Decodificando le equazioni di campo di Einstein per i non-esperti

Scoperte verso la fine del 1915, le equazioni di campo di Einstein della Relatività Generale rappresentano uno dei risultati intellettuali più importanti della nostra civiltà.

Le equazioni di campo di Einstein per la Gravità (1915).

Queste equazioni descrivono la Gravità in maniera completamente differente dalla legge di gravitazione newtoniana.

La Gravità di Newton è quel fenomeno a cui attribuiamo il moto, nello spazio e nel tempo, degli oggetti che si trovano nei pressi di altri oggetti massivi.

Per Einstein, la Gravità non è un fenomeno di per sé. Lo spazio e il tempo diventano quantità dinamiche, modificabili dalla materia che li riempie. A sua volta, la materia non può fare altro che muoversi nello spazio e nel tempo, con un moto dettato precisamente dalla geometria dello spazio e del tempo.

Parliamoci chiaro: lo spazio-tempo non è un fluido che interagisce con la materia, non è un qualcosa di tangibile, è ancora più pazzesco di così.

Lo spazio-tempo è una collezione di eventi a cui ogni corpo è fondamentalmente legato, perché è con gli eventi che capiamo la realtà. È il nostro modo di comprendere il mondo: “quell’oggetto stava lì, a quell’ora del giorno”.
Dal punto di vista matematico interpretiamo la collezione di eventi come una iper-superficie geometrica in quattro dimensioni (3 spaziali e 1 temporale). È questa la grande intuizione di Einstein.

Le equazioni di Einstein dicono come questa iper-superficie reagisce alla presenza di massa ed energia. Il concetto è semplice, ma le equazioni sono abbastanza complicate.

È quindi mia intenzione decodificarle per dimostrare come funzionano anche ai non-esperti del settore.

Chi è già esperto può invece comodamente leggersi la bibbia della gravitazione di Kip Thorne, J.A. Wheeler e C. Misner.

Per iniziare la decodificazione, concentriamoci sul cosa e sul come: cosa stiamo cercando di risolvere con queste equazioni? E come lo stiamo cercando?

Decodificazione: cosa stiamo cercando?

Siccome è difficile disegnare le iper-superfici a 4 dimensioni, concentriamoci su 3 dimensioni per fissare le idee. Considera questa figura:

Matematicamente, come fai a descrivere questo spazio? Immagina che questo fosse, in origine, un lenzuolo. Un lenzuolo disteso in uno spazio tridimensionale. Il lenzuolo, di per sé, ha due dimensioni (lunghezza e larghezza, se trascuri lo spessore), ma vive in uno spazio tridimensionale in cui possiamo giudicare se il lenzuolo è curvo verso l’alto o verso il basso, proprio come nella figura.

Prendi un pennarello e disegna due punti A e B su questo lenzuolo, come nella figura seguente:

Prendi un sistema di assi cartesiani x e y, come si fa a scuola: qual è la distanza più preve tra A e B? Naturalmente è data dal teorema di Pitagora

    \[l^2=\Delta x^2+\Delta y^2\]

dove \Delta x=x_B-x_A e \Delta y=y_B-y_A. Questa è chiamata geometria piatta di uno spazio, è tutto liscio, nessun rigonfiamento, nessuna depressione. Nelle coordinate x e y vale sempre:

    \[ds^2=dx^2+dy^2\]

Questa quantità si chiama metrica (dx significa \Delta x=x_B-x_A per x_B molto vicino ad x_A, cioè distanze molto piccole). I coefficienti davanti agli elementi dx^2 e dy^2 (che sono pari a 1 come vedi) si chiamano coefficienti della metrica, che è indicata come un oggetto a quattro componenti: g_{ij}. Siccome non ci sono termini misti del tipo dx\times dy diremo che questi hanno coefficiente zero davanti a loro. La metrica è un modo molto comodo di riassumere i contenuti geometrici di uno spazio.

Coefficienti per la metrica del lenzuolo.

In questo caso abbiamo g_{xx}=1, g_{yy}=1, g_{xy}=g_{yx}=0.

Se adesso pieghi il lenzuolo (ti è concesso stiracchiarlo sfruttandone l’elasticità), vedrai i punti precedentemente disegnati cambiare la loro posizione relativa. In uno spazio curvo la metrica ha un’espressione ben diversa da questa che abbiamo appena scritto.

Potremmo essere interessati a capire come varia questa metrica da punto a punto: quanto rapidamente si inclina verso l’alto? Quanto si inabissa? Potremmo chiederci: quanto varia g_{ij} in vista di un leggero spostamento nella direzione x? Il cambiamento della metrica lo indichiamo con \Delta g_{ij}.

Il simbolo \partial significa un cambiamento \Delta molto piccolo, nella direzione di x, tenendo la coordinata y inalterata. Un modo ancora più conciso di scrivere \partial g/\partial x è con il simbolo \partial_x g.

Un piccolo check: se la metrica è piatta posso spostarmi nella direzione x o y quanto voglio, ma lei non cambierà, non si innalza e non si inabissa, quindi \partial_x g=0 e \partial_y g=0.

Questo è il punto più importante che serve per capire le equazioni di Einstein.

Esiste una quantità chiamata “curvatura dello spaziotempo” la quale è una combinazione non lineare di termini come \partial_x g, \partial_y g, \partial_z g per le tre dimensioni spaziali, e \partial_t g per la dimensione temporale indicata col simbolo t. Le informazioni sulla curvatura sono racchiuse in simboli che indichiamo con R_{\mu\nu} e R:

Ora il simbolo \partial^2 g sta a significare “come varia la variazione della metrica”? Allo stesso modo in cui l’accelerazione ci dice come varia la variazione della posizione (cioè come varia la velocità).

Einstein voleva un’equazione che esprimesse la seguente frase: “questa distribuzione di massa ed energia fa sì che la metrica varii da punto a punto (tramite (\partial g)^2,\partial^2 g...) in questo modo qui. Sai trovare la metrica g che risponde di tale variazione come descritto qui?”.

Le equazioni di Einstein descrivono come varia la metrica: se conosci come varia, sai anche trovare la metrica stessa, e se conosci la metrica, conosci il moto di tutti i corpi che sono contenuti nello spaziotempo.

Decodificazione: i due membri

Concentriamoci ora sulla distinzione visiva. Un’equazione serve per trovare qualcosa in funzione di qualcos’altro. Pensa a x^2=4, significa: sai trovare quel numero x tale che il suo quadrato faccia 4?

La situazione è molto simile: sai trovare quegli oggetti geometrici dello spazio-tempo R_{\mu\nu}, R, g_{\mu\nu} tali che combinati in questo modo si ha uguaglianza con il contenuto di materia ed energia?

La materia-energia è contenuta nell’oggetto T_{\mu\nu}, mentre 8\pi è una semplice costante matematica. D’altra parte c e G sono la velocità della luce e la costante di gravitazione universale di Newton, rispettivamente.

La risposta a questa domanda permette di conoscere la curvatura dello spaziotempo in ogni suo punto.

Perché sono chiamate “equazioni” di Einstein, se di equazione se ne vede effettivamente solo una?

In realtà è un modo furbo e sintetico di rappresentarle. L’oggetto g_{\mu\nu}, come visto nell’esempio del lenzuolo, ha in realtà tante componenti. In due dimensioni spaziali (x e y) era un oggetto a quattro componenti. Qui abbiamo 10 componenti effettive (sarebbero 16, ma alcune sono uguali ad altre, quindi il numero si riduce per simmetria), ad esempio g_{tt}, g_{xt}, g_{yt}, g_{zt}, g_{xx},g_{yy},g_{zz},... etc.

Dobbiamo quindi leggere l’equazione di Einstein come ben 10 uguaglianze indipendenti tra loro!

È perfettamente analogo a quel che si fa con i vettori della fisica di Newton: l’equazione \vec{F}=m\vec{a} nelle tre dimensioni spaziali sono tre equazioni distinte:

Volendole descrivere con un formalismo più vicino a quello delle equazioni di Einstein, possiamo indicarle con la seguente notazione: F_i=m\,a_i dove i è un indice che scorre sui tre assi cartesiani i=\{x,y,z\}.
Ricordando poi che l’accelerazione è la variazione della velocità nel tempo a=dv/dt, che a sua volta è la variazione della posizione nel tempo v=ds/dt, potremo indicare con a_i=\partial_t^2 s_i se s_i è la posizione nell’asse x, y o z.

Le equazioni di Einstein hanno un significato concettuale simile. Nel caso di Newton ci interessa trovare lo spostamento s_i in funzione del tempo, nota la distribuzione di forze F_i e la massa del corpo. L’equazione chiave per trovare ciò ci dice “sapendo che lo spostamento varia in questo modo, data la forza, trova lo spostamento ad ogni istante di tempo“.

