Come ho imparato ad amare i numeri immaginari

Ho molta difficoltà nel visualizzare cosa sarebbe la Fisica teorica, o la Scienza in generale, senza i numeri immaginari. Non fraintendermi, il mondo esisterebbe lo stesso e la Terra continuerebbe a girare attorno al Sole. Dico solo che senza l’ausilio dei numeri immaginari faremmo molta più fatica nella costruzione di tantissime teorie della Fisica.
Ma il vantaggio non è solo teorico, questi speciali numeri sono così utili che anche gli ingegneri non saprebbero proprio farne a meno, dalla fluidodinamica fino alla teoria dei segnali elettrici.

Cosa c’è di immaginario nei numeri immaginari?

Alla fine ha poco senso definire un numero “immaginario” o reale, in quanto la matematica è di fatto un’invenzione umana e possiamo decidere a piacere cosa sia “reale” o meno.

Invece mi piace pensare che l’aggettivo “immaginario” si riferisca piuttosto a una qualità particolare di chi li ha pensati per la prima volta. Chi ha scoperto questi numeri era una persona ricca di immaginazione, disposta a fare quel passo in più e a sfidare lo status quo. Una persona che ha saputo sfruttare il potere del pensare in grande, del “e se fosse..?“. Alla fine questa è la storia di un “bighellonare produttivo”.

Il bighellonare produttivo

I matematici del XVI secolo erano maggiormente indaffarati con la fondazione dell’algebra e della geometria analitica. Nel frattempo si divertivano a risolvere alcuni “cruciverba“ come: “trova le radici dell’equazione polinomiale x2+3x-4=0 usando gli assiomi dell’algebra”. Era importante specificare “usando gli assiomi dell’algebra” perché, come ogni gioco, anche la matematica ha le sue regole. Ad esempio sarebbe facile, in una partita di calcio, prendere la palla con le mani e lanciarla verso la porta per fare gol, ma a quel punto staremmo parlando proprio di un altro sport. La matematica è tale proprio per via delle sue regole.

Le regole del gioco della matematica di allora prevedevano che fosse proibito affermare che il quadrato di un numero potesse essere un numero negativo: “meno per meno fa più, e più per più fa più“. Se così non fosse, romperemmo ogni logica del gioco. Queste regole impedivano che alcune equazioni polinomiali avessero una soluzione. Ad esempio x2-2x+2=0 non ammette soluzioni: non esiste un numero “x” che inserito in quella equazione dia zero come risultato. Graficamente stiamo parlando di una parabola che non tocca mai l’asse y=0

Un modo semplice di vedere perché l’equazione non ha soluzioni è con un cambio di variabile:

Cioè, definendo t=x-1, risolvere x2-2x+2=0 equivale a risolvere:

È quindi chiaro perché quella parabola non tocca mai lo zero! Se lo facesse staremmo rompendo le regole del gioco: il quadrato di un numero non può mai essere negativo.

Il matematico italiano Gerolamo Cardano sapeva bene che qualcosa come x2-2x+2=0 non ammette soluzioni, eppure decise di bighellonarci attorno. Cardano fece finta che in qualche modo fosse possibile che un numero al quadrato potesse essere negativo. Possiamo immaginare che forse lo fece per gioco, o magari per puro sfizio, in ogni caso si divertì a scrivere la radice quadrata di -1:

La radice quadrata di un numero negativo è l’unico numero che moltiplicato per se stesso ha come risultato un numero negativo.

Et voilà, ora anche x2+1=0 ammette due soluzioni come moltissime altre equazioni di secondo grado.
Questa soluzione non fu presa sul serio dai matematici dell’epoca. Rafael Bombelli, altro matematico italiano che osò bighellonare su queste questioni, definiva queste soluzioni “quantità silvestri“.


Questo piccolo passo segnò però l’inizio di una nuova comprensione della matematica: si possono modificare le regole del gioco e riuscire comunque a creare dei costrutti logici autoconsistenti.

Chiaramente la radice quadrata di un numero negativo non può essere rappresentata sul piano cartesiano, perché è un numero che rompe le regole dei numeri cartesiani di tutti i giorni. Ma per questo motivo non è un numero che ha meno diritti degli altri, è semplicemente un numero diverso che merita il proprio “asse cartesiano”, magari con un nome diverso. I matematici dei secoli successivi definirono quindi i numeri immaginari come un’estensione dei numeri reali, aventi la loro algebra e i loro assiomi.

