intuizione e immaginarono spazio e tempo come due entità separate. Questo perché nulla nell’esperienza di tutti i giorni ci farebbe intuire il contrario. Per quei fisici, l’immagine mentale del “tempo” è proprio la stessa che intuiamo dalla vita di tutti i giorni:

La freccia del tempo.

Il tempo è una retta infinita che si estende dall’infinito passato fino all’infinito futuro, ma che ha un’unica orientazione: scorre solo verso il futuro.

Per i fisici del passato esisteva un’unica freccia del tempo universale: ogni evento dell’universo accadeva in un preciso istante di tempo su cui potenzialmente tutti possono concordare.

Vediamo la conseguenza del ragionamento di quei fisici. Supponiamo che una persona si metta d’accordo con un astronauta prima della sua partenza e che sincronizzino i propri telefoni in modo da far partire una suoneria ogni 8 ore per il resto della loro vita. In questo modo quando l’astronauta si troverà su Marte e sentirà la suoneria del proprio telefono, saprà che in quel preciso istante di tempo il suo amico sulla Terra avrà sentito la stessa suoneria. I due amici potranno quindi definire un istante chiamato “presente”, cioè una nozione di “adesso”.
Se non vedi nulla di strano in questa conseguenza, è perfettamente comprensibile! Siamo abituati a concepire il tempo in questo modo, cioè come un’entità universale che scorre allo stesso modo per tutti, e i fisici del passato non erano comunque scemi nonostante pensassero ciò!

Il moto di una pallina in una sola dimensione può in principio essere studiato con righello e cronometro.

Spazio e tempo non sarebbero comunque granché utili se non li facessimo “cooperare” per provare a fare delle previsioni sul mondo che ci circonda.
Per studiare il moto di una pallina su un tavolo potremmo ad esempio utilizzare un righello per tracciare la sua posizione, e un cronometro per tenere traccia del tempo che passa. Così facendo, finiamo per collezionare un insieme di eventi come “pallina nel punto 2.5 cm all’istante 1.51 s” o “pallina nel punto 4.7 cm all’istante 2.05 s” che messi in successione tra loro costituiscono la traiettoria della pallina.

Usiamo una sola coordinata spaziale per semplicità: il moto si svolge su una sola dimensione spaziale..

Se sei familiare con il concetto di piano cartesiano, possiamo scegliere di rappresentare gli eventi raccolti su di esso, solo che al posto di “y” mettiamo il tempo “t” trascorso. A differenza di un piano geometrico bidimensionale, abbiamo ora davanti un piano spaziotemporale (in gergo “1+1 dimensionale“, cioè una dimensione spaziale, che è la “x”, e una dimensione temporale):

Un diagramma spazio-tempo per il moto di una pallina.

Se collezionassimo tantissimi eventi per il moto della pallina e collegassimo tutti i puntini blu con una linea continua, troveremmo quella che è nota essere la traiettoria della pallina.
Se la pallina fosse ferma in ogni istante di tempo, la sua traiettoria nello spazio-tempo sarebbe la seguente

Il grafico spazio-tempo di una pallina ferma nel punto x=2.5 cm.

Questo perché la coordinata “x“, per definizione di “fermo”, non deve cambiare nel tempo. Il tempo scorre in verticale, e la posizione rimane fissa sul punto x=2.5 cm.
Un pallina che si muove con velocità costante avrebbe invece il seguente grafico:

A parità di intervallo di tempo passato, la pallina percorre sempre porzioni uguali di spazio: la velocità è allora costante.

Potremmo anche non limitarci al moto dei corpi e usare i diagrammi spaziotempo per raccogliere tutti gli eventi della nostra realtà!

Ad esempio tutti gli eventi dello spazio che avvengono allo stesso istante di tempo si ottengono tracciando la retta parallela all’asse “x”. Questa retta è detta “linea di simultaneità

Tutti gli eventi spaziali che avvengono all’istante “t=2 s” fanno parte della linea di simultaneità in arancione.

Scorrendo con il dito lungo la retta arancione, il tempo non cambia, è sempre fisso a “t=2 s”, mentre lo spazio cambia. Stiamo esplorando tutti i punti dello spazio che esistono nel medesimo istante di tempo.

Allo stesso modo possiamo raccogliere tutti gli eventi che avvengono nello stesso punto dello spazio tracciando la retta parallela all’asse “t”, come fatto nel caso della pallina ferma.