Nel caso di Einstein le equazioni dicono “sapendo che la metrica varia in questo modo, data la sorgente, trova la metrica in ogni punto dello spazio“. E sono esprimibili in una maniera abbastanza analoga:

In realtà l’informazione contenuta è molto più ricca. Conoscendo T_{\mu\nu} (la materia e l’energia presenti nello spaziotempo) possiamo trovare la forma dello spaziotempo (contenuta in g_{\mu\nu}). Tuttavia la conoscenza di questa forma ci dice pure come si muoveranno massa ed energia.

La materia dice allo spaziotempo come curvarsi, e lo spaziotempo dice alla materia come muoversi

J.A. Wheeler

Un esempio molto semplice di sorgente massa-energia si ha nel caso di fluido perfetto in equilibrio termodinamico. Un fluido perfetto è caratterizzato dalla sua densità volumica \rho e dalla sua pressione P. Il tensore T_{\mu\nu} ha la seguente forma:

Inserendo T_{\mu\nu} nelle equazioni di Einstein è possibile risalire alla struttura dello spaziotempo g_{\mu\nu}, in riposta alla presenza di questo fluido!

Come mai le equazioni hanno questa forma?

Le equazioni di campo di Einstein hanno una forma poco familiare rispetto alle quantità che si maneggiano di solito in fisica classica. Per realizzare matematicamente quello che Einstein voleva esprimere, e cioè che la fisica non deve dipendere dalle coordinate di chi la sta studiando, era fondamentale che le equazioni per lo spaziotempo fossero tensoriali.

La metrica g_{\mu\nu} è un tensore. La sorgente di massa-energia T_{\mu\nu} è un tensore.

Un tensore è un oggetto matematico che permette di scrivere equazioni che non dipendono dalle coordinate utilizzate, grazie alla sua proprietà di trasformazione sotto cambiamenti di coordinate.

Questa richiesta complica terribilmente le equazioni della teoria, ma le rende infinitamente eleganti, perché assumono carattere di universalità: sono valide per tutti.

Non importa che coordinate utilizzi per studiare la Gravità: sarà sempre una manifestazione della curvatura dello spaziotempo, studiabile nelle coordinate che più ti tornano comode.

Le equazioni di Einstein sono ENORMEMENTE complicate da risolvere, anche nei casi più semplici. Si tratta di equazioni differenziali alle derivate parziali e non lineari, la cui soluzione analitica si conosce solo per un ristrettissimo numero di situazioni altamente semplificate e simmetriche (per tutto il resto, ci sono i computer).

Ad esempio, concentrandoci sullo spaziotempo vuoto attorno a una distribuzione di massa M a simmetria sferica, il lato destro delle equazioni di Einstein è nullo dato che T_{\mu\nu}=0

La metrica g_{\mu\nu} che risolve questa equazione (oltre alla soluzione banale di metrica piatta) è data da:

in cui r è la distanza dalla sorgente di massa M, \theta è una coordinata angolare, ed r_s è definito come raggio di Schwarzschild r_s=2GM/c^2. Il primo termine in alto a sinistra è g_{00}, la componente puramente temporale (chiamato anche g_{tt}), mentre sulla diagonale abbiamo g_{11},g_{22} e g_{33}, altrimenti indicati con g_{xx}, g_{yy}, g_{zz}.

Per valori della distanza r vicini al raggio di Schwarzschild r_s, uno dei termini della metrica (g_{11}) diventa molto grande perché stiamo dividendo per un numero molto vicino a zero. La curvatura dello spaziotempo aumenta sempre di più man mano che la nostra distanza dalla sorgente diminuisce.

Rappresentazione bidimensionale della metrica di Schwarzschild.

Questa metrica g_{\mu\nu} è un esempio di soluzione delle equazioni di Einstein: descrive lo spaziotempo attorno a una massa M. Ad esempio lo spaziotempo attorno al Sole ha una struttura di questo tipo. Anche lo spaziotempo attorno alla Terra ha questa struttura. Anche lo spaziotempo attorno a un buco nero.

Dove si nasconde Newton?

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

La Gravità di Einstein è una versione ultra-sofisticata della Gravità di Newton, in cui i concetti di spazio e tempo si uniscono e diventano dinamici. Nel mondo di Einstein, il tempo è relativo, la velocità della luce è un limite universale, e non esiste l’azione istantanea delle forze, ma tutto deve essere mediato dai campi.

Come faceva Einstein a sapere di aver ragione? Beh, la sua teoria doveva anche essere in grado di riprodurre due secoli di successi della gravitazione di Newton. Scrivendo l’accelerazione come \vec{a}=d^2\vec{x}/dt^2 la legge di Newton per la gravitazione di un corpo attorno a una massa M è

L’accelerazione non dipende dalla massa del corpo che cade. Come sai, tutti i corpi accelerano allo stesso ritmo, a parità di distanza dalla sorgente. Questa è una caratteristica unica della Gravità, e ad Einstein venne in mente che proprio per questo motivo la Gravità non è una forza, ma il risultato del moto in uno spaziotempo curvo: tutti i corpi dell’universo si muovono su traiettorie di caduta libera nello spaziotempo, chiamate geodetiche.

Una volta nota la metrica dello spaziotempo, sai come si muoveranno gli oggetti nello spaziotempo.

Nel contesto einsteiniano una geodetica x(\tau) è una traiettoria nello spaziotempo che soddisfa la seguente equazione:

La lettera \mu è un indice che scorre tra i valori \{0,1,2,3\}.

Espressione che mette un po’ d’ansia se vista per la prima volta, lo ammetto. Sappi solo che serve a trovare una traiettoria nello spaziotempo. Lo spaziotempo è contenuto dentro il simbolo \Gamma_{\nu\rho}^\mu: la metrica g_{\mu\nu} (e la sua variazione) è proprio contenuta dentro \Gamma. Per questo motivo Wheeler diceva che lo spaziotempo dice alla massa come muoversi.

La Gravità di Newton si recupera richiedendo che:

  • le velocità coinvolte devono essere molto più piccole di quella della luce v\ll c;
  • la curvatura dello spaziotempo non sia troppo elevata. Ad esempio ci mettiamo a distanza r\gg r_s, lontani dal raggio di Schwarzschild.

Così facendo, l’espressione per l’equazione delle geodetiche si approssima così (non è formalmente precisissima, ma mi serve per far rendere l’idea)

Chi è g_{00}? Guardiamo la metrica g_{\mu\nu} trovata sopra:

Dunque per trovare l’accelerazione basterà fare la derivata di g_{00} rispetto ad r. Se non sai cosa è una derivata, ti basti sapere che il calcolo produce (d/dr)(1/r)=-1/r^2, e che la derivata di una costante fa zero.

La velocità della luce c^2 si semplifica in quanto tutta l’equazione delle geodetiche era in realtà moltiplicata da 1/c^2 (anche se te l’ho nascosto per semplicità). Sostituendo, il risultato è quindi:

e cioè proprio l’espressione newtoniana.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Il Graal della Fisica: perché l’Unificazione tra Gravità e Quantistica è Tecnicamente Ardua?

Tra le quattro interazioni fondamentali, l’unica a non ammettere (ad oggi) una convincente e comprovata trattazione quantistica è la Gravità.

Che la situazione sia questa non è di certo cosa nuova. D’altra parte le tre interazioni fondamentali quantistiche (forza forte, forza debole ed elettromagnetismo) trovano una naturale collocazione nel mondo microscopico, dove la quantistica fa da padrona, appunto.

Anzi, dal punto di vista della fisica teorica, queste tre interazioni (si dimostra) sorgono in maniera naturale nella teoria quantistica una volta incorporati i princìpi della Relatività Speciale tramite alcune simmetrie aggiuntive (chiamate simmetrie di gauge).

La Gravità, invece, trova una naturale collocazione nel mondo macroscopico, con Newton (prima) ed Einstein (oggi).

Però ho letto che molti gruppi di ricerca stanno lavorando a diverse teorie di Gravità quantistica. Qual è lo stato odierno della ricerca?

Semplicemente: non abbiamo una teoria quantistica della Gravità che sia in grado di passare dal microscopico (mondo quantistico) al macroscopico (pianeti, cosmologia etc.) in maniera univoca e naturale.

Microscopico e macroscopico: quanto ci piacerebbe che la Gravità fosse un po’ più simile all’elettromagnetismo. L’elettromagnetismo ammette sia una descrizione quantistica (elettrodinamica quantistica, o QED) che una descrizione classica (le leggi di Maxwell che studiamo al liceo). Dal punto di vista quantistico, delle particelle chiamate fotoni fanno da intermediarie tra le cariche elettriche. A partire da questa descrizione quantistica è facile ricavare la descrizione classica ottocentesca di Maxwell, in cui dei fotoni ce ne freghiamo altamente.