Torniamo però un attimo alla soluzione di x2-2x+2=0. Avevamo visto che questa era equivalente a risolvere t2=-1 che ha due soluzioni immaginarie date dalla radice di -1. Avevamo definito t=x-1, quindi possiamo scrivere la soluzione con la variabile originale

Puoi verificare che inserendo queste soluzioni nell’equazione di partenza ottieni zero. Clever trick!

Quindi la soluzione non è un numero puramente immaginario: il numero “1″ è un numero “normalissimo”, reale, che rispetta gli assiomi dei numeri reali. Tuttavia è sommato (o sottratto) con un numero immaginario (la radice di -1). Che senso ha, e come può essere rappresentato questo numero? I matematici lo definirono numero complesso, cioè un ibrido tra numero reale e numero immaginario.

Un numero complesso venne definito come un oggetto costituito da due parti: una parte reale e una parte immaginaria. La parte reale e la parte immaginaria sono rappresentate comunque da numeri reali, quindi in un certo senso un numero complesso non è altro che una coppia di numeri reali che soddisfa alcune proprietà speciali. Vedremo tra poco il senso di questa affermazione.
Per comodità di notazione fu definito un simbolo speciale per l’unità immaginaria, “i“, in modo che ogni numero immaginario sia un suo multiplo:

L’unità immaginaria “i”.

Un numero complesso “z” può essere espresso con più notazioni equivalenti:

Un numero complesso è costituito da una parte reale e da una parte immaginaria.


La cosa curiosa è che la notazione con le parentesi (parte reale, parte immaginaria) ricorda quella utilizzata per rappresentare i vettori in due dimensioni (componente x, componente y). Questa cosa è del tutto intenzionale, come vedremo tra poco.

Dal XVIII secolo in poi i numeri complessi vennero considerati un’estensione dei numeri reali, nel senso che un numero reale non è altro che un numero complesso con parte immaginaria nulla.

Diagramma di Venn per i campi dell’algebra.

Con molta astuzia, furono identificate delle operazioni di somma e prodotto di numeri complessi che rendessero tutto autoconsistente.

La somma di due numeri complessi è un altro numero complesso con parte reale data dalla somma delle parti reali e con parte immaginaria data dalla somma delle parti immaginarie.
Il prodotto di due numeri complessi è un altro numero complesso, le sue parti reale e immaginaria non sono però semplicemente il prodotto delle parti reali e immaginarie. Questa particolarità è necessaria per avere un’algebra autoconsistente nel campo dei numeri complessi.

Cosa mi ha fatto amare i numeri immaginari

I matematici capirono presto che per i numeri complessi esisteva un’interpretazione geometrica piuttosto semplice, ed è per questo motivo che scelsero di rappresentarli con una notazione simile a quella usata per i vettori in due dimensioni.

La volta che mi affezionai ai numeri immaginari fu quando realizzai quanto fossero utili in un contesto geometrico. A un certo punto mi si sbloccò il seguente ragionamento.
Prendiamo un vettore a componenti reali, innocentissimo, bidimensionale: una freccia. Se moltiplichiamo il vettore per il numero “-1” ne invertiamo la direzione:

Siccome i vettori possono essere ruotati sul piano, possiamo interpretare l’inversione come una rotazione di un angolo piatto!

La rotazione di 180 gradi di un vettore restituisce il suo inverso.

Quindi il numero -1 è un numero molto speciale perché esegue la stessa mansione di una rotazione di 180 gradi.

Il punto è che potremmo anche arbitrariamente pensare che la rotazione di 180 gradi sia un processo a due step, una composizione di due rotazioni di 90 gradi:

Due rotazioni consecutive di 90 gradi generano una rotazione di 180 gradi.

Uno può quindi chiedersi: esiste un numero speciale in grado di ruotare un vettore di 90 gradi moltiplicando entrambe le sue componenti per esso?
Assumiamo che esista, a quel punto dobbiamo riconoscere che moltiplicare il vettore due volte consecutive per questo numero equivale a ruotare il vettore di 180 gradi, e quindi questo numero deve avere a che fare con “-1″, perché esegue la stessa azione

Applicare due volte la moltiplicazione per un numero speciale “a” equivale a ruotare il vettore di 180 gradi.