Il punto importante da capire però è che lo spaziotempo esiste indipendentemente dal nostro diagramma cartesiano. Il diagramma con cui scegliamo di catalogare gli eventi si chiama “sistema di riferimento” ed è totalmente arbitrario. Decido io quando far iniziare il conteggio del cronometro e decido io dov’è il punto di partenza in cui mettere lo zero del righello. Nonostante ciò, il moto della pallina avviene comunque in uno spaziotempo “invisibile”, e le coordinate che uso per descriverlo non sono altro che una mia personale interpretazione con cui posso fare delle previsioni.

L’evento nello spaziotempo esiste anche se non c’è nessun sistema di riferimento che lo descrive. Lo spaziotempo esiste indipendentemente dai sistemi di riferimento.

Proprio per questo motivo, la Fisica prevede che le sue leggi si mantengano vere indipendentemente dalle coordinate di chi le sta utilizzando. Non avrebbe proprio senso se la realtà dipendesse dal tipo di righello o cronometro che uso!

Le trasformazioni di Galileo

Galileo Galilei, l’ideatore del principio di relatività.

In particolare, come studiato da Galileo, le conclusioni degli esperimenti di Fisica devono essere identiche a seconda che siano studiate su un treno che si muove a velocità costante o che stia fermo rispetto alla stazione. Muoversi a velocità esattamente costante è comunque una cosa rara, concorderai sicuramente che capita spesso di sentirsi “tirati” in una direzione o in un’altra in un viaggio in macchina, o in treno quando frena o fa una curva. In quei frangenti il moto non è a velocità costante, ma trascurandoli possiamo dire che il resto del viaggio si svolge in maniera che se oscurassi i finestrini e mascherassi il suono del motore, non saresti in grado di dire se si è fermi o in movimento. Questa è l’idea di Galileo: il principio di relatività.

Se mettiamo tre persone di tre nazionalità diverse davanti a una mela su un tavolo, ciascuna delle tre persone dirà nella propria lingua “la mela è sul tavolo”. Il fatto che la mela stia sul tavolo è un dato di fatto che non può dipendere dalla particolare lingua che si utilizza per descriverlo.
Siccome l’obbiettivo degli umani è comunicare tra loro, deve esistere una traduzione da un linguaggio all’altro che mantenga intatto il fatto oggettivo che la mela è sul tavolo.

Allo stesso modo, sistemi di riferimento in moto relativo l’uno con l’altro devono poter concordare sui fenomeni che osservano con le proprie coordinate. Deve quindi esistere una traduzione da un set di coordinate all’altro che mantenga intatto il fatto oggettivo di ciò che si manifesta nello spaziotempo.

Se il moto relativo è a velocità costante, la traduzione linguistica è particolarmente semplice e lascia inalterati tutti i risultati della Fisica: si chiama trasformazione di Galileo.

Dati due osservatori che utilizzano due piani cartesiani diversi con coordinate diverse:

Se “v” è la velocità relativa, possiamo ottenere le coordinate di uno in funzione delle coordinate dell’altro con una trasformazione di Galileo:

Una trasformazione di Galileo.

Ovviamente abbiamo assunto che i due osservatori abbiano sincronizzato i propri orologi in un certo istante di tempo precedente, ecco perché le loro coordinate temporali sono identiche: T=t.

Con questa traduzione possiamo descrivere con le coordinate dell’osservatore 2 tutti gli eventi descritti in precedenza con le coordinate dell’osservatore 1.

Una cosa concettualmente molto utile per ciò che faremo dopo è rappresentare i due sistemi di riferimento nello stesso grafico. Rispetto all’osservatore 1, gli assi dell’osservatore 2 si ottengono impostando le loro equazioni T=0 e X=0. Infatti l’asse T è anche noto come “la retta verticale tale che X=0“. Quindi possiamo ricavare l’asse T nelle coordinate (x,t) sostituendo “0” al posto di “X

Nel diagramma spazio-tempo di prima avremo quindi

Una trasformazione di Galileo da coordinate (x,t) a coordinate (X,T).

La cosa più importante da notare è che rispetto all’osservatore di coordinate (x,t), l’asse T del secondo osservatore è geometricamente inclinato: questa inclinazione rappresenta il fatto che il secondo osservatore si sta muovendo rispetto al primo con una certa velocità.

