Il bosone di Rubbia ha una massa leggermente diversa: cedimento del Modello Standard?

Dopo decenni di stagnazione, il Modello Standard mostra i primi segni di cedimento?

È di ieri (7 aprile) la notizia pubblicata su Science: è stata trovata una differenza tra predizione teorica e misura sperimentale per la massa del bosone W. Una differenza piccola (0.09%) ma superiore ai margini di errore (0.01%) e quindi assolutamente degna di nota.

Il bosone W è proprio il famoso bosone scoperto dal team di Carlo Rubbia nell’ormai lontano 1983 (scoperta che valse il premio Nobel al fisico italiano).

Dopo vari decenni dalla sua scoperta, il bosone W può dare indicazioni di Fisica oltre il Modello Standard, ed è facile immaginare l’entusiasmo nella comunità dei Fisici del Fermilab, dove è avvenuta la scoperta:

La misura è estremamente eccitante e davvero un risultato monumentale nel nostro campo.

Florencia Canelli, fisica sperimentale dell’Università di Zurigo

Ci sono però quelli che domandano un po’ di cautela:

Userei cautela nell’interpretare questo risultato come il segno di nuova Fisica oltre il Modello Standard. I fisici dovrebbero concentrarsi sul capire come mai questo valore differisce da altri risultati anche recenti.

Matthias Schott, fisico dell’Università di Gutenberg

Perché ce ne siamo accorti solo ora?

La risposta è particolarmente semplice: siamo diventati più bravi nell’analisi dei dati. Il team di ricerca è stato capace, grazie a nuove tecniche, di manipolare un campione statistico di 4 milioni di bosoni W prodotti all’interno del detector, tra il 2002 e il 2011. Questi bosoni sono decaduti producendo degli elettroni, dei quali è stata misurata l’energia osservando la loro traiettoria in un campo magnetico.
A differenza del passato, è stato possibile misurare molto meglio la traiettoria degli elettroni, migliorando quindi la precisione di quanta energia si sono portati via.

La misura dell’energia degli elettroni permette di ricondursi alla massa del bosone W (il cui decadimento ha concesso agli elettroni di avere questa energia in primo luogo).

Perché il bosone W è importante?

Ad oggi conosciamo quattro forze fondamentali della Natura, meglio note come interazioni fondamentali.
Il modo in cui studiamo queste interazioni su basa sull’analisi di alcuni processi che coinvolgono le particelle. Tali processi possono essere studiati a differenti scale di energia in cui vengono rappresentati con diverse schematizzazioni, le quali ci danno un’idea di quello che sta succedendo.

Da questi schemi teorici emerge che un’interazione tra particelle deve essere mediata da una particella speciale chiamata bosone.
Il modo più diretto per avere l’identikit di questa particella è conoscere la sua massa.

Prima di ricavare una stima di queste masse, facciamo il punto della situazione sulle interazioni fondamentali in gioco:

  • Gravità: interazione tra tutti i corpi con massa. In una teoria di gravità quantistica (ancora solo ipotizzata a stento) deve essere mediata da un bosone chiamato gravitone.
  • Elettromagnetismo: interazione tra tutti i corpi con carica elettrica. Mediata da un bosone chiamato fotone.
  • Forza forte: interazione che tiene assieme i nuclei degli atomi. Ad alte energie si manifesta come un’interazione mediata dai gluoni dei quark, a basse energie ha invece come mediatore il bosone pione.
  • Forza debole: interazione che permette i decadimenti di alcuni nuclei. Mediata da tre bosoni, chiamati W+,W- e Z.

La prima distinzione interessante tra queste quattro forze è il loro raggio di interazione. Sono infatti tutte forze che agiscono a distanza, e due tra queste, cioè gravità ed elettromagnetismo, hanno un raggio di interazione infinito. Ciò significa che la forza gravitazionale tra due masse agli antipodi dell’universo è sempre teoricamente diversa da zero. Nella realtà, ovviamente, tale valore è così piccolo da poter essere considerato irrilevante per lo stato di moto delle due masse. Lo stesso discorso si applica all’elettromagnetismo. Questo raggio di interazione si dice asintoticamente infinito nel senso che la forza può essere considerata “matematicamente” nulla solo all’infinito (cioè un punto irraggiungibile).

Le altre due forze, quella nucleare forte e quella debole, hanno invece a che fare con il mondo dell’infinitamente piccolo, cioè i nuclei degli atomi.
La scala di distanza nucleare è completamente fuori dagli schemi della quotidianità: parliamo di qualche milionesimo di miliardesimo di metro. Questo numero è così difficile da scrivere e pensare che è stata creata direttamente una nuova unità di misura: il fermi (in onore di Enrico Fermi).

Come informazione di orientamento, diremo che il raggio di un nucleo è del valore di qualche fermi.

Siccome l’interazione forte si occupa di tenere assieme i nuclei, composti da tanti protoni e neutroni (protoni che altrimenti si respingerebbero per via dell’interazione elettromagnetica), il suo raggio di interazione è proprio dell’ordine di qualche fermi. L’interazione debole è ancora più a corto raggio, perché agisce su una scala che è un millesimo di quella nucleare.

In che modo vengono interpretati questi differenti raggi di azione delle forze fondamentali dalla fisica teorica?

Livello intuitivo: il diagramma di bassa energia

Un’interazione in un certo intervallo di bassa energia può essere schematizzata da un diagramma tipo questo

Nel quale viene riportato un processo di repulsione elettromagnetica tra due elettroni. Matematicamente questa repulsione viene comunicata da un fotone virtuale “γ” che viene creato con una certa energia per un certo intervallo di tempo. L’informazione elettromagnetica si propaga tra due punti dello spaziotempo diversi e non può essere istantanea (per non contraddire la relatività ristretta), ma può propagarsi, al massimo, alla velocità della luce.

Con poche differenze, i diagrammi delle altre interazioni alle basse energie hanno una struttura molto simile (fatta eccezione per la gravità, per la quale non esiste ancora una teoria quantistica soddisfacente). Ciascun diagramma è caratterizzato dal proprio personalissimo bosone di interazione, che sia il fotone (elettromagnetismo), il pione (forze nucleari forti), o i W e Z (interazione debole).

Lo scambio di un oggetto tra due persone su due barche genera un allontanamento per via della conservazione della quantità di moto totale.

Esiste un esempio intuitivo, seppur da prendere con le pinze perché serve solo a darci un’intuizione fisica, del perché lo scambio di un mediatore produca una forza di interazione. L’esempio viene dalla fisica classica ed è illustrato in figura.

Il principio di Heisenberg in una forma speciale

Vogliamo studiare in maniera intuitiva quali siano le grandezze in gioco nella propagazione dei bosoni mediatori. Sappiamo dalla fisica teorica che possiamo interpretarli come particelle create e riassorbite durante l’interazione, e che esistono per un certo intervallo di tempo che consente la loro propagazione.

“Aspetta, mi stai dicendo che viene creata una particella dal niente? Ma questo non viola il principio di conservazione dell'energia?"

Una forma molto speciale del principio di indeterminazione di Heisenberg riguarda proprio l’energia e il tempo. Una particella può essere creata con una certa energia per un certo intervallo di tempo, senza violare il principio di conservazione, a patto però che valga

Il simbolo “~” indica un’uguaglianza approssimata. A destra, la costante di Planck divisa per 2π.

Per la creazione di un bosone mediatore di massa “m” richiediamo che questi esista per un tempo sufficiente per propagarsi di una distanza “R” (che è proprio il raggio di azione dell’interazione) a una velocità che è dello stesso ordine (ma MAI uguale) a quella della luce “c“. In sintesi:

Il simbolo “~” sta proprio a indicare che la relazione vale solo come ordine di grandezza: non stiamo dicendo in nessun modo che un corpo di massa “m” possa viaggiare alla velocità della luce, ma solo a una velocità comparabile e ad essa inferiore.

Un gioco poco rigoroso, che ci azzecca molto bene

Sfruttando una possibile interpretazione dei diagrammi sulle interazioni, immaginiamo che i bosoni mediatori vengano creati nei processi e che si propaghino per una distanza “R” che è proprio il raggio di azione.

Come facciamo a capire se tali bosoni esistano davvero o se siano solo costrutti teorici?
Dobbiamo rivelarli sperimentalmente, ma per rivelarli sperimentalmente dobbiamo prima sapere che tipo di massa possiamo aspettarci per queste particelle.

Un giochino poco rigoroso è quello di usare il principio di Heisenberg esposto sopra, perché a quel punto l’energia di massa dei bosoni si ottiene dividendo per “∆t

L’energia di massa dei bosoni in funzione del raggio di interazione

Applichiamo ora questa formula ai bosoni delle interazioni: fotone, gravitone, pione e bosoni W,Z.

  • Fotone: l’interazione elettromagnetica ha un raggio di azione infinito. Se diamo a “R” un valore molto grande nella formula troviamo che la massa tende a zero. I fotoni, come si sa comunemente, hanno massa nulla, e quindi sono capaci di viaggiare alla massima velocità dell’universo, cioè la velocità della luce. Non una grandissima notizia, dato che i fotoni sono proprio la luce stessa.
  • Gravitone: l’interazione gravitazionale è sorella (molto più debole a parità di distanza) della forza elettromagnetica, e ha anche lei un raggio di azione infinito. Troviamo quindi una massa nulla anche per il fantomatico bosone dell’interazione gravitazionale: se mai troveremo una teoria quantistica della gravità, il suo bosone si propagherà alla velocità della luce.

Per discutere del pione (mediatore della forza nucleare forte a bassa energia) e dei bosoni della forza debole, diamo prima una formula numerica utile

Con “fm” intendiamo “fermi”, cioè l’unità di misura delle lunghezze nucleari.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

L’energia delle particelle atomiche si misura infatti con una scala energetica chiamata MeV.
Come per tutte le unità di misura, fatti bastare solo qualche numero di orientamento: l’energia di massa dei neutroni e dei protoni è di circa 1000 MeV, mentre l’elettrone “pesa” solo 0.5 MeV. Le energie dei legami nucleari sono invece dell’ordine di qualche MeV.

Per quanto riguarda il bosone W dell’interazione debole, per la quale il raggio di azione è dell’ordine di 0.0025 fermi

Questo era il valore appunto trovato nel 1983! Per la precisione parliamo di 80,379 migliaia di MeV. Oggi questo valore è in discordanza dello 0.09% con quello misurato al Fermilab.

Se il risultato verrà confermato da ulteriori esperimenti, siamo davanti al primo reale superamento del Modello Standard.

È un arrivo una nuova stagione eccitante per i fisici teorici?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Il Teorema “CPT”, o il motivo per cui un anti-universo sarebbe indistinguibile dal nostro

Ci sono pochi argomenti che fanno da musa ispiratrice sia per i fisici teorici che per i fisici sperimentali. Le simmetrie discrete rappresentano una guida importantissima con cui interpretiamo i risultati sperimentali e con cui strutturiamo la forma matematica delle teorie, perché hanno la capacità di predire “cosa è concesso e cosa è vietato”.

  • Vuoi osservare il decadimento di una particella e non sai quali proprietà aspettarti dai suoi prodotti di decadimento? Argomenti di simmetria scarteranno alcune tra le varie possibilità, permettendoti di focalizzare le tue misure su altre proprietà.
  • Vuoi scrivere una teoria che descrive l’interazione nucleare? Sappi che gli esperimenti non hanno mai osservato la violazione di una certa simmetria “A”, quindi assicurati che le tue equazioni abbiano la stessa simmetria!

Quando diciamo “il sistema ha una simmetria” dobbiamo prima specificare rispetto a quale trasformazione. Infatti una simmetria è sempre preceduta da una trasformazione, altrimenti dire “simmetria” perde ogni significato. (Per un’introduzione al concetto di simmetria rimando a un precedente articolo).

Non tutte le trasformazioni sono una simmetria di un certo sistema. Ciò non è un problema: in ogni caso abbiamo scoperto che è molto comodo catalogare gli oggetti in base al loro comportamento sotto determinate trasformazioni.
Ad esempio la freccia in figura possiamo chiamarla “generica freccia bianca con punta a destra”

Potremmo decidere arbitrariamente di studiare il comportamento di questa freccia sotto alcune trasformazioni interessanti: ad esempio la trasformazione “inversione speculare” trasforma la freccia in quest’altra:

L’oggetto ottenuto non è lo stesso di prima, ora la freccia ha la punta verso sinistra: diremo che “la riflessione speculare non è una sua simmetria della freccia”. Pazienza! Non tutto può essere simmetrico.
Abbiamo comunque imparato qualcosa di nuovo: possiamo dare un nuovo nome a questo sistema: tipo “freccia bianca che sotto riflessione va nel suo opposto“. Questo modo di chiamare un oggetto in base a come si comporta sotto una trasformazione è ciò che facciamo per catalogare le particelle e le interazioni fondamentali del Modello Standard.

Il Modello Standard è caratterizzato da tre simmetrie fondamentali: la simmetria di Lorentz (le leggi della Fisica hanno la stessa forma in tutti i sistemi di riferimento inerziali, o in altri termini, sono simmetriche sotto una trasformazione di Lorentz), la simmetria di gauge (gli oggetti matematici della Fisica presentano più variabili di quelle fisicamente necessarie), e la simmetria CPT. Le prime due sono abbastanza astratte rispetto all’ultima, su cui ci concentriamo oggi.

La simmetria “CPT” evidenzia un fatto importantissimo della nostra realtà: le leggi della Fisica rimangono inalterate se applichiamo tutte e tre le seguenti trasformazioni:

  • Inversione spaziale “P”
  • Inversione di carica “C”
  • Inversione temporale “T”

Le trasformazioni P, C, T sono chiamate in gergo “simmetrie discrete”. Svisceriamole una ad una.