La Gravità, però, è così tanto diversa…

Diversa in che senso? Mi pare di aver letto che elettromagnetismo e Gravità siano anzi molto simili, in fisica classica entrambe dipendono dalla distanza con la legge 1/r^2 ad esempio…

Oltre al fatto che in Gravità possiamo avere solo attrazione e mai repulsione, c’è anche quest’altro fatto: una particella elettricamente neutra non “sente” il campo elettrico che la circonda.


La Gravità invece? Niente è in grado di “spegnere” la Gravità. Anche un corpo senza massa “sente” il campo gravitazionale attorno a lui, ad esempio la luce viene deflessa dal campo gravitazionale. Questo è spiegato, in Relatività Generale, dal fatto che la Gravità non è altro che la manifestazione della curvatura dello spaziotempo. Tutti gli oggetti seguono le traiettorie naturali dettate dalla curvatura dello spaziotempo, non possono fare altrimenti. La curvatura dello spaziotempo è a sua volta dettata da quanta massa ci sta dentro.

Che la Gravità fosse essenzialmente diversa dall’elettromagnetismo si capiva già dalla teoria di Newton. Ricordi F=ma? Se cerchi l’accelerazione di un corpo sottoposto al campo gravitazionale, trovi che l’accelerazione non dipende dalla massa del corpo, ma solo dalla massa di chi il campo gravitazionale lo ha generato. La famosa forza di Coulomb per il campo elettrico, invece, prevede che l’accelerazione di un corpo dipenda sia dalla sua carica elettrica, sia dalla sua massa. Parliamo quindi di due cose completamente diverse.

Qui k è la costante elettrica di Coulomb, mentre G è la costante di gravitazione universale di Newton. Nell’elettromagnetismo, l’accelerazione di un corpo dipende dalla sua massa, mentre nella Gravità no. Nella Gravità, la massa si semplifica.

D’accordo, sono forze molto diverse. Per questo motivo Einstein intuì che la Gravità doveva essere legata alla struttura stessa dello spaziotempo.

Ciò che non capisco ora è perché questo fatto renda così difficile quantizzare la gravità.

Uno dei primi problemi è puramente tecnico: nel Modello Standard (il quale ingloba le tre interazioni quantistiche citate prima), i fenomeni tra le particelle sono descritti sul palcoscenico dello spaziotempo della Relatività Speciale: uno spaziotempo piatto che agisce passivamente, il cui unico scopo è quello di permetterci di annotare le coordinate spaziali e temporali delle particelle nei processi quantistici.

Ho capito! Quindi il problema è che non sappiamo fare i calcoli in uno spazio curvo, è lo spazio curvo della Relatività Generale il problema?

No, in realtà sappiamo fare i calcoli del Modello Standard anche in uno spazio curvo. Curvo o piatto non fa differenza, ci si adatta. No, la difficoltà è un’altra: questo spazio, curvo o piatto che sia, deve essere fisso, indipendente dalla materia, deve essere uno spettatore, non un attore.

Le teorie quantistiche del Modello Standard sono scritte nel seguente modo: i campi quantistici delle particelle sono “costruiti” come funzioni dello spaziotempo. Le interazioni avvengono nello spazio e nel tempo, ma la presenza stessa delle particelle non determina che forma debba avere lo spaziotempo. Il Modello Standard non prevede la risoluzione di un’equazione che descrive la dinamica dello spaziotempo.

L’equazione che descrive la dinamica dello spaziotempo è invece la più importante della Relatività Generale ed è nota come equazione di campo di Einstein:

R_{\mu\nu}, R e g_{\mu\nu} sono quantità con cui descriviamo la geometria dello spaziotempo. Invece T_{\mu\nu} descrive il contenuto di materia-energia presente. L’equazione dice che tale contenuto determina la geometria stessa dello spaziotempo.

In realtà va usato il plurale, queste sono 10 equazioni (gli indici \mu,\nu=\{0,1,2,3\} esplicitano le componenti), equazioni differenziali altamente non lineari, alle derivate parziali (qualsiasi cosa voglia dire per te, se non hai dimestichezza, sappi che è un modo tecnico per dire “è tutto altamente incasinato”).

Cosa vogliamo trovare con queste equazioni? L’espressione per g_{\mu\nu}, chiamata “metrica“, cioè la forma geometrica dello spaziotempo.

Anche quando non c’è sorgente (cioè T_{\mu\nu}=0) non esiste una soluzione generica per le equazioni di Einstein. Certamente lo spazio piatto è una soluzione possibile, ma non LA soluzione più generica. In genere vanno assunte ulteriori simmetrie geometriche per trovare la soluzione anche nel caso più semplice (come la simmetria sferica attorno a un punto).

In sostanza, è questo uno dei principali motivi per cui è difficile raccordare il formalismo quantistico con quello della Relatività Generale, è proprio la dinamicità dello spaziotempo!

Prima di andare avanti ho una domanda:

e se fosse proprio così? Nel senso, non potremmo lasciare la Gravità per conto suo se la Natura ci suggerisce di fare così? Tre forze sono quantistiche e una forza è non-quantistica, per dire. Che ci sarebbe di male?

Intendi che dovremmo rinunciare a una descrizione quantistica della gravità? In questo senso è la Relatività Generale stessa (la attuale teoria classica della Gravità) che “si scava la fossa da sola”.

Perché si “scava la fossa” da sola?

Due parole: buchi neri. Sono previsti dalla Relatività Generale, ma la matematica smette di avere senso nella singolarità di un buco nero. La singolarità è il punto in cui la curvatura dello spaziotempo diventa infinita. Si suppone che a quel punto, vicino alla singolarità, entri in gioco una teoria più sofisticata della Gravità, che abbia a che fare con il microscopico: la gravità quantistica. Questa teoria potrebbe potenzialmente descrivere anche i primissimi istanti di vita dell’Universo.

D’accordo, quindi è sensato (e necessario) ricercare la gravità quantistica.

Ho sentito parlare in giro del gravitone, l’ipotetica particella quantistica mediatrice della Gravità (un po’ come il fotone nella QED)….Non è già questa una teoria quantistica?

Il gravitone è quanto di più “Modello Standard” tu possa fare con la Relatività Generale. Nelle teorie del Modello Standard ci piace lavorare nello spaziotempo piatto e immobile della Relatività Speciale, chiamiamolo \eta_{\mu\nu}.

Un’idea (primitiva) in Gravità quantistica è di considerare delle perturbazioni piccole di questo spazio piatto, chiamiamole h_{\mu\nu}(x). Lo spaziotempo può quindi essere espresso come la seguente somma: spazio piatto più una piccola perturbazione:

Nella cosiddetta “trattazione perturbativa” di una teoria quantistica di gravità, il gravitone è un quanto di eccitazione di questo campo h_{\mu\nu}(x), e così come il campo elettromagnetico prevede l’esistenza delle onde elettromagnetiche come dettato dalle leggi di Maxwell, il campo di perturbazione gravitazionale h_{\mu\nu} prevede l’esistenza di onde gravitazionali come dettato dalle equazioni di Einstein scritte sopra (in sostanza si sostituisce g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}(x) al loro interno in assenza di sorgente, cioè T_{\mu\nu}=0).

Il problema è che questa trattazione perturbativa casca completamente quando si considerano alte energie, nulla ha più senso: sorgono degli infiniti che non è possibile rimuovere. Nelle altre tre interazioni fondamentali erano rimovibili, nel caso della Gravità ciò non è possibile, proprio per via della sua struttura altamente non-lineare.

Per questo motivo l’approccio perturbativo è stato presto abbandonato e si sono ricercate delle teorie più fondamentali, teorie quantistiche in cui lo spaziotempo è effettivamente dinamico, e non una mera “perturbazione” dello spaziotempo piatto sottostante e immutabile.

Sì, ne ho sentito parlare. Due in particolare sono molto famose: Teoria delle Stringhe e Gravità quantistica a Loop.

Sono alcuni degli approcci possibili, ma non gli unici, anche se oggi quei nomi hanno un significato un po’ diverso da quello che avevano 30 anni fa. Senza andare nei dettagli, queste teorie cercano di quantizzare la gravità in modi diversi: la gravità quantistica a loop ha un approccio geometrico e ha come unico scopo la quantizzazione della gravità. La teoria delle stringhe ha un obbiettivo molto più vasto, cioè l’unificazione e la descrizione di tutte le interazioni fondamentali, assieme a tutte le particelle ad oggi scoperte (e non).

  • Gravità quantistica a loop: ci interessa la struttura quantistica dello spaziotempo, che viene visto come una rete fatta di nodi e connessioni tra quanti discreti di spazio e tempo.
  • Teoria delle (super)stringhe: ci interessa la dinamica di ipotetiche piccolissime stringhe. La loro forma, la loro propagazione nello spaziotempo e i loro modi di vibrazione descrivono tutte le particelle, fino al gravitone.

Mi pare però di capire che nessuna delle due risulti essere la teoria definitiva della Gravità quantistica?