Ora studiamo un po’ come questi osservatori interpretano lo spaziotempo intorno a loro. Le linee di simultaneità sono sempre rette parallele agli assi x e X per definizione:

I punti dello spazio simultanei tra loro secondo l’osservatore (X,T) sono simultanei anche per l’osservatore (x,t). Per verificare, scorri una retta arancione con il dito e verifica che non ti stai spostando né sulla coordinata t, né sulla coordinata T.

Le trasformazioni di Galileo non toccano la simultaneità: il tempo, nella concezione galileiana e newtoniana della fisica classica, è assoluto.

Ovviamente invece il discorso cambia se consideriamo gli eventi che avvengono in un unico punto nello spazio dell’osservatore in movimento. Magari l’osservatore 2 è in auto e sta segnando sul taccuino la posizione di un suo compagno di viaggio che è fermo rispetto a lui in ogni istante di tempo. Tuttavia dal nostro punto di vista in cui osserviamo l’autostrada da un casello, quel compagno di viaggio non è fermo!


Come abbiamo fatto prima, per ottenere le rette degli eventi che avvengono nello stesso punto dello spazio tracciamo le parallele all’asse T, quindi si avrà:

Le rette degli eventi che per l’osservatore (X,T) avvengono tutti in uno specifico punto del suo sistema di riferimento.

Come puoi notare, le rette non sono verticali anche per l’osservatore fermo (x,t), proprio perché dal suo punto di vista tutti quegli eventi che sono fissi nel sistema di riferimento (X,T) si muovono alla stessa velocità di questo. Infatti le rette hanno la stessa inclinazione dell’asse T, che rappresenta, come detto, il moto dell’osservatore 2.

Il tuo occhio potrebbe ora notare un fatto interessante: dal grafico sembra che l’intervallo temporale ∆T tra i due eventi (indicato in rosso), sia maggiore dell’intervallo temporale ∆t, quando invece sappiamo che nelle trasformazioni di Galileo deve essere rigorosamente:

L’intervallo di tempo tra due eventi è un numero su cui tutti gli osservatori connessi da una trasformazione di Galileo devono sempre concordare.

Questo è un dettaglio acutissimo e che potenzialmente potrebbe generare molta confusione. Non se ne parla spesso.

La verità è che quell’asse “T” ruotato non ha la stessa scala di lettura dell’asse originale, proprio per via della rotazione! Una volta tenuto conto di questo fattore di scala, troviamo che anche se visivamente le lunghezze indicate in rosso sembrano diverse, a conti fatti risultano uguali, come ci aspettiamo.

Una dimensione spaziale in più

Ora che abbiamo macinato un po’ di percorso, aggiungiamo una dimensione spaziale in più per divertimento. Assieme alla “x” consideriamo anche la “y” per ottenere il classico, beneamato piano euclideo.
Lo spazio-tempo ha ora dimensione 2+1 (due spaziali e una temporale), e può essere visualizzato nel modo seguente:

La rappresentazione di uno spazio bidimensionale nel tempo, descritta come una sovrapposizione di copie.

Concentriamoci però solo sul piano spaziale senza considerare il tempo, o se preferisci, congeliamo un singolo istante di tempo. Il piano euclideo è proprio quello che ci ha svezzato e ci ha introdotto alla geometria piana, è quel posto magico in cui l’ipotenusa di un triangolo rettangolo è data dal teorema di Pitagora:

Tutti concordano sul teorema di Pitagora, è un fatto matematico che è indipendente dal proprio stato di moto! Se le trasformazioni di Galileo fanno quel che promettono di fare, non dovrebbero mai e poi mai alterare la lunghezza dell’ipotenusa di un triangolo rettangolo! Ci aspettiamo che sia:

Le trasformazioni di Galileo lasciano invariata la geometria euclidea dello spazio.

Effettivamente è così, le trasformazioni di Galileo restituiscono il risultato corretto, lasciando intatto il teorema di Pitagora (non avrebbe proprio senso se dovesse dipendere dallo stato di moto!). Nel caso più semplice in cui il moto relativo è lungo l’asse x dell’osservatore 1 si ha:

Nota che il conto restituisce il risultato che ci aspettiamo solo se poniamo uguale a zero l’intervallo temporale “∆t” tra i due eventi spaziali che specificano i cateti del triangolo rettangolo! Questo passo è fondamentale, le lunghezze spaziali, nello spaziotempo, si calcolano per definizione a tempo fissato. Non avrebbe proprio senso dire “questo oggetto è lungo 3 cm tra gli istanti di tempo 1 e 10 secondi”: un osservatore è in grado di misurare una lunghezza spaziale nel proprio sistema di riferimento solo una volta che individua simultaneamente gli estremi dell’oggetto che vuole misurare.