La simmetria P: inversione spaziale

L’inversione spaziale, altrimenti nota come “trasformazione di parità” consiste nell’invertire tutte e tre le direzioni spaziali: le coordinate cartesiane (x,y,z) vengono mandate in (-x,-y,-z).
Per visualizzare meglio questa trasformazione, considera una freccia in tre dimensioni, ad esempio dotata di un certo spessore, una punta e due facce rettangolari. Chiamiamo “A” e “B” le due facce di questa freccia.

Le due facce “A” e “B” della stessa freccia.

Visualizziamo la freccia in una certa posizione iniziale, ad esempio disponiamola con la faccia “A” rivolta verso di noi (quindi la faccia “B” è rivolta verso la pagina di questo articolo), e la punta è rivolta verso destra.
Per ottenere una trasformazione di parità eseguiamo due step: anzitutto ruotiamo di 180 gradi la freccia attorno alla direzione della sua punta ed infine invertiamo la punta. Infatti così facendo abbiamo mandato la faccia “A” nel suo opposto (cioè la faccia B), poi abbiamo invertito il basso con l’alto, ed infine abbiamo invertito la destra con la sinistra. Gli step sono illustrati in figura

Una trasformazione di parità della freccia. Dall’alto verso il basso: la freccia nella sua posizione iniziale, la freccia dopo una rotazione di 180 gradi attorno alla direzione della sua punta, e poi l’inversione della punta nell’ultimo step.

Nota bene, una trasformazione di parità è ben diversa da una trasformazione “speculare”. Non è come vedere la freccia davanti a uno specchio!

Una trasformazione speculare della freccia.

Spesso invece capita di sentire che l’inversione spaziale corrisponde a “vedere l’universo attraverso uno specchio”, come mai questa inesattezza?
Immagina per un attimo se la freccia avesse due facce uguali e non ci fosse modo di distinguere il basso dall’alto, in quel caso la riflessione speculare e la trasformazione di parità coincidono!

Questo perché la freccia iniziale era simmetrica sotto una rotazione di 180 gradi rispetto alla direzione della punta (quindi il primo step della trasformazione di parità la lascia invariata). Moltissimi sistemi fisici di interesse godono di una simmetria sotto rotazioni attorno a una certa direzione, per cui non è così scorretto dire che l’inversione spaziale “coincide” con l’osservare l’universo allo specchio.

"Però mi sfugge cosa c'entri con la Fisica tutto questo discorso sull'inversione dello spazio. Cosa gliene frega alle particelle se prendo gli assi cartesiani in un verso o nell'altro?" 

Magari non è immediato vederlo, ma la connessione è piuttosto profonda e ha a che fare con le interazioni fondamentali.

In particolare ha a che fare con il modo con cui scriviamo le teorie della Fisica.
Se le evidenze sperimentali suggeriscono ad esempio che un processo ha la stessa probabilità di avvenire in una direzione rispetto alla direzione opposta, allora sarà meglio che la teoria sia simmetrica sotto una trasformazione di parità dal punto di vista matematico! Lo schema di queste ragionamento è il seguente:

Per fare un esempio consideriamo la teoria di Dirac per un fermione di massa m. Nella teoria il termine di massa è scritto accoppiando i campi ψ del fermione nel seguente modo:

La trasformazione di parità dei campi fermionici si ottiene moltiplicandoli per una matrice detta “di Dirac”: γ0

Trasformazione di parità per i campi fermionici. La matrice di Dirac è caratterizzata dall’equazione (γ0)2 =1, cioè il suo quadrato è uguale all’identità.

A questo punto mostriamo che il termine di massa della teoria di Dirac è invariante sotto parità:

La trasformazione di parità dei campi fermionici lascia invariato il termine di massa grazie al fatto che 0)2 =1. La teoria di Dirac è costruita in modo da essere invariante sotto parità (ciò era suggerito dagli esperimenti).

In teoria nulla garantisce che le leggi della Natura siano invarianti sotto inversione spaziale, è una nostra assunzione ragionevole, confermata dalla maggior parte dei risultati sperimentali e per la maggior parte delle interazioni fondamentali.
Negli anni 50′, con grossa sorpresa, si scoprì che la nostra assunzione non corrispondeva alla realtà.

L’interazione debole e la violazione della parità

È arcinota l’importanza dei vettori nella Fisica. Siccome i vettori sono quantità riferite agli assi cartesiani, invertire gli assi con una trasformazione di parità invertirà anche i vettori.
Un vettore r verrà mandato nel suo opposto –r in seguito a una trasformazione di parità. Se però consideriamo il prodotto di due vettori, ad esempio come il momento angolare L=rxp , sotto una trasformazione di parità si ha

I segni meno si cancellano e il momento angolare rimane uguale a se stesso, non si inverte.

Un giroscopio davanti a uno specchio. L’asse di rotazione del giroscopio è perpendicolare alla superficie dello specchio: il verso di rotazione rimane inalterato nella riflessione.

Ciò si capisce intuitivamente se pensiamo a un sistema invariante sotto rotazioni e caratterizzato da un asse di rotazione, come un giroscopio. Per questo oggetto la trasformazione di parità equivale alla riflessione speculare (come precisato sopra). Se mettiamo un giroscopio rotante davanti allo specchio, il suo verso di rotazione non viene invertito: se gira in senso orario nel “nostro mondo”, continuerà a girare in verso orario anche nello specchio.

Fatta questa premessa, consideriamo uno degli esperimenti cruciali nella Fisica delle particelle: l’esperimento di Wu (1956).
Nell’esperimento di Wu si considerò un particolare decadimento nucleare del Cobalto-60, che provocava l’emissione di elettroni e antineutrini.
Tramite l’accensione di un campo magnetico, il team di Wu orientò gli spin dei nuclei di Cobalto in una direzione privilegiata, proprio come si farebbe con degli aghi magnetici. Per la conservazione del momento angolare, gli spin dell’elettrone e dell’antineutrino emessi dovevano avere lo stesso orientamento spaziale degli spin dei nuclei di Cobalto.
L’obbiettivo dell’esperimento era di seguire le traiettorie degli elettroni e vedere quale direzione prendessero rispetto allo spin del nucleo decaduto. Dopo un po’ di raccolta dati, si scoprì che gli elettroni avevano una direzione preferita di emissione: opposta allo spin nucleare. L’informazione raccolta sulla Fisica del problema era l’osservazione sperimentale: “la direzione preferita di emissione da parte degli elettroni è quella opposta allo spin del nucleo.”

Di primo acchito questa osservazione non sembra presentare nulla di problematico. Consideriamo però una trasformazione di parità: lo spin nucleare (essendo analogo a un momento angolare) viene mandato in se stesso come abbiamo visto, ma la direzione di moto degli elettroni viene invertita. Quindi in un mondo speculare (con asse di riflessione coincidente con quello dello spin) la conclusione dell’esperimento è che la direzione di emissione preferita da parte degli elettroni è quella concorde allo spin del nucleo.

Sotto una trasformazione di parità le conclusioni sperimentali sono diverse, in netta contrapposizione l’una con l’altra! Per la prima volta nella storia della Fisica una conclusione sperimentale è modificata da una trasformazione di parità, cioè la parità NON è una simmetria del sistema!

Perché la parità potesse essere una simmetria del sistema, ci saremmo aspettati tanti elettroni emessi nella direzione dello spin nucleare, quanti emessi nella direzione opposta. Ciò non è quello che si osserva, per cui siamo portati alla conclusione che la parità non è una simmetria fondamentale della natura, nonostante sia una simmetria delle forze nucleari e delle forze elettromagnetiche.

Interpretazione dell’esperimento di Wu

L’interpretazione dell’esperimento fu la seguente: esiste un’interazione fondamentale capace di far decadere un nucleo emettendo elettroni e antineutrini (oggi nota come interazione debole) che non è simmetrica rispetto a una trasformazione di parità. La parità NON è più una simmetria fondamentale della Natura.
L’universo visto allo specchio ha un comportamento diverso se si considerano i decadimenti deboli di alcuni nuclei. Questa distinzione fu abbastanza sconcertante e i fisici dell’epoca rimasero piuttosto sorpresi.

La simmetria C: inversione di carica

La trasformazione matematica di un elettrone in un positrone.

Una trasformazione di inversione di carica viene effettuata sulle funzioni d’onda che descrivono le particelle.
Le funzioni d’onda possono essere caratterizzate da numeri quantici come: carica elettrica, numero leptonico, numero barionico e numero leptonico di sapore.
L’inversione di carica, come suggerito dal nome, inverte tutti questi numeri quantici: non solo la carica elettrica, ma anche numero leptonico, numero barionico e sapore!


Ad esempio l’inversione di carica su un elettrone lo trasforma in un positrone (cioè una particella con stessa massa, ma carica elettrica opposta e numero leptonico opposto). Quindi effettivamente l’inversione di carica trasforma una particella nella sua anti-particella (per un resoconto su come siamo arrivati a teorizzare le antiparticelle rimando a un precedente articolo).

D’altra parte, una particella senza carica elettrica e senza altri numeri quantici (come il fotone) viene mandato in se stesso da questa trasformazione: il fotone è l’antiparticella di se stesso.

Per la maggior parte dei processi fisici, l’inversione di carica C è una simmetria: potremmo sostituire tutte le particelle del processo con le rispettive antiparticelle e il processo rimarrebbe lo stesso (stesse previsioni teoriche e stessi risultati sperimentali).
Ancora una volta fa eccezione l’interazione debole: per questa interazione entrambe le trasformazioni P e CP (combinazione di C e P) non sono una simmetria. Si pensa che questo fatto sia la risposta al quesito: perché il nostro universo è composto per la maggior parte da materia rispetto ad antimateria? In qualche momento dopo il big bang ci fu una maggior produzione di materia forse proprio grazie al fatto che l’interazione debole presenta questa asimmetria nel trattare particelle e antiparticelle.

La simmetria T: inversione temporale

L’ultima trasformazione discreta è l’inversione temporale: si inverte il tempo nelle equazioni della Fisica. L’inversione del tempo agisce su tutte quelle quantità in cui il tempo compare, ad esempio la quantità di moto (contenendo la velocità definita come il rapporto tra spazio e tempo) acquista un segno negativo sotto inversione temporale: p va in –p. Il momento angolare acquista un segno negativo anche lui, dato che L=rxp e r va in se stesso, ma p va in –p, quindi rx(-p)=-L.

Di nuovo, la maggior parte delle teorie fisiche rimane inalterata sotto inversione temporale, ad eccezione della solita guastafeste: l’interazione debole!

Ciò non sconforta ormai più di tanto, dato che le eventuali simmetrie sotto C,P e T separatamente non hanno motivo di esistere se non per la nostra soddisfazione personale.
Esiste un’unica simmetria che però deve essere rispettata affinché non crolli tutto il palazzo della Fisica Teorica, ed infatti esiste un Teorema che lo dimostra precisamente. Questa simmetria è la combinazione simultanea di C, P e T: la simmetria CPT.

Il Teorema CPT

Il Teorema CPT discende dall’unione tra meccanica quantistica e relatività ristretta, nel contesto della teoria quantistica dei campi. La sua dimostrazione dipende fortemente da tutto ciò che sappiamo essere verificato sperimentalmente sulla meccanica quantistica e sulla relatività ristretta. TUTTE le leggi della Natura sono invarianti se applichiamo successivamente: un’inversione di tutte le coordinate spaziali, un’inversione della carica di tutte le particelle (cioè la trasformazione di tutte le particelle in antiparticelle) e l’inversione temporale dei processi fisici.

Stiamo dicendo che non è possibile distinguere un esperimento di Fisica condotto in un anti-universo composto da anti-particelle, studiate con coordinate spaziali invertite e con i processi che avvengono al contrario nel tempo.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per capire il significato del teorema, dobbiamo ricollegarci all’interpretazione di Feynman-Stückelberg sulle antiparticelle, come discusso in un articolo precedente. Un’antiparticella può essere interpretata come una particella che si muove “indietro nel tempo”.

Siccome la trasformazione combinata “CP” trasforma tutte le particelle in anti-particelle e inverte le coordinate spaziali (in modo da farle muovere “all’indietro” rispetto alle coordinate originali), se applichiamo un’ulteriore trasformazione “T” di inversione temporale stiamo facendo muovere queste antiparticelle all’indietro nel tempo e in una direzione spaziale opposta alle coordinate originali. Tradotto: siamo ritornati punto e a capo, e cioè all’universo originale. Quindi, se operiamo un’ulteriore trasformazione di inversione temporale “T”, l’anti-universo ottenuto con la trasformazione “CP” può essere reso indistinguibile dall’universo iniziale.

La violazione di CP e T, ma non di CPT

Sottolineiamo: la simmetria sempre conservata è la combinazione simultanea CPT, ma ciascuna delle trasformazioni separate C, P o T può comunque non essere una simmetria delle teorie fisiche.

Abbiamo visto che l’interazione debole viola la simmetria P. Sappi che viola anche la simmetria CP, cioè la combinazione simultanea di C e P ( è stato verificato sperimentalmente). Questo fatto mise in grave allarme i fisici dell’epoca, perché la simmetria CPT era quindi in pericolo, e assieme a lei tutta la struttura matematica della teoria quantistica dei campi.

Grazie all’interpretazione di Feynman-Stückelberg sappiamo che, se CP è violata, allora l’unico modo per avere simmetria CPT è che anche T sia violata. Un po’ come dire: se voglio ottenere +1 dal prodotto di due numeri, dovranno essere entrambi negativi in modo che si cancelli il segno “-“, in questo modo (-1)(-1)=+1. Fisicamente corrisponde a dire:

Analogia tra la violazione delle simmetrie e la moltiplicazione tra numeri negativi.