Purtroppo è così. In particolare è difficile inventare strumenti matematici in grado di risolvere le questioni tecniche citate prima, che siano compatibili sia con il mondo quantistico che con il mondo relativistico, in modo che dalla teoria fondamentale possa discendere anche un limite classico. Insomma, ci piacerebbe che le equazioni di Einstein uscissero in maniera naturale dai calcoli della teoria quantistica, nel limite di basse energie (o, equivalentemente, di grandi distanze).

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non è chiedere troppo, d’altronde anche le equazioni di Einstein si riducono alle equazioni della gravità newtoniana (sì, anche la famosa dipendenza 1/r^2 della forza di gravità) se assumiamo un limite non relativistico (basse velocità rispetto a quella della luce, e spaziotempo quasi-piatto).

Che una teoria più sofisticata contenga al suo interno la teoria più “grezza” come limite, è un aspetto cruciale della fisica teorica. La Relatività Generale continua a superare ogni test sperimentale di giorno in giorno, per cui è importante che ogni teoria quantistica della gravità sappia riprodurre anche i suoi risultati. Il punto poi è scegliere LA teoria quantistica definitiva, tra le versioni più promettenti.


In questo senso, una delle difficoltà principali rimane quella della testabilità di queste teorie. Solo tramite test sperimentali siamo in grado di fare scienza.

Perché è difficile testare la teorie esistenti di gravità quantistica?

La Gravità è sfortunatamente l’interazione fondamentale più debole. Ad esempio l’attrazione gravitazionale tra due protoni risulta essere 10^{36} volte più debole della loro repulsione elettrica.

Per questo motivo, è estremamente complicato ricercare effetti gravitazionali nel mondo quantistico delle particelle. Infatti c’è pure chi ha fatto dimostrazioni euristiche sulla non osservabilità del gravitone! [F. Dyson (2013)].

Senza la guida sperimentale è impossibile trovare una teoria convincente?

Non è impossibile. Grazie agli sviluppi tecnologici degli ultimi decenni nel campo dei calcolatori, siamo stati in grado di esplorare nuovi approcci (chiamati approcci “non perturbativi”), i quali riguardano simulazioni numeriche di alcuni calcoli che a mano sarebbero proibitivi.

Questi che ho illustrato sono alcuni dei motivi per cui questo matrimonio è così difficile. Sicuramente ci saranno altri motivi più sottili, ma non essendo questo il mio campo (mi occupo di fisica delle particelle) preferisco non andare oltre. Una cosa rimane certa: con questo matrimonio ci giochiamo la chiave per la comprensione della realtà.

[Bibliografia]
R.Loll, G. Fabiano, D. Frattulillo, F. Wagner (2022).


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

L’inversione del Tempo nella Gravità

Svuota la mente da tutte le complicazioni del mondo, elimina l’aria e altri attriti, e prova ad immaginare solo una palla sospesa sopra a un pavimento perfetto (cioè senza irregolarità nella sua superficie).

Lascia cadere la palla e registra quel che succede con una videocamera: la palla cade e rimbalza, ritornando su.

Ipotizza pure che la palla rimbalzi elasticamente in modo che la sua energia cinetica non sia dispersa in deformazione a causa dell’urto col pavimento.

La palla rimbalzerà fino a tornare all’altezza da cui è stata lanciata, per il principio di conservazione dell’energia totale. La sequenza in figura è da leggere come 1, 2 e 3.

Ok, wow. Che c’entra questo con l’inversione del tempo nella Gravità?

Abbiamo fatto un video di quanto accaduto, e la registrazione è suddivisibile in tre sequenze, indicate in figura dai numeri 1, 2 e 3. Che cosa vediamo ora se facciamo scorrere il filmato al contrario, cioè 3, 2, 1? Vediamo esattamente la stessa cosa: la palla inizia a scendere prima lentamente, poi sempre più velocemente fino a quando non rimbalza sul pavimento e arriva al fotogramma 1, in maniera del tutto identica alla sequenza 1, 2, 3!

Lo scenario 321 corrisponde all’inversione della freccia del tempo. L’inversione temporale consiste matematicamente nel cambiamento del segno davanti alla coordinata del tempo, indicata con “t”:

Impariamo quindi che la Gravità è simmetrica sotto inversione temporale! Significa che l’interazione gravitazionale rimane attrattiva indipendentemente dalla direzione del tempo.

Aspetta, ma se rimuovo il pavimento la palla cade verso il centro della Terra e rimane lì, non ritorna su!

Il filmato visto al contrario ha un aspetto ben diverso in quel caso: la palla arriva da giù e poi ritorna su (per starci), come se la Gravità fosse una forza repulsiva invece che attrattiva!

Ottima osservazione. Nel caso che hai citato, se guardassimo il filmato al contrario, sembrerebbe infatti che la Gravità stia “rigettando” la palla. In realtà bisogna studiare la situazione del filmato fotogramma per fotogramma come se fossimo degli investigatori.

  • Tempo normale: la palla parte dall’alto con velocità nulla, e viene man mano accelerata verso il basso per via dell’attrazione gravitazionale con la Terra. Come conseguenza la sua velocità (diretta verso il basso) ha un valore che aumenta sempre di più man mano che scende. C’è insomma qualche attrazione verso il basso che sta dicendo alla palla “vieni verso di me!”
  • Tempo invertito: la palla parte dal basso con grande velocità, ma stavolta direzionata verso l’alto. Man mano che la sua quota aumenta e si avvicina al punto da cui l’abbiamo lasciata cadere nel filmato originale, la sua velocità diminuisce sempre di più: c’è anche qui un’attrazione verso il basso che sta dicendo alla palla “fermati, torna da me, vieni verso di me!”

In entrambi i casi è la Gravità che dice alla palla di accelerare verso il basso, la direzione dell’accelerazione è sempre verso il centro della Terra. In questo senso intendiamo dire che la Gravità è simmetrica per inversione temporale.

Non so se debba sorprendermi o confondermi. E in ogni caso, mi pare una definizione costruita ad-hoc!

Almeno c’è un motivo fisico dietro?

Il motivo è molto semplice e sta dentro un dettaglio matematico. Chiamiamo dS lo spostamento in un piccolo segmento di traiettoria della palla, percorso in un tempo dt. Qui la lettera d ha un ruolo speciale che significa “piccola variazione di”:

  • dS significa “piccolo spostamento nello spazio S
  • dt significa “piccolo intervallo di tempo”

La velocità di un corpo è, a parole, quanto spazio abbiamo percorso in un certo tempo che abbiamo cronometrato. Normalmente si misura in metri al secondo, chilometri all’ora, etc. La preposizione articolata “al” sta a significare che spazio e tempo vanno divisi (matematicamente) tra loro. Infatti la velocità è definita come il rapporto tra dS e dt

Ok il fatto che la velocità cambi segno quando invertiamo il tempo dovrebbe vedersi da questa formula, giusto?

Esattamente, facciamo la trasformazione t \to (-t) nella formula e vedrai che il segno si propaga dal denominatore a tutta la frazione: segno invertito!

Questo ce lo aspettavamo: nel filmato la palla si muove effettivamente al contrario rispetto a prima, ma il suo valore assoluto non cambia (in particolare, il valore assoluto nel tempo rimane uguale punto per punto della traiettoria).

L’accelerazione invece (che nel nostro caso è dettata dall’interazione gravitazionale) è definita come la variazione della velocità nel tempo:

  • dv significa “piccola variazione nella velocità”

definita quindi come:

Abbiamo semplicemente sostituito al posto di v la sua espressione v=dS/dt data sopra.

Vuoi dirmi che da qui dovrebbe essere evidente che l’accelerazione conserva sempre lo stesso segno anche se invertiamo la coordinata del tempo?

Esattamente! Lo vedi applicando t \to (-t) nella formula:

meno per meno fa più, e il segno sparisce! All’accelerazione non frega nulla della freccia del tempo. Nel caso dell’accelerazione gravitazionale questo è proprio ciò che osserviamo.

Sì, molto bene. Però ho capito dove sta la furbizia: il mondo non funziona così!

Nel primo esempio la palla perde sempre anche solo una minuscola quantità di energia cinetica nel rimbalzo: si chiama dissipazione. Anche l’aria fa da attrito! Dunque, rivedendo il filmato al contrario, sarò capace di distinguere una direzione del tempo dall’altra.

La palla non tornerà mai esattamente alla stessa altezza da dove l’ho lasciata cadere.

Giustissima osservazione, di nuovo. Il punto è che quegli effetti non sono dovuti alla Gravità, ma alle interazioni della palla col mondo circostante. In un mondo senza attrito, la simmetria del tempo della Gravità è solo molto più evidente, tutto qua.

In fondo, ciò che ci permette di distinguere tra passato e futuro è proprio la dissipazione di energia in calore, collegato con l’aumento dell’entropia dell’universo.

D’accordo, ma perché secondo te tutto questo discorso è interessante?