Quindi se il vettore è ruotato di 180 gradi deve valere

Quindi il quadrato di questo numero deve dare -1: deduciamo che “a=i”, cioè proprio l’unità immaginaria.

Questa è stata la connessione che mi ha fatto apprezzare i numeri complessi: possono essere utilizzati per ruotare degli oggetti! Per questo motivo i matematici inventarono un piano cartesiano dedicato ai numeri complessi, il piano di Gauss!

In questo piano abbiamo due assi: l’asse reale e l’asse immaginario. Un numero complesso è “molto simile” a un vettore, perché ha una componente reale a una componente immaginaria date dalle proiezioni su questi assi ortogonali:

Il piano di Gauss dei numeri complessi.

Il vantaggio algebrico di avere un numero che moltiplicato per se stesso dà “-1” è il potere di ruotare degli oggetti moltiplicandoli tra loro!

Se prendiamo come riferimento l’angolo tra il numero complesso e l’asse reale, la moltiplicazione di due numeri complessi ha l’effetto di produrre un nuovo numero complesso avente come nuovo angolo la somma degli angoli iniziali, come mostrato in figura:

La moltiplicazione di due numeri complessi ha restituito un numero complesso la cui angolazione è data dalla somma dei due angoli iniziali: abbiamo quindi eseguito una rotazione usando la moltiplicazione.

Infatti si ha, per le regole stabilite sopra:

E questa è secondo me la principale utilità dei numeri complessi: ci permettono di trasformare oggetti usando la notazione più compatta possibile.

Infatti se “ρ” è il modulo del numero complesso (definito proprio come il modulo dei vettori):

Il modulo di un numero complesso si ottiene facendo la radice della somma dei quadrati delle parti reale e immaginaria (esclusa la “i” ovviamente).

Allora possiamo scrivere le componenti reale e immaginaria usando la trigonometria proprio come si fa per i vettori in notazione polare. Se θ è l’angolo formato con l’asse reale si ha

La quantità tra parentesi (che ha modulo unitario per via della relazione trigonometrica fondamentale) può essere semplificata usando una relazione utilissima dimostrabile in analisi matematica, la quale lega il numero di Eulero con i numeri complessi:

La famosa relazione di Eulero. Può essere dimostrata sviluppando in serie di Taylor entrambi i membri dell’equazione.

Quindi un numero complesso può essere espresso con la elegantissima notazione

Un numero complesso in notazione polare.

La moltiplicazione di due numeri complessi ha quindi il seguente effetto:

Con questa notazione è anche più facile vedere che gli angoli si sommano, grazie alla proprietà degli esponenziali.

In sostanza, i numeri complessi sono davvero uno spasso (di sicuro sono meno monotoni dei numeri reali), ma prima di tutto sono i numeri più popolari della Scienza:

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
  • Moltissime trasformazioni nella fisica teorica sono generate da operatori complessi. Alcune tra le più importanti equazioni del Modello Standard sono scritte in notazione complessa.
  • In ingegneria, la teoria dei segnali è fondata sull’utilizzo dei numeri complessi.
  • In aerodinamica, l’analisi complessa è utilizzata per mappare il flusso dei fluidi attorno ad alcuni oggetti.
  • ….

Di sicuro potremmo fare tutte queste cose anche senza i numeri complessi, solo che faremmo molta più fatica! I numeri complessi sono una short-cut, ci semplificano la vita ogni giorno, e per questo dovremmo amarli.

Tuttavia a volte non si tratta solo di semplificare la vita. Di recente ho incrociato un articolo su Physics Today che parlava della necessità dei numeri complessi nella meccanica quantistica.
In sostanza, non solo non esiste un modo semplice per formulare la meccanica quantistica usando solo variabili reali, ma la versione della teoria senza numeri complessi non è in grado di replicare le previsioni sperimentali della teoria complessa. Questa conclusione mi ha lasciato un po’ sorpreso, dato che implicherebbe una supremazia quasi metafisica dei numeri complessi. Ho quindi intenzione di approfondirla in un prossimo articolo, dopo che mi sarò informato adeguatamente.