I risultati sperimentali odierni sembrano confermare che la simmetria T sia violata, quindi la CPT dovrebbe essere salva, assieme a tutto il castello della Fisica Teorica.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

[Immagine di copertina: Kelly Sikkema]

“La tua ricerca è inadeguata!” Quando la Fisica ha bisogno di uno schiaffo

Ci sono svariati motivi per cui la Scienza, pur essendo una disciplina di matrice umana e quindi predisposta all’errore, riesce sempre a raddrizzarsi. Il motivo più cruciale è la spietatezza del giudizio tra pari: l’oggettività e il metodo scientifico non guardano in faccia nessuno.

Naturalmente per garantire il continuo raddrizzamento servono grandi personalità, che devono essere la base di ogni comunità scientifica. E non parlo di “grandi personalità” solo dal punto di vista accademico, servono grandi capacità relazionali e grande onestà intellettuale, anche a costo di dire qualcosa di molto scomodo. La scienza inizia a morire quando inizia a prendere piede il pensiero di gregge, dal quale nessuno ha il coraggio di discostarsi.
A capo del gregge servono dei pastori, pochi fari nella notte, ma sempre accesi e messi nei punti giusti.

In questo contesto, qualche tempo fa sono incappato in una storia condivisa da Freeman Dyson, che è stato uno dei più importanti fisici teorici del secondo novecento. Credo che questa storia riassuma perfettamente lo stato esistenziale del ricercatore: la ricerca è un mondo appassionante in tutti i sensi, passione emotiva e passione in senso latino, “patire, soffrire”.

Un po’ di contesto storico

Un tipico processo di elettrodinamica quantistica, un fotone virtuale viene scambiato tra due elettroni.

Alla fine degli anni ’40 si era raggiunta una soddisfacente descrizione dei processi atomici. L’unica forza fondamentale del mondo quantistico allora compresa, l’elettrodinamica quantistica, aveva come ingredienti i campi fermionici come elettroni, protoni e neutroni, e il campo elettromagnetico (rappresentato dal suo quanto di eccitazione, il fotone).
Come descritto in un precedente articolo, essendo il mediatore di un’interazione a raggio d’azione infinito, il fotone ha massa nulla. Un principio di simmetria, assieme alle nozioni dell’elettrodinamica classica, ci guidano a scrivere l’interazione elettrodinamica, come spiegato in un precedente articolo, con la seguente struttura:

L’accoppiamento tra campi fermionici ψ e il campo elettromagnetico Aμ.
L’intensità dell’interazione è specificata dalla carica dell’elettrone in unità fondamentali (unità di c=ℏ=1).
Freeman Dyson (1923-2020)

A partire da questa struttura, si è in grado di calcolare tutti i processi elettromagnetici possibili, e verificare l’accuratezza della teoria confrontando i valori ottenuti con i dati sperimentali. Questa era l’occupazione di Freeman Dyson e il suo gruppo di studenti. Dyson, allora un giovanissimo professore di Fisica Teorica alla Cornell, era riuscito con il suo gruppo ad ottenere uno spettacolare accordo tra le previsioni teoriche e i dati sperimentali: l’elettrodinamica era una teoria in grado di fare previsioni molto accurate.

Dopo questi successi, nel 1951 il gruppo di Dyson era alla ricerca di altri problemi da conquistare. Uno particolarmente promettente era il problema di studiare cosa tenesse assieme i nuclei: l’interazione nucleare.
All’epoca la Fisica Nucleare era una scienza prettamente empirica: i modelli teorici erano pochi, confusi e dallo scarso potere predittivo. Quello che era certo, almeno alla scala di energia che si esplorava all’epoca, è che il mediatore della forza nucleare doveva essere massivo (per sapere perché leggi qua) perché al di fuori del nucleo la forza nucleare cessava di esistere.
Se il mediatore dell’elettrodinamica era il fotone, il mediatore dell’interazione nucleare fu individuato nel pione. L’obbiettivo era quindi fare degli esperimenti in cui si facevano collidere pioni con altre particelle nucleari, per studiarne l’interazione.

Dyson e il suo gruppo, avendo avuto così tanto successo con il modello dell’elettrodinamica, decisero che la struttura migliore per l’interazione doveva essere molto simile:

L’accoppiamento tra i campi fermionici ψ e il campo del pione ϕ.
L’intensità dell’interazione è specificata dalla costante “g” , che ha un valore molto più elevato della costante di accoppiamento elettromagnetica “e”.
Un protone ed un neutrone interagiscono scambiandosi un pione neutro.
Nota la somiglianza con il diagramma dell’elettrodinamica.


Questa teoria era conosciuta come “teoria del pione pseudoscalare” , e il gruppo di Dyson ci lavorò a tempo pieno per due anni. Dopo uno sforzo di proporzioni eroiche, nel 1953 riuscirono a produrre delle predizioni teoriche in accettabile accordo con i dati disponibili all’epoca. La carriera di alcuni studenti di Dyson dipendeva dal successo di questa teoria, dato che erano per la maggior parte dottorandi o post-doc.

I dati sperimentali con cui confrontavano le loro previsioni teoriche erano stati raccolti da uno dei migliori fisici del novecento, nonché uno dei padri fondatori della ricerca nucleare: Enrico Fermi, professore a Chicago e al tempo uno dei leader nella costruzione del Ciclotrone con cui si studiavano le interazioni nucleari.
Fermi era anche uno dei migliori fisici teorici della sua generazione, quindi Dyson pensò fosse il caso di andare a trovarlo per discutere sul successo del proprio lavoro, prima di pubblicarlo.

Enrico Fermi (1901-1954), premio Nobel per la Fisica 1938.

L’incontro con Fermi

Nella primavera del ’53, Dyson si diresse a Chicago per andare a trovare Fermi nel suo ufficio, portando con sé una pila di fogli con alcuni grafici che riproducevano i dati sperimentali calcolati dal suo gruppo.

Fermi aveva la nomea di incutere una certa soggezione, di certo non solo per la sua fama di grande scienziato, ma anche per l’acutezza del suo giudizio. Quindi è facile immaginarsi che Dyson si sentisse un po’ teso per quell’incontro.
La sua tensione si trasformò presto in soggezione quando vide che Fermi diede solo un rapido sguardo ai fogli che gli aveva portato, per poi invitarlo a sedersi e chiedergli con un tono amichevole come stessero sua moglie e suo figlio neonato.

Dopo qualche chiacchiera, improvvisamente Fermi rilasciò il suo giudizio nella maniera più calma e schietta possibile

Ci sono due modi di fare i calcoli in Fisica Teorica. Il primo modo, che io preferisco, è di avere un chiaro schema mentale del processo fisico che vuoi calcolare. L’altro modo è di avere un preciso ed auto-consistente formalismo matematico. Voi non avete nessuno dei due.

Dyson rimase ammutolito, anche se la parte più orgogliosa di lui era comunque incredula. Quindi cercò di capire cosa non andasse, secondo Fermi, con la teoria del pione pseudoscalare.

Fermi aveva un intuito fisico eccezionale su cui fondò letteralmente una scuola di pensiero in grado di far fruttare ben 8 premi Nobel per la Fisica tra i suoi studenti.

La teoria del pione pseudoscalare, secondo il suo intuito, non poteva essere corretta perché a differenza dell’elettrodinamica l’interazione era molto più intensa e nei calcoli era necessario mascherare alcune divergenze senza avere un chiaro schema fisico di quello che stesse succedendo.

Inoltre, quando Dyson gli chiese, ancora orgogliosamente, come mai secondo lui i dati fossero comunque in accordo con le sue previsioni nonostante la teoria fosse inadeguata, Fermi gli fece notare che il numero di parametri utilizzato (quattro) era troppo alto, e che con un numero così elevato fosse possibile raggiungere un raccordo tra le previsioni teoriche e qualunque dato sperimentale.

In sostanza Fermi demolì, con estrema calma e schiettezza, gli ultimi due anni di lavoro dell’intero gruppo di Dyson, composto da dottorandi e post-doc la cui carriera in quel momento dipendeva dal successo di quella teoria.

La storia diede ragione a Fermi. La teoria del pione pseudoscalare non era quella corretta, al modello delle forze nucleari mancava un pezzo fondamentale del puzzle: i quark, teorizzati da Gell-Mann il decennio successivo, quando Fermi era già morto.

Dopo quell’incontro traumatico, Dyson e il suo gruppo pubblicarono comunque il lavoro, ma abbandonarono completamente quel campo di ricerca. Negli anni successivi, ripensando a quell’evento, Dyson espresse di essere grato eternamente a Fermi per quello “schiaffo” morale, perché la sua teoria non avrebbe portato nessun frutto e avrebbe fatto sprecare preziosi anni di ricerca a lui e al suo gruppo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Alla ricerca del neutrino di Majorana nel punto più freddo dell’Universo

I neutrini sono secondo molti le particelle più interessanti della Fisica moderna. In un recente articolo ho cercato di dare un’idea del perché questa sia un’opinione così diffusa.

Tra tutti i grattacapi sui neutrini, uno dei più discussi riguarda il meccanismo teorico con cui interpretiamo la loro massa.

"Perché è necessario un meccanismo teorico per interpretare le masse delle particelle? E poi, che vuol dire interpretare? Non si interpreta una massa, la massa esiste e basta, no?"

L’osservazione è ragionevole! Ma la Fisica Teorica (lo strumento con cui facciamo previsioni sull’universo) lo è un po’ meno, o meglio, parla un linguaggio che ai nostri occhi può apparire meno “ragionevole”. In un recente articolo ho provato a illustrare come e perché sia necessario interpretare la massa delle particelle tramite la rottura di una simmetria. Questo meccanismo, in grado di “dare massa” alle particelle, è noto come “meccanismo di Higgs”.
Siccome sappiamo da poco più di un ventennio che i neutrini hanno massa, è lecito estendere il meccanismo di Higgs anche a loro. Tutto funziona perfettamente, se non fosse per due questioni poco soddisfacenti:

  • Come spiegato nell’articolo precedente e accennato qui, la massa dei fermioni (la stessa famiglia dei neutrini) deve essere costruita con due blocchetti matematici fondamentali chiamati “chiralità destra” e “chiralità sinistra”. I neutrini interagiscono solo con la chiralità sinistra della loro funzione d’onda, per cui se vogliamo introdurre una massa con il meccanismo di Higgs, dobbiamo introdurre forzatamente una chiralità destra, la quale sarebbe “sterile” (cioè non avrebbe motivo di esistere se non per costruire la massa della particelle, dato che non partecipa alle interazioni).
    I fisici preferiscono lavorare con quantità che possono misurare, se non possiamo misurare la “chiralità destra” nel senso che non possiamo osservare neutrini che interagiscono con quella chiralità, è poco soddisfacente introdurla.
  • La costante di accoppiamento tra il campo del neutrino e il campo di Higgs (tramite cui possiamo “assegnare“ la massa alla particella) è inspiegabilmente molto più piccola delle costanti di accoppiamenti dei fermioni più famosi (elettroni, quark, muoni, etc.).

Queste questioni poco soddisfacenti fanno sentire la necessità di un meccanismo alternativo per dare massa ai neutrini, un meccanismo personalizzato apposta per loro, per nascondere la nostra ignoranza su una eventuale Fisica oltre il modello standard.

Questo meccanismo è noto come Meccanismo di Majorana: a un livello molto elementare si tratta di ipotizzare che neutrino e antineutrino siano la stessa particella. Il tutto è spiegato brevemente in questo articolo dedicato all’ipotesi di Majorana. In sintesi: se neutrino e antineutrino sono la stessa particella (cosa possibile in quanto il neutrino è neutro elettricamente), allora serve un solo blocchetto matematico per descrivere la sua massa, cioè solo la “chiralità sinistra”, e non serve introdurre chiralità sterili.


Il meccanismo di Majorana, con poche altre ipotesi di contorno, è in grado di spiegare la massa dei neutrini senza incappare nelle questioni elencate sopra, per cui è generalmente favorito tra i fisici.

Il meccanismo dell’altalena per la massa del neutrino. Il motivo per cui i neutrini sono così leggeri è perché esiste un loro partner di Majorana, sterile e molto massivo.

Questo meccanismo identifica neutrino con antineutrino, quindi non illustra solo come la particella acquista una massa, ma ci dice anche che il neutrino è un fermione completamente diverso dagli altri fermioni del Modello Standard.
Inoltre fornisce una possibile interpretazione del perché il neutrino è tanto leggero rispetto agli altri fermioni. Infatti in una delle declinazioni della teoria di Majorana la massa del neutrino è così piccola per via dell’esistenza di un ipotetico neutrino sterile di Majorana (sterile rispetto alle interazioni) avente una massa molto grande.
Con uno speciale accorgimenti teorico, l’introduzione di un neutrino molto massivo di Majorana ha l’effetto di rendere molto piccola la massa del neutrino che osserviamo nelle interazioni comuni.
Il modo migliore per immaginarsi questo particolare escamotage è tramite un’altalena: il neutrino è così leggero in quanto esiste un suo “partner sterile e pesante” molto più massivo.
I due meccanismi sono rappresentati in figura:

Un punto importante da capire del meccanismo “altalena” di Majorana è il seguente: il neutrino finale (quello leggero) è comunque una particella di Majorana. Esistono quindi due “neutrini di Majorana” di cui tenere conto nella teoria, il primo è il neutrino sterile introdotto all’inizio, questo neutrino sterile tramite un particolare accorgimento teorico può essere utilizzato per rendere molto piccola la massa del neutrino che si manifesta nelle interazioni. Un sottoprodotto di questo meccanismo è che il neutrino leggero diventa una particella di Majorana.