Questa simmetria della Gravità sotto inversione temporale viene rotta esplicitamente nell’orizzonte di un buco nero, anche senza scomodare i concetti di entropia. Avrai forse sentito (clicca qui per un video pedagogico sull’argomento) che una volta superato il cosiddetto “orizzonte degli eventi” nulla può tornare indietro, neanche la luce può uscire.

Illustrazione bidimensionale dello spaziotempo attorno a un buco nero.

Se invertiamo la freccia del tempo sull’orizzonte, la Gravità si comporta in maniera diversa dato che non potremo mai vedere un oggetto tornare indietro superando l’orizzonte.

Possiamo vedere un oggetto che oltrepassa l’orizzonte venendo da fuori, ma non possiamo mai vederlo oltrepassarlo venendo dall’interno?

In realtà non lo vediamo nemmeno nel primo caso, dato che la luce ci mette sempre più tempo per raggiungerci man mano che l’oggetto si avvicina all’orizzonte. L’oggetto ci apparirà come “immobile” sull’orizzonte, ipotizzando che lo osserviamo a una certa distanza dal buco nero.

Ok stai tirando in ballo la Relatività Generale di Einstein senza dirlo pubblicamente. Se non masticassi l’argomento ti perderei qui, chiaro?

D’accordo allora concentriamoci sul messaggio da portare a casa: alcuni gruppi di ricerca stanno ipotizzando che la famosa “singolarità” di un buco nero preveda la possibilità di un “ribaltamento” della direzione del tempo.

L’interno dello spaziotempo di un buco nero potrebbe transitare quantisticamente in una configurazione in cui il tempo è invertito.

Tale transizione consiste nella trasformazione di un buco nero in un buco bianco.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Da un buco nero nulla può uscire, in un buco bianco nulla può entrare. Un buco bianco è il futuro di un buco nero, il suo interno vede il tempo scorrere al contrario, e ora il suo orizzonte prevede la fuoriuscita di materia invece che il suo assorbimento [tutto ciò è discusso divulgativamente da C.Rovelli in “Buchi Bianchi” (Adelphi, 2023)].

La chiave di tutto ciò è che all’esterno un buco nero e un buco bianco sono del tutto simili: lo spaziotempo attorno è identico, la Gravità rimane attrattiva nonostante la direzione del tempo in un buco bianco sia ribaltata. Il motivo è proprio quello che abbiamo discusso prima: l’accelerazione è insensibile alla freccia del tempo.

Questo, di fatto, legittima l’ipotesi dei buchi bianchi: all’esterno, la loro esistenza non contraddice le leggi della Relatività Generale, l’Universo funziona ugualmente anche includendo i buchi bianchi. Il ribaltamento del tempo è compatibile con quanto sappiamo dell’Universo.

Invece, all’interno degli orizzonti, l’inversione del tempo gioca un ruolo fondamentale dato che consiste nel diverso comportamento di queste due entità.
Due entità (buco nero e buco bianco) che all’esterno sono indistinguibili, ma che all’interno si comportano in maniera opposta (uno fa l’inverso dell’altro).

Ho come l’impressione che tutto ciò sia solo un’introduzione molto semplificata. Dove sta l’entropia in questo gioco? La distinzione tra passato e futuro?

E inoltre, non avevi illustrato che un buco nero è in grado di emettere energia e rimpicciolirsi tramite la radiazione di Hawking? Come fa a evolversi in un buco bianco tenendo conto di ciò?

Hai detto bene, questo è solo un assaggio con cui spero di avere acceso la tua curiosità. Come per ogni argomento di ricerca, le questioni tecniche sono tante e intricatissime. Cercherò di dissenzionarle una ad una in futuro, anche perché voglio vederci meglio pure io. Sono poi curioso di sapere come si evolverà il campo nei prossimi dieci anni, e di come questa ipotesi dei buchi bianchi andrà a stimolare discussioni sulla natura della freccia del Tempo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

“Smarriti nella matematica”? Gli ultimi tristi anni di Albert Einstein

Gli ultimi anni della vita di Einstein furono decisamente poco memorabili (scientificamente parlando). Il più grande fisico del XX secolo fu un po’ vittima dei suoi enormi successi giovanili, i quali lo condussero verso un isolamento intellettuale sempre più marcato.

Einstein sognava di unificare gravità ed elettromagnetismo in un unica, elegante “teoria del tutto”. Ovviamente nella sua epoca non si conoscevano ancora le forze nucleari debole e forte.

Uno dei motivi di questo isolamento era che Einstein rigettava la formulazione convenzionale della meccanica quantistica, che secondo lui era una teoria incompleta, esteticamente “sgraziata” e complicata.
Purtroppo il 99% della ricerca in fisica fondamentale dagli anni 20′ in poi si basava invece proprio sulla meccanica quantistica, quindi Einstein aveva ben pochi alleati su questo fronte.

Un altro motivo era dovuto a una sua ossessione: aveva il sogno di unificare due forze fondamentali, gravità ed elettromagnetismo. Queste due forze erano descritte da quelle che allora erano due teorie classiche di campo molto mature (classiche nel senso che non erano “quantizzate”. La quantizzazione dell’elettromagnetismo fu accuratamente ignorata da Einstein…)

Questa sua ossessione si fondava sul credere che la Natura avesse in serbo una teoria “elegante”, scritta con una matematica “bellissima” che lui era intenzionato a scoprire.


Effettivamente le teorie classiche di gravità ed elettromagnetismo erano due teorie, per certi versi, abbastanza simili (almeno nei temi).

Infatti la Relatività Generale di Einstein e l’Elettrodinamica classica possono essere entrambe costruite richiedendo che le loro equazioni rimangano invariate dopo che si eseguono certi tipi di trasformazioni sui loro campi fondamentali.

La ridondanza elettromagnetica

Il potenziale elettromagnetico quadri-dimensionale con cui viene formulata l’elettrodinamica (che chiamiamo A_\mu) presenta al suo interno un eccesso di informazioni. Che significa? Significa che per formulare l’elettromagnetismo è sufficiente un numero inferiore di parametri teorici rispetto a quelli forniti dalla formulazione 4-dimensionale della teoria (che con successo concilia l’elettromagnetismo di Maxwell con la relatività speciale).

Da un certo potenziale elettromagnetico sono ottenibili, tramite una specifica trasformazione, una serie di altri potenziali elettromagnetici che tuttavia lasciano invariate le leggi di Maxwell scritte con il potenziale originale. Le conclusioni fisiche sono le stesse.

Questo eccesso di informazioni si traduce nella seguente affermazione: il potenziale quadri-dimensionale può essere “traslato” nello spazio-tempo di una certa quantità, e la conseguenza è che l’elettromagnetismo rimane invariato.

Le equazioni non cambiano, la Fisica è la stessa.


Il motivo di ciò fu spiegato dalla teoria quantistica dei campi: quello che succede è che il fotone (la particella mediatrice dell’interazione elettromagnetica) ha massa nulla, e questo fa tutta la differenza del mondo in relatività speciale, perché può quindi muoversi alla velocità della luce (non è un grande sorpresa per te che la luce si muova alla velocità della luce).

I parametri che partecipano alla Fisica dell’elettromagnetismo si chiamano “stati di polarizzazione” (avrai sentito parlare degli occhiali polarizzati, ecco quel “polarizzato” si riferisce alla volontà di sfruttare le polarizzazioni della luce a proprio piacimento). La polarizzazione è per convenzione la direzione di oscillazione della campo elettrico di un’onda elettromagnetica (chiamata comunemente “luce”).

Dal punto di vista teorico, gli stati di polarizzazione possono essere studiati mettendoci nel sistema di riferimento in cui la particella mediatrice è ferma. Questi stati di polarizzazione hanno a che fare con la seguente domanda: che succede se ruoto il campo della particella nel suo sistema di riposo?
Il modo in cui il campo risponde alle rotazioni ci dà un’indicazione sui suoi stati di polarizzazione.

La quantità di moto di un oggetto fermo è nulla (per definizione di oggetto fermo), quindi se ruotiamo i nostri assi cartesiani la quantità di moto rimane la stessa (cioè nulla). Che furbata, eh? Beh questa libertà di ruotare le tre dimensioni si traduce in tre possibili stati di polarizzazione della particella.

Una rotazione attorno ad un asse è specificata da due componenti su un piano. In figura stiamo ruotando attorno all’asse z. Immagina che l’asse z sia la direzione di propagazione del fotone.

Il problema con il fotone è che avendo massa nulla si muove alla velocità della luce e quindi per via della relatività speciale non c’è modo di mettersi in un sistema di riferimento in cui il fotone è fermo: per ogni osservatore la velocità della luce è la stessa! Non riusciremo mai ad andare abbastanza veloci da vedere un fotone fermo! Il valore della velocità della luce non dipende in alcun modo dalla velocità di chi la misura.