Ora che abbiamo completato il riscaldamento con la relatività di Galileo, è il momento di passare al succo del discorso, ovvero il motivo per cui sei qui!

Ripensare il principio di relatività

Alla fine del XIX secolo ci si accorse che una serie di argomenti teorici e sperimentali rendevano incompatibili le leggi dell’elettromagnetismo con il principio di relatività, o meglio, con il principio di relatività mediato dalle trasformazioni di Galileo. Siccome l’elettromagnetismo era fondato su radici sperimentali solidissime, e si presumeva che il principio di relatività fosse un qualcosa di irrinunciabile per la Fisica, si spalancarono due possibilità:

  • 1) La teoria dell’elettromagnetismo è falsa e bisogna trovarne una migliore, che sia compatibile con Galileo. Il principio di relatività è irrinunciabile.
  • 2) La teoria dell’elettromagnetismo è vera. Il principio di relatività può essere abbandonato.

Fu quel giovanotto di Einstein a trovare il mix perfetto tra queste due soluzioni molto drastiche, la cosiddetta terza via:

  • 3): La teoria dell’elettromagnetismo è vera. Il principio di relatività è irrinunciabile. Le trasformazioni di Galileo però non sono le trasformazioni corrette per applicare il principio di relatività.

Einstein notò che le trasformazioni di coordinate che lasciavano invariate le leggi dell’elettromagnetismo non erano quelle di Galileo, ma le trasformazioni di Lorentz:

“c” è la velocità della luce: 300.000 km/s. È evidenziato il fattore gamma.

Queste bestiole non sono altro che le trasformazioni di Galileo con un po’ di accorgimenti in più: ad esempio compare a moltiplicare il “fattore gamma: γ” che contiene il rapporto tra la velocità relativa dei due osservatori e la velocità della luce al quadrato. La velocità della luce compare per due motivi, uno storico e uno concettuale:

  • 1): Queste trasformazioni furono trovate tra quelle possibili che lasciavano invariate le leggi elettromagnetiche tra osservatori in moto a velocità costante. Siccome la luce è un’onda elettromagnetica che si propaga nel vuoto con velocità “c”, questa compare direttamente nelle trasformazioni come fattore costante per far sì che l’equazione dell’onda rimanga appunto invariata, come vuole il principio di relatività.
  • 2): Studiando le conseguenze di queste trasformazioni si scoprì che facevano una predizione insolita: la velocità della luce è un vero e proprio limite di velocità: nessuno può raggiungerla e nessuno può superarla. È una conseguenza matematica di queste trasformazioni. (Si nota già dal fatto che il fattore gammaγ” esplode se poniamo la velocità relativa “v” uguale a “c”. Non si può dividere per zero!).
    Come tutti i limiti di velocità, deve essere uguale per ogni “automobilista”: la velocità della luce è una costante che ha lo stesso valore numerico per tutti gli osservatori che si muovono di moto relativo a velocità costante. Questo è anche un fatto rigorosamente verificato sperimentalmente.

Senza soffermarci troppo sulla matematica di queste trasformazioni, osserviamo che la prima differenza importante con quelle di Galileo è il fatto che la coordinata temporale dell’osservatore in moto relativo è ottenuta mischiando coordinate temporali e spaziali dell’osservatore iniziale!

A differenza di Galileo, non è semplicemente “T=t”, ma compare prepotentemente anche lo spazio con la coordinata “x”!


Questo fatto è assolutamente inedito, e dà i natali a una interpretazione completamente rivoluzionaria del concetto di spaziotempo!

Il tempo non è più assoluto e uguale per tutti, ma è una cosa personale per ogni osservatore dell’universo, così come sono personali le proprie coordinate spaziali. L’importante poi è riuscire a tradurre da una lingua all’altra per mettersi tutti d’accordo, ma a questo ci pensano proprio le trasformazioni di Lorentz.