Come possiamo capire se il neutrino è una particella di Majorana?

La strategia più favorita è quella di andare a studiare processi nucleari in cui un neutrino si trasforma in un antineutrino, cioè processi che possono avvenire se e solo se il neutrino è una particella di Majorana.

Un processo di questo tipo è il doppio decadimento beta senza neutrini. (Per una breve introduzione sul decadimento beta singolo, leggi qui).
In sintesi in un decadimento beta normale un neutrone all’interno del nucleo si trasforma in un protone grazie all’interazione debole, ma nella trasformazione vengono generati un elettrone (per conservare la carica elettrica), e un antineutrino.

Illustrazione di un singolo decadimento beta nucleare.
Un doppio decadimento beta senza neutrini. La “barra” sopra il nome della particella indica la sua antiparticella. Nell’ipotesi di Majorana neutrino e antineutrino coincidono. Notare che le uniche particelle emesse nello stato finale sono due elettroni.

Questo antineutrino, prima di uscire dal nucleo, può andare a interagire con una certa probabilità (in verità piuttosto bassa) con un altro neutrone. L’interazione può avvenire solo se l’antineutrino interagisce con il neutrone con la chiralità preferita dall’interazione debole, cioè la chiralità sinistra (come illustrato nell’articolo precedente), ma per fare ciò dovrebbe invertire la chiralità con cui è stato emesso nel decadimento iniziale (se i neutrini interagiscono solo con la chiralità sinistra, gli antineutrini interagiscono solo con la chiralità destra, dato che particelle e antiparticelle trasformano in maniera opposta). Quindi deve avvenire il passaggio da chiralità destra a chiralità sinistra, e questo può avvenire solo se neutrino e antineutrino sono la stessa particella, cioè se sono particelle di Majorana!
Se l’antineutrino (neutrino) inverte la propria chiralità, può andare a fare interazione debole con un altro neutrone nucleare, e questo genera l’emissione di un altro protone e di un altro elettrone.
In questo modo nel nucleo spuntano due protoni in più rispetto a prima, e vengono emessi due elettroni in totale (ma nessun neutrino).

Il risultato del doppio decadimento beta è che non vengono emessi neutrini, perché agiscono solo come particelle virtuali di scambio all’interno del processo nucleare.

L’esperimento CUORE

La probabilità di osservazione di un doppio decadimento beta nucleare è così bassa che se stessimo ad aspettare ne accadrebbe in media uno solo in ben dieci milioni di miliardi di volte l’età dell’universo.

La fisica dei neutrini è abituata a cercare l’acqua nel deserto, essendo i neutrini le particelle più sfuggenti che conosciamo. Fortunatamente, come già discusso nell’articolo precedente, possiamo aumentare le nostre probabilità di vincita se giochiamo bene tante schedine!
È sufficiente indagare grandi masse nucleari, dell’ordine della tonnellata, e questa probabilità si innalza considerevolmente: almeno qualcuno fra quei miliardi e miliardi di nuclei dovrà pur decadere!
Tuttavia la probabilità del processo è comunque molto più bassa delle probabilità di tutti i restanti processi dell’ambiente che ci circonda, dalla radioattività naturale fino ai prodotti di spallazione dei raggi cosmici.
Se si vuole cercare il doppio decadimento beta, bisogna schermare tutte queste sorgenti indesiderate di particelle, andando ad esempio sottoterra.

E qui entra in gioco l’esperimento CUORE, uno dei numerosi esperimenti che cercano il doppio decadimento beta, ma comunque uno dei più promettenti. CUORE si trova nel cuore dei Laboratori Nazionali del Gran Sasso, protetto da strati su strati di roccia in grado di schermare i detector che cercano il segnale tipico del doppio decadimento beta (cioè l’emissione di due elettroni dal nucleo).

Il problema è che la sensibilità dei detector richiesta è soddisfacente solo se si lavora a temperature molto vicine allo zero assoluto.

Sia chiaro: non parliamo dello zero Celsius, ma dello zero Kelvin (cioè 273 gradi sotto lo zero Celsius). L’esperimento CUORE è stato in grado di raggiungere temperature dell’ordine del millesimo di Kelvin, cioè poco maggiori di 0.001 Kelvin, questo al fine di ottenere sensibilità sperimentali in grado di discernere, con sufficiente accuratezza, il segnale del doppio decadimento beta dal segnale delle altre eventuali fonti di radioattività naturale. Questo fa di CUORE “il metro cubo più freddo dell’Universo”.

Ecco cosa dovrebbe succedere in uno scenario positivo e idealizzato:

Nell'ipotesi che il nucleo decada con doppio decadimento beta senza neutrini, nel processo vengono emessi due elettroni. Il nucleo si trova all'interno di un materiale cristallino mantenuto a temperature dell'ordine del millesimo di Kelvin. I due elettroni uscenti dal nucleo depositano una certa energia nel cristallo, e questa energia viene captata da un detector, che a queste temperature ha la sensibilità sufficiente per distinguere l'energia degli elettroni dal rumore circostante. 
L'energia viene registrata dal detector: se essa corrisponde al calcolo teorico caratteristico del processo, allora con una buona probabilità il neutrino è una particella di Majorana!
Un gruppo di ricercatori di CUORE esegue dei controlli sulla struttura che contiene il materiale nucleare candidato per il decadimento cercato.

Ribadiamo un fatto fondamentale: se il neutrino NON è una particella di Majorana, non osserveremo mai il doppio decadimento beta senza neutrini.
Finora l’esperimento CUORE, in accordo con altri esperimenti internazionali, non ha trovato evidenza del decadimento (ultimi dati del 2020). Ciò NON esclude che i neutrini siano particelle di Majorana, perché dobbiamo ancora raggiungere la sensibilità sperimentale sufficiente (abbassare la temperatura purtroppo non basta, serve anche riuscire ad eliminare completamente il rumore ambientale che può influenzare i detector e coprire il segnale che stiamo cercando).

A fini divulgativi (almeno a un livello universitario), ho cercato di mettere assieme una guida per lo studente interessato alla questione del doppio decadimento beta e alle difficoltà sperimentali di CUORE:

Clicca qui per il download

Lo scopo era quello di fornire una referenza più completa e al contempo succinta possibile, poiché l’argomento è in continua evoluzione e ricco di letteratura specializzata (citata in bibliografia).


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Il neutrino: la particella che non dovremmo conoscere

Tutte le particelle note del nostro universo sono state da noi classificate con alcune proprietà che a nostro giudizio sono le più interessanti: la carica elettrica, la massa e lo spin.
Per studiare queste proprietà è di vitale importanza osservare il comportamento delle particelle nelle interazioni con il mondo, in particolare ci si concentra su:

  • Come interagiscono con un campo elettromagnetico: questo al fine di stimare la loro carica elettrica e la loro massa.
  • Come interagiscono con le altre particelle di un materiale noto: questo al fine di capire il particolare meccanismo di forza a cui la particella è sensibile.

Per il neutrone, elettrone, protone e tante altre particelle, questi metodi ci hanno permesso di avere delle stime molto accurate sulla loro carica elettrica, massa e spin.
Ad esempio neutrone e protone hanno quasi la stessa massa, ma il primo è neutro elettricamente: quindi il neutrone non è sensibile alla forza elettromagnetica, percepisce solo la forza forte e la forza debole (per una rapida infarinatura sulle interazioni fondamentali consulta un articolo recente cliccando qui). Il protone invece è sensibile a tutte le forze fondamentali della natura. L’elettrone non è sensibile alla forza forte, ma lo è alla forza elettromagnetica e debole. Il modo che abbiamo per scoprirlo è utilizzando i due metodi esposti sopra.

Il modo in cui studiamo le interazioni: un proiettile di particelle viene mandato contro un bersaglio. Dopo aver interagito con il bersaglio, le particelle vengono rivelate con un rivelatore. Grazie a calcoli teorici, si può capire che tipo di interazione hanno fatto le particelle nel materiale, ad esempio in base all’angolo di uscita.

Tra tutta la zoologia di particelle, il neutrino è senza dubbio la più seccante.

Immagina se dovessimo studiare le proprietà di una particella che risponde molto male ai nostri metodi di indagine. Una bella gatta da pelare! Una particella parecchio seccante è proprio il neutrino: il primo metodo è inefficace in quanto il neutrino è neutro, mentre il secondo metodo è frustrante in quanto il neutrino interagisce pochissimo con la materia che lo circonda:

In media, un neutrino interagisce una sola volta dopo aver percorso 100 miliardi di volte un diametro terrestre.

In sintesi: il neutrino si comporta come un fantasma in grado di attraversare i muri: non c’è peggior comportamento che una particella possa avere, se il fine è quello di studiare come interagisce!

“Siamo sicuri che questo neutrino esista? Come fanno i fisici a studiare una cosa che non si lascia studiare e poi affermare che esiste con certezza?"

Questo è l’aspetto più frustrante: non possiamo fare a meno del neutrino: per una giustificazione storica dell’esistenza del neutrino clicca su questo articolo. I neutrini sono stati scoperti sperimentalmente e vengono studiati con cura dagli anni ’50, questo perché sono state impiegate sorgenti che emettono grandi quantità di neutrini: in questo modo si contrasta la scarsa probabilità di interazione con l’enorme numero di proiettili. È la stessa filosofia di comprare un centinaio di “gratta e vinci” per aumentare le chances di pescarne almeno uno vincente.

I neutrini interagiscono così poco perché sono sensibili (per quanto ne sappiamo oggi) a un solo tipo di interazione che sfortunatamente è la più debole di tutte (alle energie tipiche degli sperimenti), non per niente si chiama “forza debole“.
Ora devi sapere che dal punto di vista della relatività speciale (leggi qui e qui) ogni particella di spin 1/2 può partecipare alle interazioni in due configurazioni possibili: con il proprio spin orientato come la quantità di moto, o con lo spin orientato in direzione opposta. Il primo modo si dice destrorso, il secondo modo si dice sinistrorso.
Non esiste nessun motivo teorico per cui la configurazione destrorsa debba essere favorita rispetto alla sinistrorsa, eppure per qualche mistero l’interazione debole accoppia le particelle solo nella loro configurazione sinistrorsa (questo fatto si chiama “violazione della simmetria di parità spaziale”).

Il mistero della massa

Siccome i neutrini interagiscono solo con l’interazione debole, essi hanno di fatto un’unica configurazione che possiamo studiare sperimentalmente: quella sinistrorsa. Questo fa sorgere un dubbio dato che, come spiegato brevemente qui, una particella massiva avente lo stesso spin del neutrino dovrebbe invece manifestarsi con entrambe le configurazioni, per questione di relatività.
Se i neutrini si manifestano solo con una delle due configurazioni, potrebbero non avere massa?

Questo sospetto andava a braccetto con i dati sperimentali sulla massa del neutrino: dagli esperimenti sul decadimento beta nucleare (spiegato brevemente qui) si osservava che la massa doveva essere piccolissima, almeno un milione di volte più piccola anche di quella dell’elettrone. Se poggio e buca fa pari, i neutrini dovevano allora avere massa esattamente uguale a zero!

Invece i neutrini si sono rivelati ancora una volta una spina nel fianco, perché nel 1998 furono osservate le oscillazioni dei neutrini.
Devi sapere infatti che di neutrini ne esistono ben tre specie (sono chiamati sapori leptonici): “e, μ, τ”. Siccome si pensava che i neutrini non avessero massa, questi sapori erano ben distinti l’uno dall’altro. Nelle oscillazioni accade proprio il contrario: un neutrino può cambiare sapore con una certa probabilità, e la grande notizia è che ciò può avvenire solo se la massa del neutrino è diversa da zero!

Un neutrino può cambiare sapore con una certa probabilità dovuta alla sovrapposizione quantistica degli stati.

D’accordo, i neutrini hanno massa, ma per via degli esperimenti sul decadimento beta nucleare sappiamo che questa massa deve essere piccolissima, e dunque molto difficile da misurare (in un mondo di particelle molto più massive è difficile misurare una massa piccola). Gli esperimenti sulle oscillazioni dei neutrini evidenziano che una massa c’è, ma non ci dicono quanto vale. A dire il vero ci dicono solo quanto vale la differenza tra i quadrati delle masse. Infatti la notizia interessante è che le masse dei tre neutrini non sono identiche, anche se la differenza dei quadrati è comunque un numero molto piccolo.

Cosa potremmo desiderare di più? Siamo di fronte a particelle neutre, che interagiscono in un solo modo e pure molto debolmente, di cui non sappiamo precisamente nemmeno la massa. Inoltre queste non sono particelle rare: si stima che in ogni centimetro cubo della nostra vita ci siano almeno 300 neutrini! Sono la seconda particella più abbondante nell’universo dopo il fotone!

Il vero motivo per cui i neutrini sono frustranti

Tutte queste difficoltà della Fisica dei neutrini non sarebbero così tragiche se questi fossero particelle noiose e poco importanti. Il problema è che è vero il contrario: i neutrini prendono parte ad alcuni dei processi più importanti della storia dell’universo, dalle teorie cosmologiche fino al meccanismo di funzionamento delle Stelle, e nel fare ciò mettono a nudo la nostra ignoranza residua sul Modello Standard attuale.

Perché la forza debole viola la simmetria di parità? Perché i neutrini sono così leggeri rispetto alle altre particelle elementari? Perché i neutrini sono le uniche particelle elementari neutre? I neutrini possono coincidere con la propria antiparticella? E se sì, i neutrini possono spiegare la iniziale asimmetria tra materia e antimateria negli istanti dopo il Big Bang?

