La freccia del Tempo, spiegata con la statistica elementare

Si sente spesso dire che la Fisica non cambia se si inverte la freccia del tempo. Ne ho anche parlato di recente in un articolo sulla gravità.

La nostra esperienza quotidiana però è ben diversa: un cubetto di ghiaccio si scioglie se esposto a una temperatura più alta, e anche abbassando di nuovo la temperatura l’acqua si solidificherà, ma non riassumerà mai la forma iniziale. Fatti analoghi a questo, da millenni, ci hanno convinto che esista una direzione ben definita del tempo, un passato realizzato e un futuro da realizzarsi. La morte ne è solo l’esempio emotivamente più eclatante.

Come conciliare le due cose?

Come possiamo dire che le leggi della fisica sono in gran parte soddisfatte sia dalle equazioni con il tempo normale, sia dalle equazioni con il tempo invertito (t\to -t), ma poi rimangiarci tutto e dire che in realtà il mondo funziona in una sola direzione e mai in quella opposta?

Il problema è il calcolo

Immagina una scatola che contiene N particelle che interagiscono tra loro in maniera molto complicata. In linea di principio, tramite la Fisica saremmo in grado di calcolare posizioni e velocità di tutte le particelle a ogni istante di tempo (ricorda: 3 coordinate spaziali per ciascuna dato che viviamo in un mondo tridimensionale, e 3 coordinate per la velocità per lo stesso motivo).

Ad esempio siamo interessati a questo problema: tracciando una linea immaginaria che divide in due parti la scatola, vorremmo capire quante particelle staranno a destra e a sinistra di questa linea in un certo intervallo di tempo \tau in cui ci mettiamo ad osservare la scatola.

In totale quindi abbiamo da calcolare 6\times N coordinate di cui vogliamo sapere l’andamento nel tempo per poter predire dove si troverà ciascuna particella. Ognuna di queste coordinate potrebbe essere dipendente da qualsiasi altra per via delle interazioni tra le particelle, e il problema diventa immediatamente molto complesso dal punto di vista del calcolo numerico.

Come rimedio possiamo fare delle assunzioni ragionevoli. Si tratta di buonsenso. Si preferisce ottenere la massima resa con il minimo sforzo (essendo il mondo dannatamente complesso di per sé).

Anzitutto semplifichiamo il problema, per capirci meglio. Trattiamo solo 2 particelle interagenti (distinguibili tra loro).

Due particelle interagenti in una scatola. Le particelle sono distinguibili tra loro (di colore diverso).

La domanda che ci facciamo è: se osserviamo la scatola per un tempo \tau, quanto spesso vedremo le particelle a sinistra o a destra della linea immaginaria?

Facciamo un’altra assunzione ragionevole: supponiamo che queste 2 particelle interagiscano poco, così da non turbarsi troppo a vicenda. Concentriamoci sul numero di particelle n in un lato della scatola.

In un determinato lato ci potranno essere al massimo due particelle, e al minimo nessuna (n_\text{max}=2, n_\text{min}=0). Può anche esserci una sola particella per lato, e dato che sono distinguibili questo può avvenire in due modi: la blu a sinistra, la arancione a destra, o viceversa.

In totale abbiamo quattro configurazioni possibili, mostrate in figura.

Dal punto di vista del numero, entrambe le configurazioni “arancione a destra e blu a sinistra, e viceversa” conducono alla stessa risposta: una sola particella in un determinato lato, n=1. In Fisica questa proprietà è nota come degenerazione degli stati: lo stato a n=1 particelle per lato ha degenerazione pari a 2, la indichiamo col simbolo C(n)=2.

Siccome assumiamo che interagiscano poco, e che la scatola sia perfettamente simmetrica tra destra e sinistra, ciascuna avrà una uguale probabilità di trovarsi in uno dei due lati, ovvero p=1/2 (o il 50\%).

Il fatto che si influenzano pochino ci permette di dire che la probabilità per ciascuna configurazione mostrata in figura sarà il prodotto delle singole probabilità, cioè (1/2)\times (1/2)=1/4.

Tuttavia la configurazione a una particella per lato compare due volte (degenerazione), quindi la probabilità per questa particolare configurazione è data da 2\times (1/2)\times (1/2)=1/2.


Ci sono più modi equivalenti di ottenere lo stesso stato macroscopico (n=1), quindi è più probabile degli stati a n=0 e n=2.

La degenerazione controlla quanto è grande la probabilità di un certo stato macroscopico.

Per fissare le idee, in generale per esprimere la probabilità P_2 di avere n particelle in uno dei due lati è:

    \[P_2(n)=C_2(n)\times \frac{1}{2}\times\frac{1}{2}\]

in cui, come abbiamo detto, C_2(n=2)=C_2(n=0)=1 e C_2(n=1)=2.