Il problema dell’elettromagnetismo ci ha aiutato a capire che sono in realtà le trasformazioni di Lorentz quelle corrette da introdurre quando si parla di principio di relatività. Le trasformazioni di Lorentz si riducono a quelle di Galileo nel limite in cui la velocità relativa “v” è molto inferiore alla velocità della luce “c” (cosa che ci riguarda in particolar modo, dato che nulla nel nostro mondo viaggia a velocità prossime a 300.000 km/s, eccezion fatta per la luce e alcune particelle subatomiche).

Lo spaziotempo di Minkowski

Ricordi la questione del teorema di Pitagora discussa poco fa? Le trasformazioni di Galileo vanno molto d’accordo con la geometria euclidea dello spazio. Anche le trasformazioni di Lorentz ci vanno d’accordo, ma concentrarsi solo sulla parte spaziale è riduttivo. Si trovò che esiste una nuova quantità spaziotemporale che è lasciata invariata dalle trasformazioni di Lorentz! Tenendoci sempre in dimensioni 2+1, questa quantità è la seguente:

L’intervallo spaziotemporale lasciato invariato

Cioè se prendiamo due eventi separati da una distanza spaziale e da una distanza temporale, la quantità costruita in questo modo assume lo stesso valore per tutti gli osservatori che si muovono con velocità costante:

Questo fatto ci fa capire quanto fosse poco casuale che tempo e spazio si mischiassero nelle trasformazioni di Lorentz. Tempo e spazio si mischiano per un motivo ben preciso: fanno parte di un costrutto più grande dello spazio, lo spaziotempo! In questo spaziotempo la velocità della luce gioca un ruolo così importante da comparire addirittura nella “versione estesa del teorema di Pitagora spaziotemporale”.

L’insegnamento che ne possiamo trarre è il seguente: se lo moltiplichiamo per la velocità della luce, il tempo diventa a tutti gli effetti una nuova dimensione spaziale.

Viviamo quindi in una realtà a quattro dimensioni: tre dimensioni spaziali e una dimensione temporale. A differenza di come la pensavano qualche secolo fa, la dimensione temporale è in grado di mischiarsi con le informazioni spaziali tramite le trasformazioni di Lorentz.

Il teorema di Pitagora spaziotemporale è però particolarmente speciale, perché non possiamo ignorare che il termine temporale presenta un segno negativo!

Tempo e spazio non sono trattati allo stesso modo, c’è un segno meno di differenza!

Cambia proprio il concetto di geometria: la geometria dello spaziotempo non è più euclidea! Hai mai visto un teorema di Pitagora con una differenza al posto di una somma?
È la somma dei quadrati a rendere euclidea la geometria spaziale del teorema di Pitagora.

D’altra parte la geometria dello spaziotempo si dice essere “pseudo-euclidea“. Questo nome potrà essere figo da pronunciare, ma non dice nulla di troppo rilevante per i nostri scopi.

Una cosa ben più rilevante da esplorare invece è il diagramma spaziotempo (detto “di Minkoswki“).
Ricordi i diagrammi che abbiamo studiato nel caso di spazio-tempo classici? Quello spazio-tempo era particolarmente noioso in quanto tempo e spazio non erano in alcun modo connessi reciprocamente da trasformazioni di coordinate rilevanti per la Fisica. Ora si son mischiate un po’ le carte, quindi vediamo cosa bolle in pentola.

Consideriamo di nuovo due osservatori in moto relativo l’uno rispetto all’altro con velocità costante, ed esattamente come prima rappresentiamo i loro sistemi di riferimento in un unico grafico spaziotempo.

Per fare ciò dobbiamo trovare le equazioni degli assi T e X del secondo osservatore in funzione delle coordinate del primo! Con un procedimento identico a prima troviamo le seguenti rette:

Il risultato del mixing tra coordinate spaziali e temporali cambia completamente le regole del gioco: nel caso di Galileo avevamo che solo l’asse temporale dell’osservatore appariva ruotato nello spazio-tempo dell’osservatore fermo. Ora abbiamo una rotazione di entrambi gli assi!

Un diagramma di Minkowski.
Nota che gli assi temporali sono moltiplicati per la velocità della luce.
Come suggeritoci dal “teorema di Pitagora dello spaziotempo”, la dimensione temporale deve comparire moltiplicata per la velocità della luce.