È un po’ come se queste particelle celassero la chiave per aprire le porte a una nuova teoria oltre il Modello Standard, e per via di ciò, ci fosse “reso” molto difficile lavorare con loro. In un certo senso è quasi come se l’universo cercasse di ostacolare il nostro percorso, quasi come se non dovessimo proprio sapere dell’esistenza di queste particelle, le più eccitanti della Fisica moderna.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

L’anatomia dell’equazione di Dirac

Paul A. M. Dirac, 1902-1984

In un precedente articolo abbiamo parlato della genesi dell’equazione di Dirac. Ora però mettiamo le mani nella marmellata ed eseguiamo una vera e propria dissezione dell’equazione, in ogni suo elemento chiave.

Cosa contiene

Partiamo dal capire cosa c’è dentro. Abbiamo di fronte a noi cinque simboli diversi, ciascuno con un ruolo ben preciso. Procediamo da sinistra verso destra

  • La “i”, altrimenti nota come unità immaginaria.
    Cosa è?: È un numero, proprio come anche 2 è un numero, o 13.4. L’unica differenza è che “i” ha delle proprietà speciali, infatti è l’unico numero che moltiplicato algebricamente per se stesso è capace di dare come risultato un numero negativo, cioè i2 = −1.
    Perché è presente nell’equazione?: la meccanica quantistica prevede l’utilizzo delle unità immaginarie al fine di semplificare la scrittura delle equazioni più importanti. I fisici sono pigri e preferiscono usare la notazione più comoda e diretta possibile. I “numeri complessi“ garantiscono comodità logistica. Nulla di più, nulla di meno.
  • “La matrice γμ “, nota come matrice di Dirac.
    Cosa è?: È una matrice, cioè un oggetto matematico che ha il compito di trasformare altri oggetti formati da più componenti. La trasformazione ha l’effetto di mischiare queste componenti secondo una particolare ricetta contenuta nella struttura matematica della matrice. In questo caso l’oggetto da trasformare è la funzione d’onda ψ, che nella teoria di Dirac è formata da 4 componenti.
    Perché è presente nell’equazione?: come discusso nel precedente articolo sulla genesi, le γμ sono presenti al fine di garantire la covarianza dell’equazione sotto le trasformazioni relativistiche di Einstein. (Per saperne di più sul concetto di covarianza clicca qui).
  • “La derivata parziale ∂μ” , scritta in un formato criptico e riassuntivo.
    Cosa è?: è un operatore, cioè trasforma gli oggetti proprio come una matrice, ma in aggiunta ha anche il compito di calcolare la variazione dell’oggetto in una specifica direzione dello spazio-tempo. Le direzioni dello spaziotempo sono specificate dall’indice μ=0,1,2,3 in cui μ=0 è la direzione temporale, e μ=1,2,3 sono le tre direzioni cartesiane x,y,z a cui siamo abituati.
    Perché è presente nell’equazione?: In fisica studiamo i sistemi chiedendoci come variano sotto certi stimoli. Le variazioni sono calcolate con le derivate. Le equazioni chiave della fisica sono chiamate “equazioni differenziali” perché contengono le derivate delle soluzioni che vogliamo trovare, cioè hanno il compito di descrivere l’evoluzione di un sistema chiedendoci: “sai trovare quella funzione soluzione ψ che quando varia in un certo modo descritto dall’equazione differenziale ci dà questo risultato?”. La risposta a questa domanda, matematicamente, fornisce la soluzione che permette di fare previsioni teoriche da verificare sperimentalmente.
  • “La massa m”.
    Cosa è?: è la massa della particella descritta dalla soluzione ψ.
    Perché è presente nell’equazione?: come spiegato nella genesi dell’equazione, l’equazione di Dirac è stata ricavata modellando l’equazione di Schrödinger e adattandola al caso relativistico. In tal caso l’energia di una particella ferma è proporzionale alla sua massa, come evidenziato da E=mc2: questa massa deve quindi comparire esplicitamente nell’equazione differenziale relativistica (perché l’equazione di Schrödinger coinvolge proprio l’energia della particella).
  • “La funzione d’onda ψ“, altrimenti nota come spinore di Dirac.
    Cosa è?: dal punto di vista quantistico rappresenta quella quantità matematica il cui modulo al quadrato rappresenta la densità di probabilità di trovare la particella in un certo punto dello spazio. Dal punto di vista della teoria dei campi rappresenta il campo della particella di massa m, distribuito nello spaziotempo. Le eccitazioni di questo campo vengono interpretate come la particella stessa.
    Perché è presente nell’equazione?: per trovare l’espressione matematica del campo ψ, occorre capire come si comporta quando si calcola una sua variazione. Questo è il metodo delle equazioni differenziali, e l’equazione di Dirac è un’equazione differenziale. L’equazione ci chiede di trovare la più generica ψ che rispetta una certa proprietà. Questa proprietà è evidenziata da un altro modo di scrivere la stessa equazione (portando cioè il termine di massa a secondo membro):
Un altro modo di scrivere l’equazione di Dirac.

L’equazione ci sta parlando, ci chiede di risolvere un determinato problema:

Sai trovare quella funzione ψ tale che, una volta trasformata tramite gli operatori “γμμ” e moltiplicata per il numero “i”, produce come risultato la moltiplicazione di se stessa per una costante “m”?

La risposta a questa domanda fornisce la soluzione per il campo di una particella massiva, libera da forze.

Come si interpreta

Per capire il potere concettuale di questo modo di porre i problemi, cioè quello di ricavare delle informazioni su un certo oggetto ψ studiando prima come si comporta sotto trasformazioni generate da degli operatori, è molto utile sfruttare un’analogia con il concetto di vettori.
Un vettore 2D può essere rappresentato sul piano cartesiano (x,y) come una freccia uscente dall’origine:

La rappresentazione cartesiana del vettore (1,1). Le sue componenti sono v1=1 sull’asse x, e v2=1 sull’asse y.

Ad esempio per costruire un vettore di componenti (1,1), cioè v1=1 sull’asse x, e v2=1 sull’asse y, parto dall’origine e mi sposto di 1 sull’asse x, poi mi sposto di 1 sull’asse y. Il punto in cui arrivo è la testa del vettore. Collegando la testa con la coda (cioè l’origine) ottengo una linea diagonale che chiamo “vettore”.
Un vettore può essere trasformato da una matrice usando la seguente ricetta di composizione:

Il risultato della trasformazione di un vettore è un nuovo vettore le cui componenti possono essere ottenute dalla ricetta contenuta nella matrice.

Il vettore trasformato ha le sue componenti che nascono mischiando le componenti del vettore di partenza, secondo una particolare ricetta descritta dalla matrice-operatore.
Anche il non fare niente è una trasformazione: prende il nome di matrice identità, la sua azione mi fa ottenere di nuovo il vettore di partenza. Puoi verificare anche tu con la ricetta data sopra che il seguente calcolo lascia invariato il vettore di partenza:

La matrice identità lascia il vettore invariato.

Infatti in questo caso l’operatore è tale che a1=1, a2=0, a3=0, a4=1, e sostituendo nella ricetta di sopra otteniamo proprio che il vettore rimane invariato.
Una trasformazione meno banale può invece essere una riflessione, descritta da:

La riflessione del vettore produce un vettore con la componente y invertita di segno.

Puoi verificare il risultato pure tu usando la solita ricetta. Graficamente abbiamo invertito la componente verticale del vettore, come si vede sul piano cartesiano:

La riflessione di un vettore produce un vettore diverso, speculare rispetto al primo.

L’equazione di Dirac si presenta, come accennato, nella seguente veste:

La quale ricalca fortemente il modo in cui trasformiamo i vettori. In questo caso la ricetta prescritta dall’equazione è molto specifica: la trasformazione di ψ è tale da restituire come risultato la ψ stessa, moltiplicata per la massa m. Dal punto di vista matematico, questa richiesta può permetterci di trovare la ψ in maniera non ambigua.


NB: non a caso ψ soddisfa un’equazione con una struttura simile alle equazioni vettoriali con le matrici. Infatti ψ sono oggetti parenti dei vettori, chiamati spinori di Dirac. La differenza fondamentale con i vettori è legata al modo in cui trasformano sotto trasformazioni di Lorentz, come accennato in questo articolo.

Come si usa

Per dare un assaggio di come si affronti una situazione in cui si deve risolvere l’equazione di Dirac, scegliamo la situazione più semplice possibile: il caso di una particella libera e ferma rispetto a noi.
Prima permettimi di trasformare l’operatore “γμμ in una sua forma più agevole matematicamente:

In meccanica quantistica l’operatore μ può essere espresso in termini della quantità di moto “p” della particella. Per ora prendi questa affermazione come un “ipse dixit”, non è questo il luogo e il momento per giustificarla. L’equazione di Dirac può quindi essere scritta come

L’equazione di Dirac espressa con la quantità di moto.

In cui esplicitiamo una volta per tutte il fatto che con γμpμ intendiamo una somma che per pigrizia non avevamo voglia di esplicitare prima

La somma ha il segno negativo nelle componenti spaziali per via della struttura dello spaziotempo della relatività ristretta di Einstein.

Le quantità γ123 sono tutte matrici di Dirac che non ci interessano perché noi supponiamo che la particella sia ferma rispetto a noi, quindi le componenti spaziali della quantità di moto sono nulle, cioè px=py=pz=0. La “quantità di moto” di indice p0 è invece solo un modo lezioso di chiamare l’energia totale della particella. Nel caso di particella a riposo l’energia è, com’è arcinoto:

m è la massa della particella, c è la velocità della luce.

Da ora in poi porremo c=1 per pigrizia, dato che questa scelta non cambia di sicuro la fisica del problema. L’equazione di Dirac si traduce in

che ha la stessa identica forma delle equazioni con i vettori studiate sopra. Le quantità scritte hanno le seguenti espressioni esplicite

Lasciando agire γ0 su u(p) otteniamo

L’effetto di γ0 su u(p) è quello di capovolgere le sue componenti. Puoi verificare usando la regola di composizione matrice-vettore.

Eguagliando questo risultato con u(p) stesso, come ci dice di fare l’equazione di Dirac, scopriamo di dover risolvere il seguente sistema a due incognite

il quale ha la soluzione ovvia u1=u2: una particella di Dirac ferma rispetto a noi ha uguali componenti spinoriali. La soluzione può essere scritta sostituendo u1=u2 e invocando la struttura di onda piana (che è ovviamente soluzione, ed è evidenziata dall’esponenziale contenente quantità di moto e coordinate spaziali):

Da questa espressione si evince che in realtà lo spinore che abbiamo trovato è composto da altre due componenti aggiuntive. In realtà ti ho ingannato tutto il tempo per salvare la semplicità concettuale: uno spinore di Dirac è un oggetto a quattro dimensioni, non due. Tuttavia può essere visto come un oggetto di due componenti, le quali sono a loro volta composte da altre due componenti, per un totale di quattro. La matematica è molto simile e si presta bene a questo inganno.


Una volta ottenuta la soluzione per la particella ferma si può effettuare una trasformazione di Lorentz per osservarla in movimento e derivare così la soluzione più generica per una particella libera.

“Però io credevo che il mondo della Fisica fosse costellato da interazioni tra particelle. Che utilità hanno le soluzioni di particella “libera" senza interazioni?"

Giusta osservazione. Le soluzioni di particella libera in realtà sono ottime approssimazioni per trattare processi in cui le particelle arrivano a collidere e poi si allontanano: nei due stati iniziale e finale possiamo considerare le particelle come libere, ed usiamo la soluzione molto semplice dell’equazione di Dirac per descriverle. L’interazione viene trattata in maniera perturbativa considerando piccoli contributi delle interazioni, basandoci sempre sulla soluzione libera.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

La genesi dell’equazione di Dirac

L’equazione d’onda relativistica dell’elettrone rappresenta uno dei trionfi più importanti della scienza del XX secolo.

Nota come “equazione di Dirac”, dal nome del suo scopritore Paul Dirac, essa costituisce la base di tutta la Chimica e di quasi tutta la Fisica moderna.

Trovo molto interessante provare a riavvolgere il filo del pensiero di Dirac, immedesimandoci in lui quando in una fredda serata a Cambridge nel 1928 arrivò a scrivere la sua equazione dopo essere stato tanto tempo seduto a fissare il caminetto (o così dice la leggenda).

Innegabilmente l’equazione di Dirac vanta una certa eleganza estetica, ed è per questo motivo bersaglio di una sempre crescente mercatizzazione (non è raro trovarsela stampata sulle tazze o sulle magliette).
Trovo anche io difficile resistere al suo fascino e decido quindi di raffigurarla qui in bella vista, prima di iniziare l’articolo:

L’equazione di Dirac descrive una particella libera (relativistica) di spin 1/2.
Piccolo suggerimento: prima di procedere può essere utile dare un'occhiata a due articoli più introduttivi come questo e questo. Se non ne hai voglia ora, li citerò comunque nel prosieguo, inserendoli nei punti chiave in caso tu voglia approfondire.

Schrödinger: le particelle libere come onde piane

Nel 1926 Schrödinger aveva illustrato al mondo che le particelle quantistiche potevano essere descritte da funzioni d’onda la cui forma funzionale era fissata dalla soluzione dell’equazione

In questa equazione ψ è la funzione d’onda che vogliamo trovare, e H rappresenta l’interazione tra particella e il mondo circostante. Questa interazione, agendo su ψ nel membro di destra, produce una variazione nel tempo della ψ stessa, come evidenziato nel membro di sinistra col simbolo di variazione nel tempo ∂/∂t lasciato agire su ψ.
Per una particella libera (cioè senza interazioni con il mondo circostante, o con interazioni così deboli da poter essere trascurate rispetto all’energia cinetica della particella), l’equazione di Schrödinger ha una soluzione semplicissima: un’onda piana

Se non sei familiare con quella forma curiosa per l’energia cinetica ti basti sapere che partendo da 1/2 m v2, questa può essere riscritta in una forma più conveniente sostituendo la quantità di moto p=mv.