Il meglio che possiamo fare è puntare il nostro asse cartesiano nella direzione di propagazione del fotone e studiare le rotazioni dei suoi stati attorno a questo asse. Le rotazioni attorno a un asse avvengono in un piano, il quale, essendo bidimensionale, è rappresentato da due parametri invece che tre. Quindi il fotone è specificato da solo due possibili stati di polarizzazione: solo due stati su tre partecipano alla Fisica dell’elettromagnetismo.

Che ce ne facciamo del terzo parametro che non utilizziamo? Ecco cosa intendevo con “eccesso di informazioni”. In soldoni, quella libertà viene tradotta dicendo che se aggiungiamo (o sottraiamo) al potenziale elettromagnetico una certa quantità arbitraria (la derivata di una funzione che chiamiamo \Lambda), le leggi della Fisica non cambiano. A scopo illustrativo questa è la trasformazione di cui parlo:

Il potenziale viene trasformato sottraendolo alla derivata di una funzione \Lambda. In gergo si parla di “trasformazioni di gauge”.

Dalla richiesta che la fisica non cambi se al potenziale elettromagnetico A_\mu aggiungiamo quella funzione arbitraria \partial_\mu \Lambda, discende la struttura matematica (con tanto di conseguenze fisiche) dell’elettromagnetismo.

Questo concetto è molto elegante: dalla richiesta che ci sia una certa ridondanza nella descrizione dei campi della teoria, discendono le equazioni che descrivono la realtà fisica.

So che risulta astratto da capire, ma tra tutte le forme possibili che possono assumere le leggi della fisica, richiedere che rimangano invariate dopo una trasformazione dei “blocchetti” di cui sono composte vincola parecchio il numero di forme possibili in cui possono presentarsi, assieme alle conseguenze fisiche che predicono. È in questo senso che diciamo “da questa richiesta derivano le leggi della Fisica” .

Questa eleganza stregò (e continua a stregare) i fisici teorici dell’epoca. Einstein fu tra i più colpiti.
Lo colpì soprattutto il fatto che la sua teoria della Relatività Generale (la migliore teoria che abbiamo ancora oggi sulla gravità classica) si basava su un principio molto simile.

Le leggi della gravità di Einstein discendono dalla richiesta che le leggi stesse rimangano invariate se si esegue una trasformazione di coordinate. In sostanza, la Fisica non deve dipendere da che tipo di “unità di misura” stai usando, o non deve dipendere dal fatto che il tuo laboratorio risulti ruotato in una certa direzione rispetto al centro della galassia (per esempio).

A grandi distanze dalla sorgente del campo gravitazionale, che chiamiamo h_{\mu\nu}, la trasformazione di coordinate del campo (la quale viene indicata con il simbolo \partial_\mu \epsilon_\nu) ha la seguente forma:

Magari non sarai familiare con la notazione degli indici spazio-temporali \mu,\nu , ma il punto della faccenda è notare la somiglianza (chiudendo un occhio) con la trasformazione del potenziale elettromagnetico:

Elettrodinamica (sopra) e gravità (sotto) a confronto. Entrambe queste trasformazioni hanno la proprietà di lasciare invariate le leggi della Fisica.

Secondo Einstein, questa somiglianza era una chiara indicazione che doveva esistere una teoria più fondamentale in grado di racchiudere gravità ed elettromagnetismo in un unico, elegantissimo linguaggio matematico.

Risulta interessante il fatto che non fu lui ad arrivare per primo ad un possibile tentativo di unificazione. La teoria di Kaluza-Klein nacque praticamente subito dopo la Relatività Generale, ed Einstein ne rimase estasiato.

Il primo tentativo di unificazione

La Kaluza-Klein si basava sul postulato che allo spaziotempo (già 4-dimensionale) dovesse essere aggiunta un’ulteriore dimensione, portando il totale a cinque. Questa dimensione sarebbe tuttavia troppo piccola per potere avere riscontri sperimentali, e la sua utlilità consiste unicamente nel fatto che in questo modo è possibile unificare gravità ed elettromagnetismo in un’unica elegante equazione di partenza.

La quinta dimensione nella teoria di Kaluza-Klein.

Tutti noi per disegnare un punto su un foglio ruotiamo leggermente la punta della penna per tracciare dei piccoli cerchi concentrici attorno a un punto fisso. Secondo la teoria Kaluza-Klein la quinta dimensione si nasconde nel bordo di ogni cerchio che circonda ciascun punto dello spaziotempo. Questi cerchi hanno un raggio R piccolissimo, molto più piccolo di qualsiasi scala subnucleare, questo è il motivo per cui non si osservano effetti fisici di tutto ciò.

Sfortunatamente la teoria della quinta dimensione ha serie difficoltà teorico-fenomenologiche: ad esempio ignora completamente l’esistenza delle altre interazioni fondamentali come la forza debole, della quale oggi sappiamo che a una certa scala di energia si unisce alla forza elettromagnetica per formare l’interazione elettrodebole.
Chiaramente Kaluza e Klein, avendo formulato la teoria nei primi anni ’20 , conoscevano solo la gravità e l’elettromagnetismo, per cui a detta loro (e anche di Einstein) la teoria era molto promettente.

Furono proprio le scoperte delle altre due forze fondamentali (quelle nucleari debole e forte) a far cadere nel dimenticatoio la Kaluza-Klein per qualche decennio. La teoria quantistica dei campi produceva risultati a un ritmo elevatissimo, spazzando via come un’onda tutte le teorie classiche di campo.

Einstein, che si assicurava di non utilizzare le teorie quantistiche di campo nei suoi lavori, lavorò alla Kaluza-Klein fino agli inizi degli anni ’40. Il suo obbiettivo era di ottenere, dalle soluzioni delle equazioni di campo della teoria a cinque dimensioni, dei campi che descrivevano delle particelle cariche in grado di interagire elettromagneticamente e gravitazionalmente.


Il suo obbiettivo era anche quello di derivare in qualche modo anche la meccanica quantistica a partire dalla sua teoria classica (non quantizzata). Tutto questo era sempre in linea con il suo intuito che la teoria quantistica non fosse completa, e che dovesse derivare da qualcosa di classico e molto più profondo.

Una volta introdotta l’ipotesi ondulatoria di De Broglie, il fisico Klein (uno degli ideatori della Kaluza-Klein) era stato in grado di spiegare anche la discretizzazione della carica elettrica delle particelle, proprio grazie alla quinta dimensione. Einstein evitò con cura di utilizzare l’ipotesi di De Broglie, e non menzionò mai il risultato di Klein. Insomma, se non si era capito, Einstein non apprezzava la teoria quantistica.

In ogni caso, Einstein concluse che la teoria di Kaluza-Klein non era in grado di spiegare un fatto empirico importantissimo: la gravità è estremamente più debole dell’elettromagnetismo. Questo spinse Einstein ad abbandonare per sempre la teoria dopo il 1941.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Continuò quindi a lavorare, assieme a pochissimi altri, a teorie matematiche molto astratte e con pochi risvolti empirici. L’obbiettivo era sempre quello di unificare elettromagnetismo e gravità.

Non che fosse in torto nel perseguire questa sua ricerca, dato che l’obbiettivo delle teorie di grande unificazione che studiamo oggi è proprio quello di conciliare gravità e teorie quantistiche di campo (quindi non solo gravità ed elettromagnetismo, ma gravità e le altre tre interazioni fondamentali. Per una breve esposizione delle quattro interazioni, rimando al mio articolo).

Tuttavia fu proprio il suo ostentato rifiuto delle teorie quantistiche di campo a isolarlo sempre di più dal panorama scientifico internazionale. Anche se avesse fatto in tempo ad assistere alla sua nascita, Einstein non avrebbe mai approvato il nostro Modello Standard: in tale modello lavoriamo con teorie quantistiche basate solo sulla relatività speciale, ignorando completamente la gravità e lasciandola da parte in un settore chiamato “Relatività Generale”.
Invece secondo lui la gravità doveva avere un ruolo di primaria importanza negli sforzi dei fisici teorici:

Cosa sarebbe la Fisica senza la gravitazione?

Albert Einstein

Lavorò alla grande unificazione fino all’ultimo dei suoi giorni, facendo fede sulla sua convinzione (appartenente a un pensiero illuminista oggi superato) che una singola mente umana è in grado di scoprire ogni mistero dell’universo.

Sono comunque sicuro che a lui piacesse parecchio ciò che faceva, e non poteva esserci una fine più lieta per il più grande fisico del secolo scorso: morire “smarrito nella matematica”.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come la gravità ci impedisce di misurare distanze più piccole della lunghezza di Planck

Uno dei punti fondamentali per la conquista dell’unificazione tra gravità e meccanica quantistica riguarda la comprensione dello spaziotempo a una scala subatomica di lunghezza.

Lo spaziotempo è essenzialmente un concetto classico: possiamo immaginarcelo come una struttura invisibile che può essere descritta utilizzando i numeri reali (cioè quelli della quotidianità: 2.3, 0.01, \pi, e^{-\pi/2}, -3/4, 2.9999...).