  • Esercizio: come ultima chicca ti sfido a scoprire una cosa che ritengo molto carina. Prendi la relazione di Eulero:

Questa è un’identità, quindi l’uguaglianza vale per qualsiasi valore di θ. Ti invito a inserirci θ=π/2 e usare quanto sai sul valore di seno e coseno per l’angolo retto. Dopodiché eleva entrambi i membri per “i”, cosa ottieni?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Come lo spin nasce dalla relatività

Lo spin è uno dei concetti più astratti da capire in un qualunque corso base di scienza dell’atomo. Spesso se ne dà una rappresentazione “intuitiva” o “semi-classica” come il risultato della rotazione della particella intorno al proprio asse, lasciando ai più curiosi tanti, troppi interrogativi.
Un secolo di teoria quantistica dei campi ci ha invece aiutato a comprendere che la “biglia rotante” è solo un’ approssimazione (seppur molto utile) di un concetto dietro al quale si cela praticamente tutta la struttura della nostra realtà: la relatività speciale.

La scoperta che le particelle hanno uno spin è uno dei trionfi della fisica sperimentale, ma come viene interpretato lo spin nella fisica teorica moderna?

Il principio di relatività e la simmetria di Lorentz

La fisica è fatta di fenomenologia, e tali fenomeni sono studiati dagli osservatori, che possiamo essere tutti noi. Possiamo prendere righello e compasso e tracciare la traiettoria di un corpo sulla nostra personalissima cartina di coordinate.
Un osservatore è detto inerziale se può concordare con tutti gli osservatori che si muovono con velocità costante rispetto a lui su un fatto molto semplice: un corpo esente da forze si muove di moto rettilineo uniforme.
Il punto però è che:

Non esiste un osservatore inerziale più speciale di altri

Se io uso la mia cartina di coordinate, e Pino (che si muove con velocità costante rispetto a me) usa la sua cartina di coordinate, dobbiamo concordare sulle leggi della fisica dei fenomeni che stiamo osservando, per cui deve esistere una trasformazione che colleghi le mie coordinate con le sue: una traduzione da una lingua all’altra che preservi la struttura delle leggi fisiche.

Questo è quello che ci disse Galileo con il suo principio di relatività

Due osservatori inerziali descrivono lo stesso fenomeno fisico usando le loro coordinate. La traduzione che lega i due set di coordinate si chiama “Trasformazione di Galileo” e lascia invariate in forma le leggi della fisica.

Dopodiché venne Einstein e si accorse che le trasformazioni di Galileo non lasciavano invariata la velocità della luce vista da osservatori inerziali, e siccome ciò era in conflitto con le leggi dell’elettromagnetismo, Einstein disse che la relatività di Galileo era solo un’approssimazione di un tipo di trasformazioni di coordinate molto speciale: le trasformazioni di Lorentz

Le trasformazioni di Lorentz lasciano invariata la velocità della luce vista da tutti gli osservatori inerziali dell’universo.

Esiste quindi una struttura matematica ben precisa che permette di tradurre un set di coordinate in un altro, e tale struttura matematica lascia invariate le leggi della fisica ed anche la velocità della luce: è la simmetria di Lorentz.


Le leggi di Newton non rispettano la simmetria di Lorentz, perché sono un’approssimazione che rispetta invece la simmetria di Galileo. La relatività di Einstein ci insegna quindi a teorizzare delle leggi che rispettino la simmetria di Lorentz.

La ricerca di leggi che rispettano la simmetria di Lorentz ci ha condotto a nuova fisica e risultati confermati sperimentalmente

Simmetrie e generatori: la teoria quantistica dei campi

Nella fisica ogni simmetria genera una quantità conservata, e tale quantità può essere interpretata, matematicamente, come il generatore della simmetria.

  • La simmetria per traslazioni implica la conservazione della quantità di moto. Matematicamente una traslazione nello spazio può essere generata dalla quantità di moto.
  • La simmetria per rotazioni implica la conservazione del momento angolare. Matematicamente una rotazione nello spazio può essere generata dal momento angolare.
  • La simmetria per traslazioni temporali implica la conservazione dell’energia. Matematicamente l’evoluzione temporale può essere generata dall’energia di un sistema.
  • …..

e così via.
La relatività di Einstein ha postulato che il mondo debba rispettare una simmetria molto speciale: la simmetria di Lorentz. In questo caso la quantità conservata è una sorta di combinazione tra momento angolare e quantità di moto, che diventano quindi i generatori matematici della simmetria.