Questo fatto ha delle implicazioni senza precedenti, perché se ora andiamo a chiederci, come fatto prima, quali siano le rette di simultaneità per l’osservatore in movimento, dovremo tracciare nuovamente la parallela all’asse X:

Eventi che giacciono sulle rette di simultaneità, come si vede, sono separati da un intervallo temporale ∆t non nullo per l’altro osservatore.

Il fatto che le rette di simultaneità non siano parallele all’asse “x” del primo osservatore implica che:

Eventi simultanei per un osservatore in moto possono non essere simultanei per un altro osservatore

La simultaneità di due eventi è relativa a chi osserva gli eventi! Se io osservo due eventi A e B accadere allo stesso istante di tempo sul mio orologio, un osservatore che si muove rispetto a me potrebbe veder succedere A prima o dopo B.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo fatto dipende dalla velocità della luce: la velocità della luce è una costante per tutti gli osservatori, e siccome le informazioni sugli eventi possono arrivarci al massimo alla velocità della luce (noi “vediamo” il mondo intorno a noi proprio grazie alla luce) l’unico modo in cui il moto relativo dell’osservatore riesce a non influenzare questi due fatti è proprio mettendo mano alla coordinata temporale.
Concettualmente, è come se la coordinata temporale si fosse “sacrificata” per preservare la velocità della luce.

Ricordi quegli astronauti che sincronizzavano i loro telefoni, convinti di poter definire un unico istante comune di “simultaneità” anche se distanti? Nel contesto dello spaziotempo di Minkowski ha poco senso: non esiste una retta di simultaneità degli eventi comune a tutti gli osservatori!

Se pensi che ciò sia la cosa più strabiliante di tutta questa faccenda, ti consiglio di continuare a leggere la prossima!

Dilatazione temporale

Consideriamo un evento che avviene in una singola posizione spaziale per l’osservatore in moto, e che la durata da lui registrata sia ∆T. Indicando con dei pallini il momento iniziale e il momento finale dell’evento, questi giace sulla retta degli eventi che avvengono in quella posizione, che ricordiamo, si ottiene tracciando la parallela all’asse T.

La durata ∆T dell’evento è indicata dalla striscia rossa sull’asse T. Come si vede graficamente, la durata dell’evento è indicata in rosso anche dal punto di vista dell’osservatore fermo. Secondo le trasformazioni di Galileo avremmo dovuto avere “∆T=∆t“: cioè la durata temporale dell’evento deve essere una cosa su cui è possibile concordare indipendentemente dal proprio stato di moto.

La trasformazione di Lorentz per la coordinata temporale ha tutta l’aria di promettere un po’ meno. Anzi, promette discordia tra gli osservatori a seconda del loro stato di moto.

Quanto è durato lo stesso evento secondo l’osservatore fermo? Per scoprirlo facciamo ricorso al teorema di Pitagora pseudo-euclideo, ovvero l’unica quantità su cui i due osservatori possono concordare di certo.
Consideriamo un’unica dimensione spaziale e ipotizziamo che il moto relativo si svolga sull’asse “x” del primo osservatore.
Per l’osservatore in moto l’evento avviene in un unico punto dello spazio, cioè la sua posizione non cambia, quindi si ha ∆X=0.:

Qui stiamo indicando con ∆t e ∆x la durata e la variazione in posizione dell’evento dal punto di vista dell’osservatore fermo, il quale evidentemente vedrà l’evento muoversi alla stessa velocità dell’osservatore in moto. Non ci resta che eguagliare le due espressioni per l’invarianza di Lorentz citata prima:

Abbiamo l’obbiettivo di isolare ∆t per capire quanto dura l’evento dal punto di vista dell’osservatore fermo. A tale scopo raccogliamo

Siccome l’evento in questione si sposta alla stessa velocità dell’osservatore in moto, chiamiamo proprio “v” il rapporto tra spazio percorso e l’intervallo di durata, dove “v” è proprio la velocità relativa dell’osservatore in moto. A questo punto ricaviamo ∆t dividendo tutto per quella quantità e calcolando la radice quadrata di entrambi i membri

E questa è una delle formule più famose nella storia della Fisica: la dilatazione temporale. La durata di un evento dal punto di vista di un osservatore che vede l’evento muoversi rispetto a lui è sempre maggiore della durata calcolata nel sistema di riferimento solidale a dove l’evento è avvenuto. Perché maggiore? Proprio perché ∆T, qualunque esso sia, è diviso per una quantità che è sempre minore di 1, quindi questa divisione produce un numero più grande di ∆T.