Come immaginiamo la griglia dello spaziotempo curvata dalla massa.

I numeri reali costituiscono un insieme non numerabile, in parole povere non solo abbiamo a disposizione un’infinità di numeri da -\infty a +\infty, ma anche che tra due numeri come 0 e 1 è compresa un’altra infinità di numeri. Inoltre è anche un insieme continuo, cioè dato un certo numero x, è sempre possibile trovare un altro numero y sufficientemente “vicino” al primo in modo che la distanza x-y tra i due si avvicini a zero fino alla cifra decimale che si desidera.
Nei numeri interi, invece, la distanza tra due numeri può solo coincidere con lo zero nel caso in cui i due numeri siano uguali, altrimenti esiste una distanza minima che è quella che riguarda due numeri consecutivi come 4 e 5.

Ecco, classicamente si pensa che lo spaziotempo possa essere descritto con un insieme di numeri reali piuttosto che di numeri naturali. Non è definita una distanza minima se non quella uguale a zero.

Cosa succede quando tiriamo in ballo la meccanica quantistica?

Ispirato dal seguente brillante articolo di Calmet, Graesser e Hsu pubblicato nella Physical Review Letters, ho deciso di volgarizzare un ragionamento che ho trovato molto intrigante, dato che su questi temi si discute sempre pochino e male.

Immaginiamo di avere un certo detector per rivelare la distanza tra due punti x(t) e x(0) nella griglia dello spaziotempo, uno al tempo t=0 e l’altro al tempo t.
Supponiamo per semplicità che il detector, di grandezza L e massa M, misuri questi due punti spostandosi con una velocità v=p/M dove p è la sua quantità di moto. Avremo cioè

Il discorso che sto per fare ora si basa su un’approssimazione euristica al fine di scongiurare l’introduzione di operatori quantistici, dato che aggiungerebbero poco o niente alla sostanza del discorso principale.

Una volta misurate le posizioni x(t) e x(0) con una certa incertezza \Delta x(t) e \Delta x(0), possiamo anche stimare l’incertezza sulla quantità di moto \Delta p usando le formule sulla propagazione delle incertezze:

Considerando ad esempio il punto x(t), varrà il principio di indeterminazione di Heisenberg:

A questo punto sostituiamo dentro il principio di Heisenberg l’espressione di \Delta p=(M/t)[\Delta x(t)+\Delta x(0)] trovata con la propagazione delle incertezze. Trascurando termini quadratici del tipo (\Delta x(t))^2 essendo più piccoli di un ordine di grandezza, si arriva a una relazione interessante:

Le incertezze sulla posizione iniziale e finale sono legate da un principio di indeterminazione, il cui valore aumenta all’aumentare del tempo. Di sicuro questa è una relazione interessante.
Ancora più interessante è chiedersi quale sia l’incertezza sulla distanza tra x(t) e x(0), cioè s=x(t)-x(0). Anche ora, per via della propagazione degli errori, si ha che

    \[\Delta s=\Delta x(t)+\Delta x(0)\]

Se \Delta x(t) diminuisce allora \Delta x(0) aumenta al fine di mantenere vera la \Delta x(0)\Delta x(t)\ge \frac{\hbar t}{2M}, quindi \Delta s è limitato dal valore più grande tra \Delta x(0) e \Delta x(t).

Nel caso in cui \Delta x(t)\approx \Delta x(0) cioè misuriamo i punti x(t) e x(0) con incertezze circa uguali, il principio di indeterminazione fornisce:

Quindi da un punto di vista quantistico possiamo misurare una lunghezza spaziale con una precisione

Dove ricordiamo, t è il tempo che abbiamo lasciato correre tra una misura e l’altra, e M è la massa del nostro detector (che abbiamo fatto interagire con lo spazio attorno a sé lasciandolo muovere liberamente).
Controllando questi due parametri possiamo rendere \Delta s piccolo a piacere. Possiamo costruire un detector molto massivo e fare tante misure consecutive separate da intervalli di tempo t molto piccoli.
Rendendo piccolo il rapporto t/M possiamo rendere \Delta s piccolo a piacere.

Tutto ciò andrebbe bene in un mondo in cui non esiste la gravità. Questo è il messaggio da portare a casa! Se non ci fosse di mezzo la gravità, come puoi vedere, nulla impedirebbe di rendere \Delta s piccolo a piacere (anche se non può mai essere nullo, per via del principio di Heisenberg).

L’intervento della gravità

Ho mentito, non possiamo rendere t piccolo a piacere! Se L è la dimensione del nostro detector, dobbiamo considerare dei tempi t tali che t>L/c cioè maggiori del tempo impiegato dalla luce a percorrere il nostro detector (altrimenti solo una frazione del detector può essere considerato “detector”).

Inoltre non possiamo rendere M grande a piacere: se rendiamo M troppo grande rispetto alle dimensioni L del detector, questi potrebbe collassare in un buco nero, e ciò impedirebbe di leggere qualsiasi informazione sulle misure del nostro esperimento. Il parametro di lunghezza fondamentale di un buco nero è dato dall’orizzonte degli eventi

    \[r_s\sim \frac{GM}{c^2}\]

dove G è la costante di gravitazione di Newton e c la velocità della luce.

Affinché il detector non sia un buco nero da cui non escono informazioni, desideriamo che sia L>r_s. Mettendo tutto assieme avremo quindi

La quantità risultante è identificata come lunghezza di Planck \ell_p, definita come:

La lunghezza di Planck, costante fondamentale della Fisica.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non c’è nessun parametro che possiamo controllare nella formula della lunghezza di Planck: è composta da costanti fondamentali della Fisica come G, \hbar, c (costante di gravitazione di Newton, costante di Planck e velocità della luce). Quindi \Delta s\ge \ell_p è un limite inferiore che non possiamo sormontare in alcun modo ingegnoso: la gravità impedisce di misurare distanze più piccole della lunghezza di Planck.

Se vuoi sapere da dove spunta fuori la lunghezza di Planck da un punto di vista storico, ho scritto un articolo a riguardo.

Quanto è piccola una lunghezza di Planck nelle nostre unità di misura quotidiane? \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

Il punto fondamentale è che se non ci fosse la gravità, non esisterebbe una lunghezza minima misurabile e potremmo rendere piccola a piacere l’incertezza quantistica della misura!

Ad avere l’ultima parola sulle dimensioni spaziali subatomiche non è quindi la quantistica, ma la gravità!
Questo risultato è molto significativo per la Fisica! Perché?

Quando si effettuano esperimenti di Fisica delle interazioni fondamentali (come le collisioni tra particelle) si esplorano scale di energia sempre più alte (che equivale a dire: si esplorano regioni di spazio sempre più piccole). La presenza di una scala di lunghezza sotto la quale non si può andare implica anche l’esistenza di una scala di energia sopra la quale non si può andare (perché la gravità diventerebbe rilevante e si inizierebbe a parlare di collasso in buco nero, avendo accumulato tanta energia in una regione di dimensioni molto ridotte). Un altro pezzo del puzzle per la lunga scalata che ci porterà verso la gravità quantistica?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.

È membro della Società Italiana di Fisica.

È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché secondo Rovelli la Relatività suggerisce di abbandonare il concetto di spaziotempo

Durante il secolo scorso, la Relatività Generale si è presentata con il più grande colpo di scena che la Fisica abbia mai visto:

L’interpretazione ortodossa della relatività generale: esiste uno spaziotempo che viene curvato dalle sorgenti di massa.
Le altre masse non possono fare altro che “seguire la curvatura” e quindi essere attratte.

Il campo gravitazionale non esiste, la gravità è il risultato della curvatura dello spaziotempo.

Chiunque si sia mai interessato di relatività generale si è quindi abituato a visualizzare questa affermazione con la splendida rappresentazione dello spaziotempo “curvato”.

Lo spaziotempo è per noi una “griglia immaginaria” che esiste fin dal Big Bang, una qualche costruzione geometrica su cui si collocano tutti gli eventi della nostra realtà.
Questi eventi possono essere descritti con le coordinate che vogliamo, e queste coordinate vanno a strutturare il palcoscenico matematico a cui diamo il nome “spaziotempo” dal punto di vista dei calcoli. Ma in ogni caso stiamo sempre assumendo che questa griglia invisibile e sottostante esista sempre, e in genere diamo anche a lei il nome di spaziotempo.


Di sicuro è una rappresentazione che ci consente di fare i conti in maniera molto comoda, ma ciò ha un determinato prezzo da pagare.

Questa rappresentazione assume in qualche modo che lo spaziotempo esista indipendentemente dalla materia e da ogni altra sorgente di energia, e questo è proprio ciò che sancisce il divorzio completo con la visione “quantistica” delle interazioni, come illustrato nel seguente schema:

Ciò pone non pochi problemi dal punto di vista della gravità quantistica, la quale si ritrova a dover mediare tra due visioni nettamente diverse! Nonostante ciò, entrambe le teorie funzionano in maniera impeccabile nei loro rispettivi campi di applicazione. In particolare anche la relatività generale ha ricevuto l’ennesima schiacciante conferma di validità secondo i dati recenti sull’osservazione del buco nero al centro della nostra galassia (EHT).