Facciamo ora un bel salto: passiamo da 2 particelle a N particelle. La probabilità di avere n_1 particelle in un lato, e n_2=N-n_1 nell’altro, è una generalizzazione della formula precedente:

    \[P_N(n_1)=C_N(n_1)\times \left(\frac{1}{2}\right)^{n_1}\times\left(\frac{1}{2}\right)^{N-n_1}\]

dove adesso la degenerazione è data da:

    \[C_N(n_1)=\frac{N!}{n_1!(N-n_1)!}\]

Nota che quei punti esclamativi non sono estetici, è un’operazione chiamata “fattoriale” (2! = 2\times 1, 3! = 3\times 2 \times 1 e così via. Una particolarità buffa è che per definizione 0! =1).

Ora chiediamoci: qual è la configurazione n_1 che ha la più alta probabilità di verificarsi? Il buonsenso ti avrà suggerito bene: n_1=N/2 particelle a destra ed n_2=N-n_1=N/2 particelle a sinistra. Se tutto è all’equilibrio, lo stato in cui metà delle particelle occupano ciascun lato è ovviamente quello che osserveremo di più nel lasso di tempo \tau in cui stiamo monitorando la scatola.

Il punto però è il seguente: la quotidianità, la vita e l’universo stesso, sono sistemi che in generale sono fuori dall’equilibrio. Ciascun processo della nostra esistenza consiste in una transizione da uno stato fuori equilibrio a uno stato con maggiore equilibrio, in un processo che va all’infinito.

Qual è la probabilità che tutte le N particelle stiano in un solo dei due lati della scatola? Sicuramente sarà più piccola, ma perché? Semplicemente ci sono meno modi di realizzarla rispetto alle altre, in particolare c’è un solo modo! Ricorda infatti che è la degenerazione che fa aumentare la probabilità.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare

Quanto sarà piccola questa probabilità? Qual è la probabilità per la configurazione a n_1=N? Poniamo n_1=N nella formula data sopra:

    \[P_N(n_1=N)=\underbrace{\frac{N!}{N!}}_1\times \left(\frac{1}{2}\right)^N\left(\frac{1}{2}\right)^0=\]

    \[=\frac{1}{2^N}\]

Se N è un numero molto grande, questa probabilità è insignificanteQuesta è la chiave di tutto il discorso. Anche solo per N=100 la probabilità è minuscola P_{100}(100)\approx 10^{-30}, figuriamoci per un numero di Avogadro! (N\sim 10^{24}).

Immaginiamo quindi che il sistema sia inizialmente fuori dall’equilibrio, cioè che la scatola sia divisa in due parti da una paratia che teniamo abbassata. Una volta alzata la paratia, le particelle saranno libere di distribuirsi alla ricerca di un nuovo equilibrio, distribuendosi in parti eguali a sinistra e a destra.

Spontaneamente, le particelle passano da sinistra verso destra. Passato (figura sopra), e futuro (figura sotto) sono ben distinti. Nella tua vita non vedrai mai accadere il contrario.

Occhio però: non sono le leggi fondamentali della Fisica a proibirlo, queste funzionano perfettamente anche al contrario nel tempo. Lo stato con tutte le particelle a sinistra appartiene anche lui all’insieme degli stati “esplorabili” dal sistema.

Per questo motivo la configurazione in cui tutte le particelle stanno a sinistra può ricapitare, ovviamente. Tuttavia la probabilità che ciò accada è pari a 1/2^N come abbiamo visto, cioè estremamente piccola.

In questo senso c’è una distinzione netta tra uno stato iniziale e uno stato finale, una direzione del tempo ben distinta: le particelle non si distribuiranno praticamente mai più nella configurazione iniziale (che corrisponderebbe a un’inversione di quell’illusione che chiamiamo freccia del tempo).

Quel “praticamente” non vuol dire “impossibile”, vuole solo dire una “probabilità così piccola da essere considerabile come impossibile”.

In ciò sta la distinzione tra reversibilità delle leggi del moto e la vita reale: nel grande numero di componenti del sistema che costituisce l’universo, in questo fatto del “contare le configurazioni”, che da noi è stato chiamato per millenni, ingenuamente, “freccia del tempo”.

Bibliografia

Coniglio, A. “Reversibilità e freccia del tempo” Giornale di Fisica Vol. LXI, N.2
Lebowitz, J.L., Physica A, 194 (1993)


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Come Fermi scoprì la statistica degli elettroni assieme a Dirac

Per capire l’entità del contributo di Enrico Fermi in ciò che servì ad ispirare una delle scoperte più importanti dell’umanità (la teoria dei semiconduttori), è necessario fare qualche passo indietro e considerare il contesto storico-scientifico dell’epoca.