In che senso “più conveniente”? In meccanica quantistica si usano gli operatori, che sono oggetti matematici che trasformano le funzioni d’onda in un certo modo. Non tutte le quantità a cui siamo abituati classicamente sono dei buoni operatori. La quantità di moto è un operatore che sappiamo maneggiare bene nei calcoli, al contrario della velocità che è mal definita.

L’energia relativistica, un passo oltre Schrödinger

Nel 1905 Einstein rivoluzionò la meccanica newtoniana con la teoria della Relatività Ristretta. Una delle conseguenze fu la correzione all’energia totale di una particella libera. La forma newtoniana prevedeva, come abbiamo visto, E= p2/2m. In realtà questa non è altro che l’approssimazione della versione einsteiniana una volta che consideriamo velocità molto più basse di quelle della luce, in cui si ha:

In queste formule “m” è la massa della particella, “p” la quantità di moto e “c” la velocità della luce.
A basse velocità otteniamo di nuovo la formula newtoniana per l’energia.

Le energie di legame atomiche sono solitamente così piccole da far sì che le particelle si muovano a velocità molto più basse di quella della luce. L’equazione di Schrödinger era stata creata proprio per descrivere i processi atomici, quindi all’inizio nessuno si preoccupò che non fosse relativistica, c’erano problemi ben più importanti da risolvere.
Se invece si indaga sulla scala subatomica si scopre che bisogna tenere conto delle correzioni relativistiche, proprio perché stavolta aumenta l’energia in gioco.
La strategia più naturale per rendere relativistica l’equazione di Schrödinger è quella di sostituire la vecchia forma di H con la formulazione relativistica:

La forma relativistica dell’equazione di Schrödinger.

Il problema è che, come anticipato prima, in meccanica quantistica la quantità di moto è un operatore, ed è problematico definire la radice quadrata di un operatore. Come superiamo questo ostacolo?

La Klein-Gordon e i suoi problemi

L’approccio proposto da Klein e Gordon per eliminare la radice fu quello di calcolare la variazione temporale di entrambi i membri dell’equazione relativistica, applicando ∂/∂t a sinistra e a destra

In questo conto è fondamentale sapere che l’unità immaginaria “i” è definita in modo che i2=-1

A sinistra abbiamo quindi una doppia derivazione rispetto al tempo, mentre a destra (siccome H è costante nel tempo) otteniamo ψ/∂t, alla quale possiamo sostituire l’equazione di Schrödinger stessa. Con questo piccolo trucco otteniamo che la radice quadrata sparisce.
Ora per semplificare i conti che seguiranno scegliamo di lavorare con delle unità in cui ħ=c=1 e facciamo un cambio di variabili, l’equazione di sopra diventa l’equazione di Klein-Gordon:

L’equazione di Klein-Gordon scritta in una forma più simpatica all’occhio.

L’equazione di Klein-Gordon fu il primo tentativo di relativizzare l’equazione di Schrödinger. La soluzione di questa equazione è ancora un’onda piana per una particella di massa m, solo che a differenza di prima la forma dell’equazione è immediatamente covariante sotto trasformazioni di Lorentz, in quanto P2 e m2 sono degli scalari di Lorentz: in sostanza il principio di relatività è automaticamente soddisfatto (mentre non lo era nell’equazione di Schrödinger).

Dove sta la fregatura?

L’aver mandato via la radice quadrata ha sollevato un problema irritante: l’evoluzione temporale nell’equazione di Schrödinger era espressa da un termine di primo grado ψ/∂t, mentre ora nella Klein-Gordon è espressa da un termine di secondo grado (∂2ψ/∂t2), e ciò fa sì che la densità di probabilità possa ora assumere valori non solo positivi, ma anche negativi o nulli.

Infatti i moduli quadri delle funzioni d’onda (che per la regola di Born rappresentano le densità di probabilità) possono essere calcolati tramite una particolare “ricetta” che dipende in una maniera molto precisa dal tipo di equazione dinamica da cui si parte. Si dà il caso che la “ricetta” ereditata dall’equazione di Klein-Gordon sia difettosa rispetto a quella dell’equazione di Schrödinger.
Ciò fa perdere di significato fisico tutta la struttura matematica della nostra teoria, una bella gatta da pelare!

Non c'era via di uscita? È questo il prezzo da pagare per aver cercato di introdurre la relatività nella meccanica quantistica?

L’illuminazione di Dirac

Per dei motivi che oggi non sono più rilevanti, Dirac era fortemente preoccupato dal problema della densità di probabilità nella Klein-Gordon. Per questa ragione si ossessionò al punto da forzare la matematica stessa: voleva abbassare l’ordine delle derivate temporali dal secondo grado al primo grado a tutti i costi, pur mantenendo un’equazione relativisticamente permessa. Nella sua mente la forma prediletta doveva essere, per ragioni relativistiche e di “eleganza”

In cui γ0 è un termine per ora indeterminato. Questa equazione doveva comunque essere collegata alla Klein-Gordon in qualche modo, perché questa garantisce l’invarianza relativistica. L’illuminazione arrivò quando fu colto il seguente parallelismo con la differenza algebrica dei quadrati a2-b2

dove le γμ sono degli oggetti per ora ignoti, e la notazione va intesa nel modo seguente:

j=1,2,3 indica le tre direzioni cartesiane x,y,z. Quindi x1=x , x2=y , x3=z. γP è quindi solo un modo rapido di scrivere quella somma di termini, comprendenti tutte le direzioni spaziali cartesiane.

Affinché valga l’uguaglianza con la Klein-Gordon tramite la differenza dei quadrati le misteriose γμ devono soddisfare

in cui ημν è la metrica dello spazio-tempo della relatività ristretta. Infatti per avere uguaglianza deve essere

e questa condizione può essere soddisfatta solo se vale la relazione scritta sopra, che lega la metrica ημν con gli oggetti γμ.

La richiesta di un’equazione con derivata temporale al primo ordine ha quindi generato due possibili equazioni relativistiche:

le quali descrivono particelle aventi energia di segno “opposto” (per saperne di più sulla questione dell’antimateria e l’equazione di Dirac clicca qui).

L’uguaglianza del loro prodotto con la Klein-Gordon impone poi che gli oggetti γμ debbano essere delle matrici quattro-dimensionali con delle ben determinate regole di composizione legate alla metrica dello spaziotempo. Non solo, la forma matematica di queste equazioni impone che la funzione d’onda ψ trasformi in una maniera ben precisa sotto trasformazioni di Lorentz.

Fu la prima volta nella storia della Fisica in cui una richiesta di struttura visiva della matematica portò a scoprire un’intera classe di nuovi oggetti matematici.

Tornando alla notazione con le derivate scritte in una forma più elegante:

otteniamo la forma dell’equazione di Dirac che si stampa sulle magliette:

È cruciale il fatto che ora possiamo interpretarla proprio come una sorta di decomposizione della Klein-Gordon per far sì di ottenere solo derivate di primo grado nel tempo. Nonostante ciò, è in realtà è più proficuo (dal punto di vista teorico) interpretare questa equazione come l’equazione del moto di una teoria di campo costruita per le particelle che trasformano come una rappresentazione di spin 1/2 sotto trasformazioni di Lorentz (se vuoi saperne di più sul perché classifichiamo le particelle come rappresentazioni di spin clicca qui).


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg


Perché è stato necessario teorizzare il bosone di Higgs? Demistificando la rottura di simmetria

Sono passati quasi 10 anni, e il bosone di Higgs rimane ancora l’ultima grande scoperta del CERN.
Per molti ciò ha chiuso un capitolo della fisica delle particelle, in quanto l’Higgs rappresentava l’ultimo pezzo del puzzle del Modello Standard, la teoria che ad oggi descrive tutto il mondo subatomico.

Il Modello Standard con tutte le particelle e i bosoni mediatori

Tuttavia rimane ancora un po’ di “misticismo” attorno al ruolo teorico giocato da questa particella, che è stata impropriamente soprannominata “la particella di Dio” in più occasioni. Il suo ruolo dovrebbe essere quello di “dare massa” alle particelle del Modello Standard, ma in che senso ciò avviene? E perché serve proprio il campo di Higgs per dare massa a un qualcosa che la massa (nel nostro immaginario) ce l’ha già di per sé?

Il campo di Higgs (da cui nasce il suo bosone come fluttuazione quantistica) non descrive un’interazione fondamentale, e non ha radici teoriche nei princìpi primi.
Ma allora, perché non potevamo fare a meno di teorizzarlo?

In realtà il campo di Higgs è uno strumento teorico che permette il funzionamento di un meccanismo ben preciso. La rivelazione sperimentale del bosone ha solo confermato che il meccanismo è stato azzeccato appieno.

Al contrario delle interazioni fondamentali, il campo di Higgs non è venuto a cercarci, siamo stati noi a invocarlo per poi verificarne l’esistenza

Vediamo quali sono i punti concettuali che hanno fatto sorgere l’esigenza del meccanismo di Higgs.

L’elettrodinamica e le simmetrie: squadra che vince non si cambia

Tra le quattro forze fondamentali, la prima che fu spiegata con una teoria quantistica di campo fu l’elettromagnetismo. Come spiegato in un precedente articolo, si scoprì negli anni ’30 che il modo più semplice per descrivere l’interazione elettromagnetica tra le particelle era quello di richiedere che la teoria fosse simmetrica sotto una particolare trasformazione che chiamiamo “θ“.
Il campo elettromagnetico è noto, nel gergo tecnico, come campo di gauge. I campi di gauge trasformano in una maniera particolare sotto la “θ“, in modo da far sì che le equazioni del moto (e quindi la Fisica del sistema) rimangano invariate.
D’altro canto, gli oggetti che compongono la teoria quantistica delle particelle (cioè i campi) non lasciano invariata la Fisica del sistema una volta che li trasformiamo sotto la “θ“. La trasformazione produce purtroppo dei pezzetti in più, e la teoria non è quindi invariante. Un modo per cancellare i pezzetti in più è quello di accoppiare il campo di gauge con il campo della particella.

La cosa stupefacente è che questo accoppiamento è perfettamente sufficiente per descrivere tutti i fenomeni di interazione tra le particelle con la teoria. Il mediatore dell’interazione diventa proprio il campo di gauge.

Abbiamo ottenuto un’interazione a partire da una questione che apparentemente non c’entrava proprio nulla, e cioè la richiesta di simmetria sotto una certa trasformazione.

Il meccanismo con cui otteniamo le interazioni in teoria quantistica dei campi

Il campo mediatore tra le particelle per una teoria di campo che conservi la carica elettrica (la quantità conservata sotto la trasformazione “θ“) è proprio il campo elettromagnetico, il cui bosone (cioè le oscillazioni del campo) è noto come fotone.

Questa tecnica di accoppiamento con un campo di gauge funzionò così bene che oggi l’elettrodinamica quantistica è ritenuta essere la teoria scientifica meglio testata di sempre.

Nel momento in cui si presentò il problema di descrivere le altre due interazioni subatomiche, cioè l’interazione debole e l’interazione nucleare forte, si decise di seguire un vecchio motto: squadra che vince non si cambia. Si cercò quindi di scrivere una teoria di campo per le interazioni a partire da princìpi di simmetria e introducendo altri campi di gauge.

L’interazione debole e il problema della massa

Per garantire la simmetria della teoria, il campo di gauge deve godere di una caratteristica fondamentale: i suoi quanti di eccitazione (cioè i suoi bosoni), devono avere massa nulla. Se il campo di gauge ha massa, non si può garantire la simmetria della teoria quantistica con la tecnica esposta sopra. Fortunatamente questa condizione è soddisfatta dal fotone, il quale ha notoriamente massa nulla.
Ma non è detto che saremo sempre così fortunati.

C’è infatti una differenza sostanziale tra interazione elettromagnetica e interazioni deboli: la prima è a raggio di azione infinito, mentre le seconde sono confinate alle dimensioni nucleari. Come spiegato in un precedente articolo, ciò significa che i bosoni mediatori delle interazioni deboli devono essere massivi, al contrario del fotone elettromagnetico, che non ha massa. Quindi se dovessimo introdurre dei campi di gauge per costruire una teoria dell’interazione usando la tecnica della simmetria, questi dovrebbero essere massivi, ma allora dovremmo sacrificare la simmetria, e quindi anche le quantità conservate che da essa derivano.

Si arrivò a un punto in cui si ritenne che il principio di simmetria di gauge fosse indispensabile per descrivere le interazioni fondamentali, quindi le teorie del Modello Standard vennero scritte usando campi di gauge senza massa, così come le particelle coinvolte.
Che cosa da pazzi, sacrificare la massa pur di avere la simmetria!

Il colpo di genio fu quello di immaginare che i bosoni di gauge, così come le particelle, acquisissero massa spontaneamente, con un particolare meccanismo alle basse energie

L’approccio è simile a quello che si usa quando si studia il moto di una particella massiva avente energia relativistica “E” data da:

“p” è la quantità di moto della particella, “m” è la sua massa.

Una particella senza massa ha energia data da “E=pc” (le particelle senza massa possono trasportare quantità di moto, come dimostrato dalle vele solari che sfruttano la pressione di radiazione). Tuttavia anche una particella massiva con grande quantità di moto può essere pensata in prima approssimazione come una particella a massa nulla

La massa può essere trascurata dentro la radice, se la quantità di moto è molto più grande di lei.