Questi generatori soddisfano alcune regole di composizione matematica, e tale fatto permette di rappresentarli in alcuni spazi molti speciali di oggetti matematici. Tali oggetti possono poi essere usati per descrivere i campi delle particelle quantistiche.

Il punto è che gli oggetti che vivono negli spazi delle rappresentazioni dei generatori di simmetria, trasformano in un modo ben specifico sotto la simmetria di Lorentz: questo permette di classificarli.

Siccome i fisici classificano le cose in base a come si comportano sotto le simmetrie, questo fatto ha permesso di catalogare tutte le particelle rivelate sperimentalmente.

Lo spin

Le diverse rappresentazioni dei generatori della simmetria di Lorentz possono essere catalogati con degli speciali numeri interi o semi-interi

E sono questi numeri a decidere in che modo speciale deve trasformare l’oggetto delle rappresentazione
j-esima sotto la simmetria di Lorentz.

Il passo successivo è costruire, per ciascun oggetto che trasforma nel suo modo speciale, una teoria invariante di Lorentz: una teoria di campo i cui quanti di eccitazione sono proprio particelle che, sperimentalmente, interagiscono con il mondo proprio in base al numerino speciale j, altrimenti detto spin.

I campi costruiti con gli oggetti degli spazi j descrivono le particelle che conosciamo:

  • Le particelle con spin j=0: come il bosone di Higgs
  • Le particelle con spin j=1/2: come gli elettroni, i protoni ecc.
  • Le particelle con spin j=1: come il fotone.

Lo spin è quindi un modo per dire “come trasforma quella particella sotto simmetria di Lorentz”?

Le rappresentazioni j della simmetria continuano fino a infinito, nulla lo vieta. Tuttavia non abbiamo ancora osservato sperimentalmente particelle elementari con spin superiore a j=1.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile a tutti e insegnare le tecniche matematiche necessarie a una sua comprensione. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg



La caduta libera in un buco nero di Schwarzschild in coordinate di Fermi

Cosa percepisce un astronauta in caduta libera oltre l’orizzonte degli eventi?
Vengono utilizzate le coordinate normali di Fermi per descrivere lo spaziotempo in una piccola regione che circonda la traiettoria di un corpo in caduta libera verso un buco nero di Schwarzschild.

Perché la gravità è una forza fittizia in Relatività Generale?

Molte idee chiave della relatività generale sono nascoste nel formalismo di Minkowski della relatività ristretta. Partendo da ciò, possiamo percorrere la strada concettuale che condusse Einstein al più grande cambio di prospettiva dopo Newton:

La gravità è una forza fittizia perché è eliminabile con un cambio di coordinate: un corpo in caduta libera non è accelerato, segue solo la traiettoria percorsa dai corpi liberi in uno spaziotempo curvo.

Matteo Parriciatu

La misurazione in meccanica quantistica

Il link del documento in PDF ——–>   La misurazione in meccanica quantistica_Parriciatu

ABSTRACT

[Questa nota è da intendersi come una riflessione a livello molto elementare sul concetto di misura dal punto di vista della meccanica quantistica. La struttura logica e matematica della meccanica quantistica è nata per interpretare e predire i risultati degli esperimenti a livello atomico-molecolare. Il mondo microscopico è così energeticamente distante dal nostro che numerosi concetti classici hanno perso efficacia nella descrizione dei fenomeni: alcuni sono stati abbandonati , altri sono stati ridefiniti. Uno di questi è il concetto di misura. Per effettuare una misura su un sistema fisico servono due cose: una quantità da misurare, e un apparato per misurarla. Il punto di partenza per comprendere la teoria della misura è quindi quello di indagare cosa succeda tra apparato e sistema durante l’atto della misura stessa. A tal fine verranno discussi l’approccio di Von Neumann e una sua possibile giustificazione: la decoerenza quantistica.]

 

Matteo Parriciatu

Studio sulla cinematica del punto materiale

Il file PDF:Studio sulla cinematica del punto materiale

Il documento comprende la trattazione della cinematica dai moti rettilinei a quelli armonici, dai moti nel piano a quello circolare, fino al moto parabolico e i moti tridimensionali. Comprende cenni sui moti smorzati esponenzialmente e studio intorno all’istante di urto tra due punti materiali in un moto parabolico.

Matteo Parriciatu