Negli anni ’20 del secolo scorso si sapeva molto poco sulle strutture fondamentali della materia. Le teorie dell’atomo erano giovanissime e l’unico metodo di indagine consisteva nell’osservare l’assorbimento luminoso di alcuni gas della tavola periodica.

Ludwig Boltzmann (1844-1906), uno dei padri fondatori della fisica statistica.

Proprio sui gas si sapeva dire un po’ di più, essendo una collezione di atomi che potevano essere trattati (in certe condizioni di densità e temperatura) come un grosso insieme di biglie microscopiche su cui, tramite la fisica statistica di Maxwell, Boltzmann e Gibbs, si potevano fare previsioni termodinamiche verificabili sperimentalmente.

Una particolarità interessante della teoria statistica di Maxwell e Boltzmann era il contenuto minimale di ipotesi sulla natura fisica di queste “biglie microscopiche”. Stiamo parlando di una teoria formulata nella seconda metà del secolo XIX, un periodo in cui non era ancora riconosciuta l’esistenza dell’atomo!

Trattandosi tuttavia di atomi, nemmeno la teoria di Maxwell e Boltzmann uscì indenne dalla rivoluzione della teoria dei quanti, iniziata con Planck nel 1900.

La teoria dei quanti funzionò sia da completamento che da antidoto per la vecchia fisica statistica. Da antidoto perché aiutò ad indagare meglio alcuni problemi matematici della teoria di Maxwell e Boltzmann, i quali conducevano a calcoli errati nella trattazione di particelle tra loro indistinguibili, e davano dei risultati impossibili per alcune quantità come l’entropia dei gas a basse temperature.

Un problema statistico dell’entropia

Queste difficoltà erano dovute al fatto che la fisica statistica si basa essenzialmente sul “contare, per tutte le particelle, tutte le possibili configurazioni microscopiche che conducono alla stessa situazione fisica del gas“, come illustrato in figura:

Lo schema concettuale che sta alla base della teoria statistica dei gas.

Pressione, volume, temperatura (P,V,T), sono tutte quantità macroscopiche misurabili sperimentalmente. In fisica statistica ci immaginiamo di conoscere le posizioni e velocità di tutte le particelle del gas in ciascuna configurazione possibile ammessa dalle condizioni ambientali (cosa non possibile da un punto di vista computazionale, ma che facciamo finta di poter fare comunque).


Siccome non sappiamo in quale configurazione microscopica precisa si trovi il gas in ciascun istante di tempo (non è misurabile sperimentalmente), immaginiamo di avere N copie del nostro gas e di fare delle estrazioni per contare quante volte esce una certa configurazione piuttosto che un’altra. La distribuzione di queste estrazioni definisce alcune quantità macroscopiche (P_i,V_i,T_i) associate alla specifica configurazione microscopica i estratta un numero N_i di volte. Le quantità macroscopiche (P,V,T) che misuriamo sperimentalmente possono quindi essere pensate come la media di tutte le (P_i,V_i,T_i) pesate con la probabilità di estrazione N_i/N.

La misura sperimentale di (P,V,T) ci dà quindi informazioni sulla distribuzione delle configurazioni microscopiche del nostro gas.


Immaginando il gas in equilibrio termico a una certa energia interna, il numero di configurazioni del gas corrispondenti a tale energia possono essere contate, dal punto di vista teorico, sommando tutte le possibili accoppiate di posizione-velocità (x,y,z),(v_x,v_y,v_z) nelle tre dimensioni spaziali, e ciò deve essere fatto per tutte le particelle del gas.

Siccome il numero di possibili accoppiate è virtualmente infinito, i padri fondatori della fisica statistica immaginarono di dividere lo spazio dei possibili valori di posizione e velocità in cellette elementari di dimensione finita che chiamiamo \tau. In questo modo due stati dinamici specificati da (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) che caschino nella stessa celletta di questo spazio sono considerati essere lo stesso stato dinamico. È come se ammettessimo, in un certo senso, di non sapere distinguere tra (x_1,y_1,z_1),(v_{x1},v_{y1},v_{z1}) e (x_2,y_2,z_2),(v_{x2},v_{y2},v_{z2}) nel caso appartengano alla stessa cella, è un’approssimazione.

La suddivisione in cellette dello spazio di posizioni e velocità per le particelle. Secondo questa suddivisione due set di posizioni e velocità che appartengono alla stessa celletta non sono distinguibili (qui non distinguiamo il rosa dal celeste), mentre sono distinguibili da quella in verde, dato che appartiene a un’altra celletta.

Dal punto di vista statistico, l’entropia del gas è pensabile come una misura di quanti stati dinamici microscopici sono associabili a un certo stato termodinamico macroscopico, una misura della nostra “ignoranza” sull’effettiva configurazione microscopica del gas.