L’intenzione era quindi quella di teorizzare le interazioni fondamentali usando particelle senza massa ad alte energie, in modo da garantire la simmetria di gauge. Alle basse energie le masse sarebbero dovute emergere naturalmente, senza appiccicarcele manualmente, perché tale intervento romperebbe la simmetria di gauge accuratamente costruita. Serviva un particolare escamotage teorico affinché questo funzionasse.

Si decise di lasciare che la simmetria si rompesse da sola, spontaneamente, usando un escamotage teorico

Lungo e corto raggio: un’analogia per la rottura di simmetria

Per capire il meccanismo della rottura spontanea di simmetria a livello intuitivo, facciamo un’analogia con un sistema fisico più intuitivo, caratterizzato da una grossa simmetria.
Consideriamo il reticolo di un ferromagnete: ogni molecola del reticolo può essere pensata, per convenienza di ragionamento, come una bussola il cui “ago magnetico” punta, in una configurazione di minima energia, nello stesso verso del campo magnetico locale. Ciò succede se supponiamo che ogni ago magnetico sia a sua volta una sorgente di magnetismo e che riesca a interagire con gli aghi magnetici vicini al suo sito.
L’allineamento è contrastato dall’agitazione termica:

  • Ad alte temperature l’orientamento degli aghi magnetici è casuale, perché l’agitazione termica è ben più forte delle interazioni locali. In media troveremo tanti aghi allineati in un verso, quanti ne troveremo allineati in verso opposto, il risultato netto è una magnetizzazione nulla.
  • A basse temperature la configurazione di minima energia è quella in cui tutti gli aghi sono allineati nello stesso verso e il materiale acquista una magnetizzazione media diversa da zero.

Quale delle due situazioni ha maggiore simmetria geometrica? Si tenderebbe a pensare che sia la seconda, dato che siamo abituati a pensare la simmetria come un “grado di ordine” delle cose. Per lo stesso motivo potremmo sostenere che l’acqua sia più simmetrica quando si solidifica in ghiaccio, rispetto alla sua fase liquida.
In realtà la simmetria va pensata come segue:

“Io eseguo una trasformazione mentre tu chiudi gli occhi, quando li riapri possono succedere due cose: se vedi che il sistema è uguale a prima, allora la trasformazione era una simmetria del sistema, se invece vedi che il sistema è cambiato, quella trasformazione non era una simmetria.”


Il moto delle particelle agitate termicamente è molto più simmetrico, perché possiamo eseguire qualsiasi rotazione geometrica e il sistema rimarrà uguale a se stesso (nel nostro esempio continueranno a esserci tanti aghi magnetici allineati in qualsiasi direzione, con un risultato netto nullo). Le molecole sono così tante e in una disposizione così caotica che non avremmo modo di accorgerci di qualsiasi rotazione attorno a qualsiasi asse.

A sinistra un dipinto caotico di Marc Quinn, a destra lo stesso dipinto ruotato di 180 gradi. Difficile notare la differenza, eh?

Se ora abbassiamo la temperatura il sistema si “irrigidisce” e perde molta simmetria, gli aghi magnetici si dispongono in una situazione di energia minima allineandosi tutti, e ora una rotazione manda il sistema in se stesso solo se la eseguiamo attorno all’asse di magnetizzazione.

Il sistema ha ridotto spontaneamente la simmetria iniziale una volta scelto lo stato energetico più basso!

La simmetria non viene però semplicemente rotta e dispersa, ma viene tradotta in una certa libertà: l’allineamento degli aghi può comunque avvenire in qualsiasi direzione dello spazio in maniera casuale. Il sistema può scegliere di allinearsi lungo tantissime direzioni diverse, tuttavia una volta scelta un’orientazione si stabilizza solo in quella e in nessun’ altra. La simmetria è rotta dalla particolare scelta dell’orientamento, ma tale scelta è comunque casuale per via della simmetria globale iniziale.

In figura sono mostrati due stati di minima energia tra i quali il sistema può scegliere. Questi due stati sono differenziati da una rotazione simultanea di tutti gli aghi magnetici, ma il livello energetico è lo stesso

Non costa energia trasformare uno stato di minima energia in un altro alla stessa energia

Nel gergo della fisica teorica, se una certa interazione non costa energia, può essere descritta da un quanto di vibrazione senza massa.
Che succede se invece di ruotarli tutti assieme, ruotiamo un solo aghetto magnetico rispetto agli altri? Questo ci costerà energia! Invece nello stato di massima energia questa azione non sarebbe costata così tanta energia, per via dell’agitazione termica. Ora è come se l’interazione fosse descritta da un modo di vibrazione massivo.
Il motivo è che costa più fatica portare in cima a una collina una massa più grande rispetto a una massa più piccola. Se la massa più piccola diventa nulla, costerà nessuna fatica muoverla nel campo gravitazionale.

I modi di vibrazione che erano senza massa ad alta energia, diventano massivi a bassa energia.

L’accoppiamento con il campo di Higgs

La grossa simmetria di gauge del Modello Standard alle alte energie è composta da tre simmetrie principali, che vengono indicate con dei nomi simpatici a cui non devi badare troppo:

La simmetria di gauge del Modello Standard

Alle alte energie le interazioni deboli sono un tutt’uno con le interazioni elettromagnetiche, e in totale l’interazione elettrodebole risultante è descritta da quattro campi di gauge senza massa.
Tuttavia le interazioni deboli devono prevedere dei bosoni di gauge massivi, per fare previsioni sperimentali accurate.
Per salvare le simmetrie di gauge e al contempo avere dei bosoni di gauge massivi, i fisici teorici decisero di introdurre un’interazione ad hoc con un campo chiamato “campo di Higgs”, caratterizzato da un potenziale a forma di cappello messicano:

Il potenziale del campo di Higgs. Sulla cima del cappello l’energia è maggiore che sulla valle. Tutti i punti della valle sono alla stessa energia,.

Possiamo immaginarlo di nuovo come una collina: ciascuna particella sulla sommità preferirà rotolare verso il basso e stabilizzarsi in una situazione di minima energia. Il campo di Higgs può assumere spontaneamente una valore di minimo in ogni punto della valle nel cappello messicano.
Siccome nella teoria quantistica dei campi i valori medi sono un’indicazione del numero di particelle in un determinato stato, possiamo dire che la sommità del cappello rappresenta uno stato poco popolato con valore medio nullo del campo di Higgs, mentre la valle è uno stato densamente popolato con valore medio diverso da zero per il campo di Higgs. Popolato da chi? Da bosoni di Higgs, cioè i quanti di eccitazione del campo. Questo è analogo alla magnetizzazione degli aghi magnetici, che aveva valore medio nullo alle alte energie, mentre alle basse energie acquisisce un valore medio diverso da zero.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Se ora accoppiamo il campo di Higgs con i campi del Modello Standard, cioè sia i campi di gauge che i campi delle particelle, abbiamo una rottura spontanea di simmetria alle basse energie.
L’accoppiamento va scelto saggiamente, perché vogliamo far acquisire massa solo ai bosoni dell’interazione debole. Per far ciò possiamo costruire il campo di Higgs in modo che trasformi come un oggetto appartenente allo spazio di simmetria SU(2), che è la simmetria caratteristica dell’interazione debole.

La simmetria iniziale di gauge da cui siamo partiti viene ora utilizzata per scegliere una posizione qualsiasi sul cappello messicano. Infatti ricordiamo: una trasformazione dei campi di gauge non cambia la fisica, e questa libertà può essere utilizzata per scegliere una determinata configurazione in cui l’universo andrà a sostare.
Ciò è analogo al modo in cui gli aghi magnetici erano liberi (per via della simmetria iniziale) di scegliere un’orientazione privilegiata a basse temperature, ed una volta scelta, si stabilivano lì.

L’accoppiamento tra i campi di gauge e il campo di Higgs fa sì che ora non tutte le direzioni di movimento sul cappello messicano siano gratuite: se volessimo risalire lungo la collina ci costerebbe un po’ di energia. Questo costo in energia viene interpretato come un modo di vibrazione massivo. I bosoni delle interazioni deboli, tramite un particolare formalismo matematico, si mischiano tra di loro per via di una particolare scelta della configurazione nello spazio della simmetria iniziale ed acquisiscono massa. Con un altro speciale tipo di accoppiamento acquisiscono massa anche le particelle del Modello Standard!

Siccome la “rottura” di simmetria avviene spontaneamente alle basse energie, abbiamo salvato la simmetria iniziale alle alte energie e le teorie di campo hanno una forma elegante e sperimentalmente solida.

Una visualizzazione pittorica del campo di Higgs e delle particelle frenate da questo “fluido universale”.

In un certo senso il campo di Higgs può essere pensato come un fluido che permea l’universo, e in questo fluido le particelle senza massa (che si muoverebbero alla velocità della luce) vengono “frenate” dal campo di Higgs come se ci fosse un certo attrito, che è il risultato dell’accoppiamento.
Il risultato è che le particelle non si muovono più alla velocità della luce, perciò hanno una massa ben precisa, predetta dal meccanismo di Higgs.

Il risultato del mixing dei campi di gauge dopo la rottura di simmetria corrisponde a tre bosoni di gauge massivi e uno senza massa.
I tre bosoni massivi corrispondono ai mediatori dell’interazione debole alle basse energie, mentre il bosone senza massa corrisponde a quello dell’elettromagnetismo, cioè il fotone.

La verifica sperimentale della massa del bosone di Higgs ha permesso di verificare con grande precisione tutte le previsioni sulle masse dei bosoni dell’interazione debole e sulle masse delle particelle del Modello Standard (con poche eccezioni come i neutrini, che rimangono ancora oggi un grande mistero).

Che mondo imperfetto sarebbe se ogni simmetria fosse perfetta!

B.G. Wybourne

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Perché scrivo guide per lo studente e l’importanza di condividere ciò che si impara

Ho passato buona parte di novembre appresso al feroce bisogno di approfondire una mantra che ho sentito spesso dai miei docenti di alcuni corsi di teorica che sto seguendo:

"Fermi scrisse la teoria del decadimento beta usando un vertice a quattro fermioni, fate il conto e ricavatevi la costante di accoppiamento dalla vita media." 

Una nota di background: nei principali corsi teorici della mia facoltà è riservato poco spazio alla teoria elettrodebole, per cui uno studente tra il primo e il secondo anno (come me) ha a disposizione giusto una buona base sulla seconda quantizzazione e teoria dello scattering, con alcune nozioni qua e là di fenomenologia di fisica delle particelle.

Riguardo al conto per il decadimento beta di Fermi ho pensato tra me e me:

"Ok, suppongo si possa fare, è un decadimento fermionico che posso trattare con il formalismo della matrice S che ci hanno insegnato a Teorica 1. Scrivo gli operatori di creazione etc. etc." 
Io, impegnato nel non capire in che modo strutturare un discorso sull’argomento che sto studiando, in un triste quadro novembrino.

Il tempo di poggiare la penna sul foglio e vengo travolto da un turbinio di dubbi, non tanto sui conti, quanto più su cosa stessi davvero facendo: ho realizzato che il formalismo della matrice S funziona bene per le particelle asintoticamente libere, ma se voglio descrivere le particelle nucleari che decadono, come posso fare? Da qui è iniziata una ricerca che mi ha portato ad analizzare per intero l’articolo originale di Fermi, per scoprire che i miei dubbi erano comunque fondati: non posso trascurare i nuclei! E subito sorgono nuovi dubbi: ma allora il conto a quattro fermioni che processo calcola esattamente? Il decadimento del neutrone libero? Ma la costante non torna mica! E poi, come si è passati dalla teoria di Fermi alla teoria elettrodebole? In che senso la teoria di Fermi è una Effective Field Theory della elettrodebole, e in che modo questa descrive i processi nucleari con il formalismo che si usa oggi? La ricerca di risposte a queste domande mi ha portato sui libri specialistici in teoria elettrodebole, dove però era dedicato decisamente poco spazio alla costruzione di un percorso pedagogico.

È molto probabile che la mia ossessione per la necessità di avere una struttura pedagogica da seguire per poter capire un argomento sia una cosa un po’ stupida e inutile, ma sono fatto così:

Per capire le cose ho necessità che mi venga spiegato non solo come funzionano, ma anche perché gli umani le hanno fatte funzionare in quel modo e non in un altro.

Questa sidequest ha occupato la maggior parte delle mie giornate di quest’ultimo mese, portandomi a una realizzazione:

“Tutto questo poteva essere enormemente semplificato da una trattazione più organica e rivolta a uno studente con il mio stesso background".

Mi sono quindi immaginato:

"E se qualcuno si fosse messo a scrivere un bel riassunto introduttivo di tutto quello che concerne la teoria di Fermi fino alla teoria elettrodebole, in modo da farmi fare in poche ore quel sentiero concettuale che ho sviluppato in tutti questi giorni?"

Non trovando nulla in merito, ho deciso di farlo io. Il risultato è “Guida per lo studente al calcolo di Fermi sul decadimento β“, in cui esploro e commento il famoso articolo del 1934 di Enrico Fermi, e lo analizzo da un punto di vista degli strumenti matematici che vengono insegnati nei corsi universitari introduttivi di fisica teorica, cercando di costruire un percorso pedagogico fino ad arrivare a un cenno sulla teoria elettrodebole e al concetto di Effective Field Theory.

Guida per lo Studente al calcolo di Fermi sul decadimento β

Clicca per il download

Perché è importante condividere ciò che si impara, oggi più che mai

Gestisco questo blog da ormai 6 anni, cioè fin da quando ero in quarta liceo, e lo scopo è sempre stato lo stesso: voglio scrivere delle note/appunti approfonditi che desidererei dare al me stesso del passato per fargli fare meno della metà della fatica che ha fatto effettivamente per costruire il ragionamento logico. Ho notato con piacere che negli anni questi sforzi sono stati apprezzati da altri studenti che erano curiosi di imparare gli stessi argomenti, come evidenziato dal numero di download sempre crescente negli anni.