È questa forse la conseguenza più difficile da accettare sullo spaziotempo della nostra realtà, nonostante sia stata verificata sperimentalmente innumerevoli volte nell’ultimo secolo. La durata temporale degli eventi dipende dallo stato di moto dell’osservatore. Lo spaziotempo di Minkowski non è solo un’utile rappresentazione di quello che succede quando usiamo le trasformazioni di Lorentz, ma anche un’ottima intuizione su quale sia la vera natura della nostra realtà.

Ok forse questo è stato più un capitolo di un libro piuttosto che un articolo del blog, ma volevo essere davvero sicuro che ogni pezzo del puzzle del ragionamento cascasse al posto giusto. In futuro parlerò ancora di spaziotempo, quindi userò questo articolo come utile referenza per chi ne avesse bisogno.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come ho imparato ad amare i numeri immaginari

Ho molta difficoltà nel visualizzare cosa sarebbe la Fisica teorica, o la Scienza in generale, senza i numeri immaginari. Non fraintendermi, il mondo esisterebbe lo stesso e la Terra continuerebbe a girare attorno al Sole. Dico solo che senza l’ausilio dei numeri immaginari faremmo molta più fatica nella costruzione di tantissime teorie della Fisica.
Ma il vantaggio non è solo teorico, questi speciali numeri sono così utili che anche gli ingegneri non saprebbero proprio farne a meno, dalla fluidodinamica fino alla teoria dei segnali elettrici.

Cosa c’è di immaginario nei numeri immaginari?

Alla fine ha poco senso definire un numero “immaginario” o reale, in quanto la matematica è di fatto un’invenzione umana e possiamo decidere a piacere cosa sia “reale” o meno.

Invece mi piace pensare che l’aggettivo “immaginario” si riferisca piuttosto a una qualità particolare di chi li ha pensati per la prima volta. Chi ha scoperto questi numeri era una persona ricca di immaginazione, disposta a fare quel passo in più e a sfidare lo status quo. Una persona che ha saputo sfruttare il potere del pensare in grande, del “e se fosse..?“. Alla fine questa è la storia di un “bighellonare produttivo”.

Il bighellonare produttivo

I matematici del XVI secolo erano maggiormente indaffarati con la fondazione dell’algebra e della geometria analitica. Nel frattempo si divertivano a risolvere alcuni “cruciverba“ come: “trova le radici dell’equazione polinomiale x2+3x-4=0 usando gli assiomi dell’algebra”. Era importante specificare “usando gli assiomi dell’algebra” perché, come ogni gioco, anche la matematica ha le sue regole. Ad esempio sarebbe facile, in una partita di calcio, prendere la palla con le mani e lanciarla verso la porta per fare gol, ma a quel punto staremmo parlando proprio di un altro sport. La matematica è tale proprio per via delle sue regole.

Le regole del gioco della matematica di allora prevedevano che fosse proibito affermare che il quadrato di un numero potesse essere un numero negativo: “meno per meno fa più, e più per più fa più“. Se così non fosse, romperemmo ogni logica del gioco. Queste regole impedivano che alcune equazioni polinomiali avessero una soluzione. Ad esempio x2-2x+2=0 non ammette soluzioni: non esiste un numero “x” che inserito in quella equazione dia zero come risultato. Graficamente stiamo parlando di una parabola che non tocca mai l’asse y=0

Un modo semplice di vedere perché l’equazione non ha soluzioni è con un cambio di variabile:

Cioè, definendo t=x-1, risolvere x2-2x+2=0 equivale a risolvere:

È quindi chiaro perché quella parabola non tocca mai lo zero! Se lo facesse staremmo rompendo le regole del gioco: il quadrato di un numero non può mai essere negativo.

Il matematico italiano Gerolamo Cardano sapeva bene che qualcosa come x2-2x+2=0 non ammette soluzioni, eppure decise di bighellonarci attorno. Cardano fece finta che in qualche modo fosse possibile che un numero al quadrato potesse essere negativo. Possiamo immaginare che forse lo fece per gioco, o magari per puro sfizio, in ogni caso si divertì a scrivere la radice quadrata di -1:

La radice quadrata di un numero negativo è l’unico numero che moltiplicato per se stesso ha come risultato un numero negativo.