Il problema era che la dimensione \tau della celletta elementare era del tutto arbitraria, e ciò influiva pesantemente sul conteggio delle configurazioni. Essendo il numero delle configurazioni direttamente collegato alla definizione statistica di entropia, una scelta di \tau troppo piccola conduceva a valori infiniti per l’entropia del gas. Questa indeterminazione sulla scelta di \tau impediva inoltre di calcolare, statisticamente, il valore della costante dell’entropia alla temperatura dello zero assoluto.

Il problema della costante dell’entropia stava molto a cuore ai fisici dell’epoca. Nella termodinamica ottocentesca ci si interessava solo alle differenze di entropia, e quindi era di scarso interesse pratico domandarsi quale fosse il valore assoluto dell’entropia a una determinata temperatura come T=0\,\text{K}, e in ogni caso questa costante spariva quando si faceva la differenza \Delta S=S(B)-S(A) tra due stati termodinamici B e A.
Tuttavia con l’arrivo del teorema di Nernst e quindi del terzo principio della termodinamica (il quale postula che l’entropia allo zero assoluto sia esattamente zero) si rivelò essenziale determinare il valore di questa costante.

Un altro problema fastidioso era quello che riguardava il conteggio di particelle indistinguibili: quando si contavano tutte le configurazioni possibili di tutte le particelle del gas si finiva per contare più volte la stessa configurazione per via del fatto che non è possibile distinguere una particella dall’altra. Per via di ciò si arrivava a dei paradossi che riguardavano l’entropia di mescolamento dei gas.
Di questo problema si interessò Gibbs, il quale propose di dividere i conteggi per il fattore combinatorico N! dove N è il numero di particelle e con “!” si intende il fattoriale N!=N(N-1)(N-2)....
Tuttavia anche questa soluzione non risolveva tutti i problemi…

La teoria dei quanti sistemò i problemi dell’entropia. Si dimostrò che la dimensione \tau delle cellette elementari doveva essere pari alla costante di Planck h: la natura discreta della teoria quantistica si sposava bene con l’ipotesi delle cellette elementari della fisica statistica.

Il punto è che gli effetti quantistici delle particelle non sono più trascurabili a basse temperature. In fisica statistica esiste una quantità chiamata lunghezza d’onda termica di De Broglie, la quale ha la seguente espressione per un gas perfetto monoatomico:

La lunghezza termica delle particelle di un gas, dove h è la costante di Planck, m la massa delle particelle, k_B la costante di Boltzmann che converte da dimensioni di energia a dimensioni di temperatura tramite E=k_BT, e T la temperatura del gas.

Questa lunghezza d’onda deriva dalla formulazione ondulatoria di De Broglie per le particelle quantistiche.
Secondo De Broglie, a ogni particella avente quantità di moto p è associabile una lunghezza d’onda \lambda=h/p. Se come p si prende la quantità di moto termica delle particelle del gas si ottiene la \lambda_T riportata sopra.
A temperature normali questa lunghezza d’onda è molto più piccola della distanza media tra gli atomi di un gas. Vediamo però che al diminuire di T, la relazione di inversa proporzionalità \lambda_T\propto 1/\sqrt{T} aiuta a far crescere questa lunghezza d’onda. Per temperature sufficientemente basse la lunghezza d’onda \lambda_T diventa comparabile con le distanze inter-atomiche del gas.

Man mano che si abbassa la temperatura del sistema, aumenta la lunghezza d’onda di De Broglie e dominano le interferenze quantistiche tra le funzioni d’onda delle particelle.
Nel caso in figura sono mostrati dei bosoni.

Quindi, per via delle loro proprietà quantistiche, le particelle iniziano ad interferire tra loro come tante onde, e questo succede quando la loro lunghezza d’onda diventa almeno comparabile con la distanza tra una particella e l’altra, a temperature molto basse.

Siccome parliamo di funzioni d’onda che creano interferenze, l’indistinguibilità delle particelle gioca un ruolo centrale in questo processo quantistico, e ciò sta alla base di tutte le difficoltà teoriche della vecchia fisica statistica, la quale non teneva conto di queste proprietà quantistiche. Fino alla prima metà degli anni ’20, questa sottigliezza quantistica non era ancora stata compresa in profondità.

Statistica quantistica: la strada di Fermi

Enrico Fermi (1901-1954). Premio Nobel per la Fisica nel 1938.

Ancora fresco di laurea, Fermi divenne particolarmente ossessionato dal problema della costante dell’entropia, pubblicando diversi articoli tra il 1924 e il 1926.

Aveva intuito che il problema risiedesse nella natura quantistica delle particelle, in particolare dal punto di vista della loro indistinguibilità, ma mancava ancora qualche pezzo del puzzle.