In questo senso coltivo un ambizione probabilmente poco realistica: desidererei che partisse un movimento di scambio culturale tra studenti, volto a condividere ciò che si impara.
Sia chiaro non basta condividere lo straccio dei propri appunti scritti a penna, ma serve una vera e propria esposizione pedagogicamente strutturata e studiata per toccare le corde giuste nella mente di chi legge, con lo scopo di far suonare tanti “eureka” nella sua testa. In questo modo tutti assieme si potrebbe imparare a più del triplo della velocità ed efficienza, e si verrebbe a creare un vero e proprio circolo intellettuale tra studenti.

Questo discorso diventa sempre più importante man mano che la scienza progredisce, perché inevitabilmente nessuno ha più il tempo materiale di specializzarsi anche solo su una frazione delle numerosissime branche di un campo scientifico. La necessità di semplificare i percorsi di apprendimento, condividendo ciò che si impara, è oggi più urgente che mai.

Perché fare questo invece di affidarsi solo ai libri di testo universitari?

Semplicemente perché la conoscenza è strutturata in diversi livelli di comprensione, dal livello zero al livello “esperto”; inoltre vale la regola generale che:

Non sempre il libro che stai studiando è sintonizzato con il tuo livello di apprendimento attuale.

Il risultato? Una fatica immensa.

Ciò che penso è questo:

Se io voglio capire un argomento “x” appartenente a un insieme di concetti “X” del quale ho comunque un minimo di background, non è necessario che la persona che arrivi a spiegarmi “x” sappia poi tutto di “X”, perché a me basta la sintonizzazione col mio attuale livello di apprendimento. Solo dopo, una volta compreso “x” al livello precedente, potrò muovermi al livello successivo, in cui mi servirà magari un’esposizione da parte di una persona che dovrà comunque essere anche lei al mio stesso livello di apprendimento.

Io credo che in questo modo si faccia molta meno fatica, soprattutto in branche come la fisica teorica in cui di uno stesso argomento “x” si possono avere tantissimi livelli diversi di comprensione, da quello basico a quello totalmente astratto. In ciascuno di questi livelli è utilissimo, per chi sta imparando, poter trovare spunti da chi si è preso del tempo per organizzare i propri schemi mentali e si sia sforzato di tirar fuori una spiegazione quanto più pedagogica possibile.

Ricapitolando, scrivo guide per lo studente (o per il me stesso del passato) perché:

  • Voglio tenere un’organizzazione concettuale delle cose che imparo, in modo da poterle consultare rapidamente per qualche dubbio futuro, e in modo da evitare di annegare in un mare di libri e referenze già consultate (citate comunque nella bibliografia della guida).
  • Voglio far fare meno fatica a chi sarà curioso sullo stesso argomento, in quel preciso livello di comprensione. Chiaro che ad esempio quella guida che ho appena scritto è di scarso interesse per chi quei concetti li ha già assimilati da anni e a livelli superiori di comprensione.
    Il punto è che non tutti partiamo dalla stessa base, ed esiste sempre una certa popolazione che si trova invece nello sweet spot, per la quale magari quella guida è un salvavita, magari per una tesina o un seminario da preparare.

In verità mi ossessiono un po’, perché finché non trovo il libro che spiega quel mio dubbio esattamente nel modo in cui io voglio capirlo, o nel modo in cui io voglio che venga spiegato, non mi do pace.

Se proprio non trovo nessuna alternativa, mi viene da scriverla io stesso, una volta che penso di aver capito il concetto abbastanza in profondità.
In ogni caso non è uno sforzo inutile: avrò comunque una referenza personale per il futuro, o magari sarà utile a qualche altro studente che si trova nella mia stessa situazione.


Se facessimo tutti questo lavoro, non è da escludere che il mondo universitario italiano possa diventare un posto ben più stimolante e ricco di spunti.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg


Un semplice conto per stimare la massa dei bosoni delle forze fondamentali


Sono sempre stato un entusiasta delle “stime grossolane”, perché ti aiutano a risolvere un problema molto complesso dandoti almeno un’ordine di grandezza della soluzione. Il senso di soddisfazione quando la stima grossolana viene confermata dai calcoli ben più rigorosi è un po’ una guilty pleasure di ogni fisico. Vediamo quindi un esempio di questo modo di lavorare.

Ad oggi conosciamo quattro forze fondamentali della Natura, meglio note come interazioni fondamentali.
Il modo in cui studiamo queste interazioni su basa sull’analisi di alcuni processi che coinvolgono le particelle. Tali processi possono essere studiati a differenti scale di energia in cui vengono rappresentati con diverse schematizzazioni, le quali ci danno un’idea di quello che sta succedendo.

Da questi schemi teorici emerge che un’interazione tra particelle deve essere mediata da una particella speciale chiamata bosone.
Il modo più diretto per avere l’identikit di questa particella è conoscere la sua massa.

Prima di ricavare una stima di queste masse, facciamo il punto della situazione sulle interazioni fondamentali in gioco:

  • Gravità: interazione tra tutti i corpi con massa. In una teoria di gravità quantistica (ancora solo ipotizzata a stento) deve essere mediata da un bosone chiamato gravitone.
  • Elettromagnetismo: interazione tra tutti i corpi con carica elettrica. Mediata da un bosone chiamato fotone.
  • Forza forte: interazione che tiene assieme i nuclei degli atomi. Ad alte energie si manifesta come un’interazione mediata dai gluoni dei quark, a basse energie ha invece come mediatore il bosone pione.
  • Forza debole: interazione che permette i decadimenti di alcuni nuclei. Mediata da tre bosoni, chiamati W+,W- e Z.

La prima distinzione interessante tra queste quattro forze è il loro raggio di interazione. Sono infatti tutte forze che agiscono a distanza, e due tra queste, cioè gravità ed elettromagnetismo, hanno un raggio di interazione infinito. Ciò significa che la forza gravitazionale tra due masse agli antipodi dell’universo è sempre teoricamente diversa da zero. Nella realtà, ovviamente, tale valore è così piccolo da poter essere considerato irrilevante per lo stato di moto delle due masse. Lo stesso discorso si applica all’elettromagnetismo. Questo raggio di interazione si dice asintoticamente infinito nel senso che la forza può essere considerata “matematicamente” nulla solo all’infinito (cioè un punto irraggiungibile).

Le altre due forze, quella nucleare forte e quella debole, hanno invece a che fare con il mondo dell’infinitamente piccolo, cioè i nuclei degli atomi.
La scala di distanza nucleare è completamente fuori dagli schemi della quotidianità: parliamo di qualche milionesimo di miliardesimo di metro. Questo numero è così difficile da scrivere e pensare che è stata creata direttamente una nuova unità di misura: il fermi (in onore di Enrico Fermi).

Come informazione di orientamento, diremo che il raggio di un nucleo è del valore di qualche fermi.

Siccome l’interazione forte si occupa di tenere assieme i nuclei, composti da tanti protoni e neutroni (protoni che altrimenti si respingerebbero per via dell’interazione elettromagnetica), il suo raggio di interazione è proprio dell’ordine di qualche fermi. L’interazione debole è ancora più a corto raggio, perché agisce su una scala che è un millesimo di quella nucleare.

In che modo vengono interpretati questi differenti raggi di azione delle forze fondamentali dalla fisica teorica?

Livello intuitivo: il diagramma di bassa energia

Un’interazione in un certo intervallo di bassa energia può essere schematizzata da un diagramma tipo questo

Nel quale viene riportato un processo di repulsione elettromagnetica tra due elettroni. Matematicamente questa repulsione viene comunicata da un fotone virtuale “γ” che viene creato con una certa energia per un certo intervallo di tempo. L’informazione elettromagnetica si propaga tra due punti dello spaziotempo diversi e non può essere istantanea (per non contraddire la relatività ristretta), ma può propagarsi, al massimo, alla velocità della luce.

Con poche differenze, i diagrammi delle altre interazioni alle basse energie hanno una struttura molto simile (fatta eccezione per la gravità, per la quale non esiste ancora una teoria quantistica soddisfacente). Ciascun diagramma è caratterizzato dal proprio personalissimo bosone di interazione, che sia il fotone (elettromagnetismo), il pione (forze nucleari forti), o i W e Z (interazione debole).

Lo scambio di un oggetto tra due persone su due barche genera un allontanamento per via della conservazione della quantità di moto totale.

Esiste un esempio intuitivo, seppur da prendere con le pinze perché serve solo a darci un’intuizione fisica, del perché lo scambio di un mediatore produca una forza di interazione. L’esempio viene dalla fisica classica ed è illustrato in figura.

Il principio di Heisenberg in una forma speciale

Vogliamo studiare in maniera intuitiva quali siano le grandezze in gioco nella propagazione dei bosoni mediatori. Sappiamo dalla fisica teorica che possiamo interpretarli come particelle create e riassorbite durante l’interazione, e che esistono per un certo intervallo di tempo che consente la loro propagazione.

“Aspetta, mi stai dicendo che viene creata una particella dal niente? Ma questo non viola il principio di conservazione dell'energia?"

Una forma molto speciale del principio di indeterminazione di Heisenberg riguarda proprio l’energia e il tempo. Una particella può essere creata con una certa energia per un certo intervallo di tempo, senza violare il principio di conservazione, a patto però che valga

Il simbolo “~” indica un’uguaglianza approssimata. A destra, la costante di Planck divisa per 2π.

Per la creazione di un bosone mediatore di massa “m” richiediamo che questi esista per un tempo sufficiente per propagarsi di una distanza “R” (che è proprio il raggio di azione dell’interazione) a una velocità che è dello stesso ordine (ma MAI uguale) a quella della luce “c“. In sintesi:

Il simbolo “~” sta proprio a indicare che la relazione vale solo come ordine di grandezza: non stiamo dicendo in nessun modo che un corpo di massa “m” possa viaggiare alla velocità della luce, ma solo a una velocità comparabile e ad essa inferiore.

Un gioco poco rigoroso, che ci azzecca molto bene

Sfruttando una possibile interpretazione dei diagrammi sulle interazioni, immaginiamo che i bosoni mediatori vengano creati nei processi e che si propaghino per una distanza “R” che è proprio il raggio di azione.

Come facciamo a capire se tali bosoni esistano davvero o se siano solo costrutti teorici?
Dobbiamo rivelarli sperimentalmente, ma per rivelarli sperimentalmente dobbiamo prima sapere che tipo di massa possiamo aspettarci per queste particelle.

Un giochino poco rigoroso è quello di usare il principio di Heisenberg esposto sopra, perché a quel punto l’energia di massa dei bosoni si ottiene dividendo per “∆t

L’energia di massa dei bosoni in funzione del raggio di interazione

Applichiamo ora questa formula ai bosoni delle interazioni: fotone, gravitone, pione e bosoni W,Z.

  • Fotone: l’interazione elettromagnetica ha un raggio di azione infinito. Se diamo a “R” un valore molto grande nella formula troviamo che la massa tende a zero. I fotoni, come si sa comunemente, hanno massa nulla, e quindi sono capaci di viaggiare alla massima velocità dell’universo, cioè la velocità della luce. Non una grandissima notizia, dato che i fotoni sono proprio la luce stessa.
  • Gravitone: l’interazione gravitazionale è sorella (molto più debole a parità di distanza) della forza elettromagnetica, e ha anche lei un raggio di azione infinito. Troviamo quindi una massa nulla anche per il fantomatico bosone dell’interazione gravitazionale: se mai troveremo una teoria quantistica della gravità, il suo bosone si propagherà alla velocità della luce.

Per discutere del pione (mediatore della forza nucleare forte a bassa energia) e dei bosoni della forza debole, diamo prima una formula numerica utile

Con “fm” intendiamo “fermi”, cioè l’unità di misura delle lunghezze nucleari.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

L’energia delle particelle atomiche si misura infatti con una scala energetica chiamata MeV.
Come per tutte le unità di misura, fatti bastare solo qualche numero di orientamento: l’energia di massa dei neutroni e dei protoni è di circa 1000 MeV, mentre l’elettrone “pesa” solo 0.5 MeV. Le energie dei legami nucleari sono invece dell’ordine di qualche MeV.

Detto ciò torniamo al nostro gioco e occupiamoci del pione, cioè il bosone dell’interazione nucleare forte.
Il raggio di azione dell’interazione nucleare forte è dell’ordine di 1.4 fermi

Per quanto riguarda invece il bosone W dell’interazione debole, per la quale il raggio di azione è dell’ordine di 0.0025 fermi

Un confronto con i valori sperimentali

Non ci dilunghiamo sulla massa del fotone, perché essendo un quanto di luce è il bosone meglio conosciuto nella storia e sappiamo con molta confidenza che la sua massa è da considerarsi nulla.
Sul gravitone diciamo solo che il risultato è quantomeno ragionevole: un’onda gravitazionale si propaga alla velocità della luce, quindi è ragionevole aspettarsi che, così come il fotone è la manifestazione dei modi di vibrazione del campo elettromagnetico, allora anche il gravitone avendo a che fare con il campo gravitazionale che si propaga alla velocità della luce, deve avere massa nulla.

Il pione è stato una delle prime particelle a essere scoperta nel dopoguerra (1947), e la sua massa è stata misurata in numerosissimi modi diversi. Tutti i risultati sono in accordo con il valore di circa 139 MeV, in perfetto accordo con quanto abbiamo trovato “giocando”.

La scoperta del bosone W dell’interazione debole ha portato il nobel a Carlo Rubbia (1983). Oggi la sua massa è nota essere di circa 80 mila MeV, proprio come abbiamo stimato.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).