Et voilà, ora anche x2+1=0 ammette due soluzioni come moltissime altre equazioni di secondo grado.
Questa soluzione non fu presa sul serio dai matematici dell’epoca. Rafael Bombelli, altro matematico italiano che osò bighellonare su queste questioni, definiva queste soluzioni “quantità silvestri“.


Questo piccolo passo segnò però l’inizio di una nuova comprensione della matematica: si possono modificare le regole del gioco e riuscire comunque a creare dei costrutti logici autoconsistenti.

Chiaramente la radice quadrata di un numero negativo non può essere rappresentata sul piano cartesiano, perché è un numero che rompe le regole dei numeri cartesiani di tutti i giorni. Ma per questo motivo non è un numero che ha meno diritti degli altri, è semplicemente un numero diverso che merita il proprio “asse cartesiano”, magari con un nome diverso. I matematici dei secoli successivi definirono quindi i numeri immaginari come un’estensione dei numeri reali, aventi la loro algebra e i loro assiomi.

Torniamo però un attimo alla soluzione di x2-2x+2=0. Avevamo visto che questa era equivalente a risolvere t2=-1 che ha due soluzioni immaginarie date dalla radice di -1. Avevamo definito t=x-1, quindi possiamo scrivere la soluzione con la variabile originale

Puoi verificare che inserendo queste soluzioni nell’equazione di partenza ottieni zero. Clever trick!

Quindi la soluzione non è un numero puramente immaginario: il numero “1″ è un numero “normalissimo”, reale, che rispetta gli assiomi dei numeri reali. Tuttavia è sommato (o sottratto) con un numero immaginario (la radice di -1). Che senso ha, e come può essere rappresentato questo numero? I matematici lo definirono numero complesso, cioè un ibrido tra numero reale e numero immaginario.

Un numero complesso venne definito come un oggetto costituito da due parti: una parte reale e una parte immaginaria. La parte reale e la parte immaginaria sono rappresentate comunque da numeri reali, quindi in un certo senso un numero complesso non è altro che una coppia di numeri reali che soddisfa alcune proprietà speciali. Vedremo tra poco il senso di questa affermazione.
Per comodità di notazione fu definito un simbolo speciale per l’unità immaginaria, “i“, in modo che ogni numero immaginario sia un suo multiplo:

L’unità immaginaria “i”.

Un numero complesso “z” può essere espresso con più notazioni equivalenti:

Un numero complesso è costituito da una parte reale e da una parte immaginaria.


La cosa curiosa è che la notazione con le parentesi (parte reale, parte immaginaria) ricorda quella utilizzata per rappresentare i vettori in due dimensioni (componente x, componente y). Questa cosa è del tutto intenzionale, come vedremo tra poco.

Dal XVIII secolo in poi i numeri complessi vennero considerati un’estensione dei numeri reali, nel senso che un numero reale non è altro che un numero complesso con parte immaginaria nulla.

Diagramma di Venn per i campi dell’algebra.

Con molta astuzia, furono identificate delle operazioni di somma e prodotto di numeri complessi che rendessero tutto autoconsistente.

La somma di due numeri complessi è un altro numero complesso con parte reale data dalla somma delle parti reali e con parte immaginaria data dalla somma delle parti immaginarie.
Il prodotto di due numeri complessi è un altro numero complesso, le sue parti reale e immaginaria non sono però semplicemente il prodotto delle parti reali e immaginarie. Questa particolarità è necessaria per avere un’algebra autoconsistente nel campo dei numeri complessi.

Cosa mi ha fatto amare i numeri immaginari

I matematici capirono presto che per i numeri complessi esisteva un’interpretazione geometrica piuttosto semplice, ed è per questo motivo che scelsero di rappresentarli con una notazione simile a quella usata per i vettori in due dimensioni.

La volta che mi affezionai ai numeri immaginari fu quando realizzai quanto fossero utili in un contesto geometrico. A un certo punto mi si sbloccò il seguente ragionamento.
Prendiamo un vettore a componenti reali, innocentissimo, bidimensionale: una freccia. Se moltiplichiamo il vettore per il numero “-1” ne invertiamo la direzione:

Siccome i vettori possono essere ruotati sul piano, possiamo interpretare l’inversione come una rotazione di un angolo piatto!