Il pezzo mancante fu messo a disposizione da Pauli con la formulazione del principio di esclusione: non possiamo avere due elettroni con tutti i numeri quantici uguali tra loro. Gli elettroni sono particelle indistinguibili, quindi Fermi si ispirò al loro comportamento per provare a quantizzare un gas di particelle a temperature sufficientemente basse.

Possiamo immaginarci un Fermi che lavora assiduamente all’alba (il suo momento preferito per studiare e lavorare su nuovi articoli) in qualche fredda mattina di Firenze, nell’inverno del 1925-26, sforzandosi di sfruttare il principio di Pauli per ottenere la costante corretta dell’entropia allo zero assoluto.

La prima pagina dell’articolo di Fermi, presentato all’accademia dei Lincei nel febbraio del 1926.

Nel suo articolo “Sulla quantizzazione del gas perfetto monoatomico” uscito nel febbraio del 1926, Fermi ipotizzò che un gas ideale si comportasse proprio come gli elettroni del principio di Pauli e cambiò completamente il modo di contare le configurazioni possibili in fisica statistica: in ciascuno stato dinamico possono esserci zero o al massimo una sola particella, mai due nello stesso stato.
Immaginò poi che il gas potesse essere caratterizzato da determinati livelli energetici discreti, proprio come si faceva nella quantizzazione dell’atomo di idrogeno. Questa spaziatura tra i livelli energetici era tanto più rilevante per la fisica del problema quanto più era bassa la temperatura del gas, essenzialmente per il motivo enunciato sopra. Ad alte temperature gli effetti quantistici devono essere trascurabili e si ritorna alla termodinamica dell’ottocento.

La conseguenza di questo nuovo modo di contare era che ciascuno stato i era occupato da un numero medio di particelle in funzione dell’energia E_i dello stato, secondo la seguente espressione:

Il numero di nepero e (o Eulero), l’energia E_i dello stato, la temperatura T, la costante di Boltzmann k_B. Il parametro \mu è noto come “potenziale chimico” e allo zero assoluto corrisponde all’energia di Fermi: E_F.

Usando questa informazione, Fermi calcolò l’espressione della costante dell’entropia, la quale coincideva con il valore sperimentale dedotto da Sackur e Tetrode nel 1912. La sua teoria era un successo!

Tuttavia, come confermato anche da alcuni studiosi (Belloni, Perez et al), Fermi non si interessò delle radici quantistiche di questa nuova statistica, cioè non provò a collegare il principio di Pauli con la natura ondulatoria della materia. Inoltre non esisteva, al tempo, un gas capace di comportarsi come gli elettroni dell’articolo di Fermi. La soluzione di Fermi voleva andare nella direzione della statistica quantistica, ma con un approccio molto cauto sulle ipotesi alla base. Fermi utilizzò la sua intuizione per dare una nuova soluzione a dei problemi annosi di fisica statistica (già risolti recentemente da Bose e Einstein con la loro statistica) e dedusse una statistica completamente nuova.

Tuttavia, al contrario di quanto si dice solitamente in giro, Fermi non applicò direttamente questa nuova statistica al problema degli elettroni nei metalli (cosa che fu fatta da altri e che condusse alla teoria dei semiconduttori).

La statistica di Fermi-Dirac

La distribuzione trovata da Fermi è dipendente dalla temperatura. Abbiamo già anticipato che gli effetti quantistici diventano preponderanti a temperature vicine allo zero assoluto. In questo caso il principio di Pauli emerge direttamente dalla forma analitica della distribuzione, riportata in figura:

La formula di Fermi al variare della temperatura.

Man mano che la temperatura del gas di elettroni si avvicina a T=0\,\text{K}, la distribuzione di Fermi si avvicina sempre di più alla “funzione gradino”

La funzione gradino, cioè il limite a basse temperature della formula di Fermi.

Allo zero assoluto, gli elettroni occupano i livelli energetici riempiendoli dal più basso fino a un’energia chiamata “energia di Fermi”, indicata con E_F.
Puoi notare come a T=0 il numero medio di occupazione dello stato a energia E_i sia esattamente 1: non può esserci più di un elettrone per stato, è il principio di esclusione di Pauli in tutta la sua gloria. Nota anche che non ci sono elettroni che occupano stati a energia maggiore di quella di Fermi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo comportamento è essenzialmente verificato anche per temperature più alte di T=0, basta solo che sia T\ll T_F dove T_F è detta “temperatura di Fermi”, ed è pari a T_F=E_F/k_B. Nelle situazioni di interesse fisico (come nei metalli), la condizione T\ll T_F è praticamente sempre soddisfatta, essendo T_F di solito dell’ordine di alcune centinaia di migliaia di gradi kelvin.

I gas di elettroni sono fortemente influenzati dal principio di Pauli: è un po’ come se ci fosse una forza “repulsiva” tra gli elettroni, la quale gli impedisce di occupare lo stesso stato energetico. Questa è anche un’interpretazione euristica del fatto che la pressione di un gas di Fermi sia più elevata di un gas classico: è difficile comprimere un gas di elettroni perché non vogliono mai “occupare lo stesso punto spaziale”.

Come mai questa statistica è chiamata “Fermi-Dirac” e non solo “Fermi”?
È noto che Dirac pubblicò la stessa formula alla fine dell’estate del 1926, mentre Fermi l’aveva presentata nella primavera dello stesso anno. Dirac, su sollecito scritto da parte del fisico italiano, ammise di aver letto il lavoro di Fermi, ma sostenne di averlo completamente scordato.

In difesa di Dirac va detto che il suo lavoro (“On the Theory of Quantum Mechanics“) è molto più generale di quello presentato da Fermi, il quale si era invece proposto di risolvere un problema particolare (quello dell’entropia) che c’entrava poco con i postulati della meccanica quantistica.

Dirac giustificò in maniera elegante il principio di esclusione di Pauli notando che la meccanica quantistica era il luogo naturale per trattare i sistemi di particelle indistinguibili, grazie al formalismo delle funzioni d’onda.

La chiave del ragionamento di Dirac si trova proprio nel fatto che le particelle elementari possono essere considerate indistinguibili. La conseguenza quanto-meccanicistica è che se consideriamo due particelle non interagenti tra loro, e che possono occupare gli stati A e B, la funzione d’onda che le descrive collettivamente è data dal prodotto delle due funzioni d’onda

    \[\psi(x_1;x_2)=\psi_A(x_1)\psi_B(x_2)\]

in cui x_1 e x_2 sono le posizioni delle due particelle. Se scambiamo le due particelle, e cioè le portiamo dallo stato A allo stato B e viceversa, otteniamo la funzione d’onda modificata

    \[\psi'(x_1;x_2)=\psi_B(x_1)\psi_A(x_2)\]

Ma se assumiamo che le particelle siano indistinguibili, la densità di probabilità deve restare la stessa (ricordiamo che è data dal modulo al quadrato della funzione d’onda):

    \[|\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2\]

Quindi al massimo possiamo avere che \psi' è diversa da \psi per un fattore \eta

    \[\psi'(x_1;x_2)=\eta \psi(x_1;x_2)\]

in cui \eta è un numero tale che |\eta|^2=1 in modo da soddisfare |\psi'(x_1;x_2)|^2=|\psi(x_1;x_2)|^2 (verifica pure!).

Se ri-scambiamo le due particelle, torniamo punto e a capo, e cioè deve essere \psi''(x_1;x_2)=\psi(x_1;x_2)

    \[\psi''(x_1;x_2)=\eta \psi'(x_1;x_2)=\eta^2\psi(x_1;x_2)=\psi(x_1;x_2)\]

ovvero \eta^2=1, la quale ha soluzione \eta=\pm 1.
Se \eta=-1 stiamo parlando di particelle con funzioni d’onda antisimmetriche (cioè lo scambio delle particelle produce un segno meno moltiplicativo nella funzione d’onda totale). Una conseguenza è che se parliamo dello stesso stato A=B allora lo scambio delle particelle produce la seguente relazione

    \[\psi_A(x_1)\psi_A(x_2)=-\psi_A(x_1)\psi_A(x_2)\]

la quale implica identicamente \psi_A(x_1)\psi_A(x_2)=0, cioè non esiste uno stato quantistico in cui queste particelle hanno gli stessi numeri quantici. Questa è la giustificazione quanto-meccanicistica del principio di Pauli, e condusse Dirac a ricavare la stessa formula di Fermi per la statistica degli elettroni.

La lettera in cui Fermi richiamò l’attenzione di Dirac sul suo articolo del febbraio precedente.


Fermi si limitò all’applicazione del principio di esclusione su un problema specifico, senza provare a darne un’interpretazione quanto-meccanicistica.

In ogni caso, Dirac riconobbe comunque l’importanza del lavoro di Fermi, e propose di chiamare la nuova statistica “Fermi-Dirac”, mettendo il nome di Fermi al primo posto.

Oggi le particelle (come gli elettroni) che obbediscono alla statistica di Fermi-Dirac sono note come “fermioni”, sempre in onore di Fermi. I fermioni sono tutte quelle particelle caratterizzate da uno spin semi-intero. Per un teorema rigorosamente dimostrabile in teoria quantistica dei campi, tutte le particelle a spin semi-intero obbediscono alla statistica di Fermi-Dirac, mentre quelle a spin intero (note come “bosoni“) obbediscono alla statistica di Bose-Einstein (sono le particelle con \eta=1 dopo uno scambio).

Alle basse temperature i bosoni possono occupare tutti lo stesso stato a energia più bassa, mentre i fermioni sono forzati ad occupare stati a energia crescente fino all’energia di Fermi (nella figura sono presenti al massimo due fermioni per via del numero quantico di spin, il quale assume due valori possibili se lo spin è 1/2).

Alle alte temperature (dove gli effetti quantistici sono meno preponderanti) sia fermioni che bosoni tornano ad obbedire alla statistica di Maxwell-Boltzmann e Gibbs.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

L’equazione più importante della fisica: perché tutto è un oscillatore armonico?

Spesso tra colleghi fisici ci si scherza sopra: “tutto, ma proprio tutto è un oscillatore armonico!”.
In realtà questa non è proprio un’esagerazione: in un certo senso, sotto alcune approssimazioni, tantissimi sistemi fisici hanno lo stesso comportamento di un oscillatore armonico.

Alcuni esempi:

  • Il pendolo oscilla
  • Le corde di una chitarra oscillano
  • Un liquido in un tubo a U oscilla
  • I pianeti seguono una traiettoria che riferita a una certa coordinata è un’oscillazione
  • La corrente elettrica in un circuito di una radio oscilla
  • Gli atomi oscillano
  • Gli elettroni sono delle oscillazioni di un certo campo fermionico

Cos’è un oscillatore armonico?

Tutti siamo familiari con il moto di una massa collegata a una molla: se tendiamo la molla e la lasciamo andare, la massa inizierà ad oscillare perché richiamata dalla forza elastica. Questa oscillazione è detta armonica perché è un’oscillazione perfetta, cioè segue l’isocronismo: il tempo che impiega la massa a fare avanti e indietro è indipendente da quanto è stata tesa la molla all’inizio. Questa proprietà permette di risolvere con estrema semplicità il moto di un sistema fisico.


L’equazione di un oscillatore armonico è la seguente

Questa è un’equazione differenziale che desidera essere risolta da una particolare funzione x(t) che rappresenta la traiettoria della massa nel tempo. Se non sai cos’è un’equazione differenziale, non preoccuparti, non è questo il punto del discorso.
Ti basta sapere che la soluzione x(t) è proprio un’oscillazione, cioè una funzione seno o coseno, avente una frequenza ω.

La traiettoria oscillante x(t) in funzione del tempo t.

La grande notizia è questa: sotto certe approssimazioni, la maggior parte dei sistemi fisici sono ben descritti da un’oscillazione!

Perché all’universo piace l’oscillatore armonico?

Le forze decidono in che modo devono muoversi i corpi.
Il motivo per cui la traiettoria della massa collegata alla molla obbedisce all’equazione differenziale dell’oscillatore armonico va ricercato nella natura dell’interazione tra la molla e la massa: la forza elastica.

In fisica tutte le interazioni possono essere descritte da un oggetto matematico fondamentale: il potenziale di interazione. Questo potenziale descrive le forze tra gli oggetti ed è specificato dall’interazione di cui si sta parlando, (ad esempio quella gravitazionale o elettromagnetica), per cui può dipendere dalle loro distanze reciproche, dalle loro masse, o dalle loro cariche elettriche.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per non mettere troppa carne sul fuoco consideriamo una sola dimensione spaziale x e supponiamo che l’interazione dipenda solo dalla distanza x dall’origine x=0.

Matematicamente il potenziale di interazione sarà quindi una funzione di x, che indichiamo per convenzione con U(x).

Alcuni potenziali di interazione in una sola dimensione. Solo il potenziale più a sinistra produce delle traiettorie di oscillazione armonica.

Il potenziale di un oscillatore armonico è una parabola

Il potenziale di un oscillatore armonico

Come mai ciò?
Immagina una biglia sul fondo di una scodella: se si prova a spostare la biglia verso le pareti della scodella, la biglia tornerà indietro verso il fondo e inizierà a oscillare da una parete all’altra fino a quando l’attrito non avrà consumato tutta l’energia potenziale iniziale.

La biglia vuole tornare nel fondo della scodella perché era una posizione di equilibrio stabile, ma non può più semplicemente fermarsi in quel punto dato che ha abbastanza energia cinetica da risalire nuovamente sulla parete in direzione opposta (abbiamo perturbato il suo equilibrio stabile).
Allo stesso modo una molla vuole portare il più possibile vicino a sé la massa (per raggiungere il punto di equilibrio), ma se lasciamo andare la massa da una certa posizione iniziale, essa avrà un’energia cinetica abbastanza elevata da non fermarsi nel punto di equilibrio della molla, per cui lo oltrepasserà e proseguirà fino a quando non sentirà l’interazione elastica richiamarla nuovamente, stavolta in direzione opposta.

Il punto è che il potenziale armonico è lo stesso sia per x>0 che per x<0:
la parabola è simmetrica nei due bracci

ciò consente alla molla di richiamare la massa con una simmetria direzionale perfetta: da questo nasce l’oscillazione. Tutte le interazioni che presuppongono l’esistenza di un potenziale a forma di parabola producono delle oscillazioni armoniche dei corpi.

La metamorfosi: come si diventa armonici?

La chiave che accomuna tutti i sistemi che possono essere trattati come oscillatori armonici è che debba esistere un punto di equilibrio stabile attorno a cui oscillare. Se fissiamo tale punto di equilibrio nell’origine x=0 allora grazie ai teoremi di analisi matematica abbiamo che il potenziale può essere sviluppato come un polinomio attorno a questo punto

dove teoricamente la somma continua fino all’infinito.
Il punto fondamentale è che possiamo approssimare, cioè possiamo studiare il sistema così vicino al punto di equilibrio da poter trascurare i termini polinomiali di grado superiore (in soldoni, il numero 0.01 al cubo è più piccolo di 0.01 al quadrato, e così via). Ad esempio possiamo fermarci al polinomio di grado due.

Non lasciarti distrarre dai parametri costanti F, sappi solo che dipendono dal punto attorno cui stiamo sviluppando il potenziale. In particolare nel punto di equilibrio si ha

infatti tale parametro rappresenta la forza sentita dal corpo, e per definizione di punto di equilibrio, la forza in quel punto è nulla. Quindi si annulla il primo ordine del polinomio, e se trascuriamo il terzo ordine, ci rimane proprio una parabola.

Quindi l’interazione diventa del tutto analoga a quella elastica per piccole distanze attorno alla posizione di equilibrio. Il potenziale armonico è uno dei pochissimi casi in cui sappiamo risolvere perfettamente le equazioni, per cui non solo all’universo piace oscillare, ma anche ai fisici piace descrivere interazioni molto complicate, approssimandole, quando possibile, con quelle di un oscillatore.



PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica e che ruota attorno all’equazione dell’oscillatore armonico. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Meccanica statistica dei sistemi a temperatura assoluta negativa

Compendio sullo stato attuale della ricerca sui sistemi a temperatura assoluta negativa: include trattazione sistema di spin a due livelli, l’esperimento di Purcell & Pound, e una discussione concettuale sul concetto di temperatura statistica VS temperatura termodinamica.

Matteo Parriciatu

Sopra gli spettri di emissione del corpo nero

A seguire il documento in formato pdf –>Sopra gli spettri di emissione del corpo nero

Viene trattato il problema del corpo nero dal punto di vista della statistica classica di Boltzmann per poi arrivare alla teoria dei quanti di Planck, analizzando le caratteristiche degli spettri di emissione dal punto di vista analitico.

Matteo Parriciatu

Approccio classico alla teoria magnetica della materia

A seguire il documento in formato pdf–> Approccio classico alla teoria magnetica della materia

Entro i limiti concettuali della meccanica classica, è proposta la trattazione dei fenomeni di diamagnetismo e di paramagnetismo a livello atomico-molecolare, servendosi della precessione di Larmor e della legge di induzione nel caso del diamagnetismo, e di una distribuzione di probabilità di Boltzmann nel caso del paramagnetismo, arrivando a derivare in entrambi i casi le suscettività magnetiche in termini microscopici, fino alle leggi di Curie per il magnetismo.

Matteo Parriciatu

 

Sopra i fenomeni di polarizzazione nei gas

A seguire il link del documento in formato pdf Sopra i fenomeni di polarizzazione nei gas

Nell’ambito dei fenomeni elettrostatici, viene discussa l’applicazione di un campo elettrico ad un gas studiandone la polarizzazione elettronica e la polarizzazione per orientamento. Viene derivata la funzione di Langevin partendo da una distribuzione di Boltzmann nel caso della polarizzazione per orientamento.

Matteo Parriciatu

Cenni di relatività ristretta e urti tra particelle

A seguire il documento in formato pdf –> Cenni di relatività ristretta e urti tra particelle

In questo trattato è proposto lo studio degli aspetti fondamentali inerenti alla teoria della relatività ristretta, dalla derivazione delle trasformazioni di Lorentz alla dilatazione dei tempi e alla contrazione delle lunghezze, accenni sul concetto di simultaneità e discussione sull’energia relativistica, fino alle trasformazioni di Lorentz per la quantità di moto e l’energia.  Ivi sono discusse inoltre le analogie tra gli urti tra corpi in meccanica classica e gli urti tra particelle in meccanica relativistica, con studio sugli urti completamente anelastici, elastici ed anelastici. In particolare sono stati trattati l’effetto Compton e l’effetto Doppler e le loro connessioni relativistiche e inerenti alla meccanica quantistica.

Matteo Parriciatu