Eppure, nonostante sia data per scontata, questa interpretazione dello spaziotempo in relatività generale è tutt’altro che definitiva.

Di recente mi è capitato di studiare dei paragrafi del testo specialistico “Quantum Gravity” di Carlo Rovelli, incappando in un’osservazione che ritengo di altissimo valore concettuale e che aiuta a risolvere un importante paradosso delle equazioni di Einstein.

In realtà questa argomentazione non è dovuta solo a Rovelli, ma risale fino agli albori della relatività generale. È il cosidetto “hole argument” di Einstein, il quale giunse alle importanti conclusioni illustrate anche da Rovelli.

Un paradosso molto arguto

Immaginati una regione nello spaziotempo senza sorgenti di gravità, cioè senza massa o altre forme di energia come quella elettromagnetica. Magari questa regione di spaziotempo la prendiamo piccola a piacere per non complicarci le idee.

Con il simbolo delle tre ondine increspate, intendiamo uno spaziotempo curvo in quel punto.

Considera ora due punti A e B in questa regione vuota, e supponi di essere in grado di misurare la curvatura dello spaziotempo in entrambi i punti. Per intenderci, definiamo lo spaziotempo con il simbolo g_{\mu\nu}.

Per via di una particolarissima disposizione delle sorgenti esterne alla regione che stiamo considerando, supponi che lo spaziotempo sia curvo nel punto A e piatto nel punto B.

Ora usufruiremo del nome “Relatività Generale”, che non è stato assegnato a caso! Questo nome testimonia il postulato fondamentale su cui è basata tutta la teoria: la Fisica non può dipendere dalle coordinate di chi la osserva. Quando passiamo da un sistema di coordinate ad un altro stiamo eseguendo una trasformazione che chiamiamo \phi. Quando lasciamo agire \phi su una quantità “e“, otteniamo il suo trasformato \bar{e}=\phi\,e indicato con \bar{e}. Le quantità importanti della relatività generale non cambiano sotto la trasformazione \phi.

Se io calcolo una soluzione delle equazioni di Einstein che mi restituisce il valore della curvatura dello spaziotempo, il quale dipende da g_{\mu\nu}(x) in ogni suo punto x, allora un cambiamento di coordinate ottenuto con la trasformazione \phi genererà un’altra soluzione delle stesse equazioni, che ha la stessa validità della soluzione precedente.

Il punto è che \bar{g}_{\mu\nu} risolve le stesse equazioni di Einstein con le stesse sorgenti, non è cambiato nulla rispetto a prima. Cambia solo il linguaggio in cui abbiamo espresso g_{\mu\nu} (cioè le coordinate particolari che utilizziamo).

Supponiamo di trasformare le nostre coordinate in modo da mandare il punto A nel punto B e lasciare invariati tutti gli altri punti al di fuori del buco. Anche la soluzione delle equazioni di Einstein trasformerà come \bar{g}=\phi\,g. In sostanza, abbiamo fatto la seguente cosa:

Una trasformazione che lascia invariato tutto lo spazio tranne i punti all’interno della regione vuota. Dopo la trasformazione lo spaziotempo presenta una curvatura nel punto B , mentre la curvatura è nulla nel punto A.

Nelle nuove coordinate lo spaziotempo nel punto A è quindi piatto, mentre ora è curvo nel punto B.

Ripeto, \bar{g}_{\mu\nu} è una soluzione altrettanto valida, e la trasformazione che abbiamo fatto è consentita dalle leggi della Relatività Generale.

Ma allora lo spaziotempo nel punto A è piatto oppure curvo? Ci troviamo di fronte a un paradosso, come se le equazioni di Einstein fossero completamente inutili perché non sono in grado di descrivere lo spaziotempo univocamente.

Questo aspetto turbò gravemente Einstein in persona, tanto da fargli dubitare più volte che il principio di relatività generale avesse senso fisico.

In realtà, come fa notare Rovelli, la soluzione del paradosso sta nel ripensare la nozione di “punto dello spaziotempo”, o in generale: smetterla di attribuire tanta importanza a una griglia immaginaria come lo spaziotempo.

In realtà stavamo risolvendo un problema sbagliato.

La domanda fondamentale “com’è lo spaziotempo nel punto A? Ha in realtà meno significato di quello che pensavamo. Il problema era mal posto, o meglio, non aveva senso considerarlo un problema.

In Relatività Generale assumiamo l’esistenza di questa griglia invisibile chiamata “spaziotempo”, dandole un significato intrinseco che è maggiore di quello che realmente ha.
Nonostante accettiamo senza problemi il fatto che possiamo usare qualsiasi tipo di coordinate vogliamo per elencare i punti di questa griglia, qualcosa nella nostra intuizione ci porta a credere che la griglia abbia davvero un significato fisico.

Una rappresentazione bidimensionale della griglia spaziotemporale che ci immaginiamo nella nostra testa.

Il concetto di griglia ha però, come molti altri concetti, solo una natura strumentale. Spesso ci permette di capire ciò che stiamo facendo, ma non dovremmo dargli un significato ontologicamente maggiore di quello strumentale, o almeno questo è il suggerimento di Einstein e Rovelli.

Hai visto come il domandarci quale fosse la curvatura dello spaziotempo in uno specifico punto ci ha portato al paradosso che le equazioni di Einstein descrivono due cose diverse con due soluzioni che dicono in realtà la stessa cosa? Stavamo risolvendo un problema sbagliato, questo è l’errore a cui siamo condotti se non seguiamo il suggerimento.

Considera invece questa situazione: supponiamo che nel punto A si incrocino anche le traiettorie spaziotemporali di due particelle (cioè le loro geodetiche):

Le geodetiche delle particelle sono indicate con la linea tratteggiata blu.

Le coordinate con cui descriviamo il punto A adesso racchiudono non solo l’informazione sulla curvatura dello spazio tempo g_{\mu\nu}, ma anche l’informazione “si sono incrociate le geodetiche delle due particelle!“.
Anche le geodetiche dipendono dalle coordinate che utilizziamo, quindi se ora eseguiamo la stessa trasformazione di coordinate di prima, cioè mappiamo un punto nell’altro, dobbiamo spostare anche il punto di incontro delle geodetiche!

Come vedi ora sia la curvatura dello spaziotempo sia il punto di incontro delle geodetiche sono stati trasportati dal punto A al punto B. Supponiamo di voler rispondere, grazie alle equazioni di Einstein, alla seguente domanda:

“Com’è la curvatura dello spaziotempo nel punto in cui si incontrano le geodetiche delle due particelle?”

Questa domanda, a differenza di prima, è tutta un’altra questione: è ben posta ed ha una soluzione univoca data dalla soluzione delle equazioni di Einstein. Come puoi vedere, sia prima che dopo la trasformazione di coordinate esiste una curvatura nel punto di incontro delle due geodetiche. Lo spaziotempo è curvo nel punto in cui le due geodetiche si incontrano. Questa informazione non dipende da quali coordinate stiamo utilizzando. Quindi è questa la vera domanda da porsi in una situazione simile.

La Relatività Generale ci suggerisce che la griglia immaginaria ha molto meno significato fisico di quello che credevamo: ha poco senso fisico chiedersi quale sia il valore della curvatura dello spaziotempo in un suo specifico punto senza introdurre campi di materia o interazioni tra particelle che possano interagire in quel punto.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Uno spaziotempo senza materia e particelle non ha significato fisico, la realtà non è composta da spaziotempo e campi, ma da campi su campi, secondo Rovelli. Possiamo fare affermazioni fisicamente sensate solo nel momento in cui iniziamo a relazionare campi di materia con altri campi di materia (come l’incrocio delle due geodetiche visto nell’esempio).

Questo punto di vista capovolge ancora una volta il significato che attribuiamo alla Relatività Generale: non è che la gravità non esiste ed è solo lo spaziotempo a farci sembrare che ci sia, sono le interazioni con le particelle che danno un significato fisico allo spaziotempo. Lo spaziotempo emerge grazie alle particelle, e non il contrario. Per la gravità quantistica questa interpretazione è nettamente più favorevole in quanto il mediatore smette di essere indipendente dalla materia che interagisce (vedi lo schema fatto all’inizio).

Gli oggetti non sono immersi nello spazio. Gli oggetti costituiscono lo spazio. Come un matrimonio: non è che marito e moglie “percepiscono il matrimonio”, loro sono il matrimonio, lo costituiscono. […] Allo spazio non rimane nulla se togli tutte le cose che lo abitano. Lo spazio è costituito dalle cose.

Carlo Rovelli

Si nasconde forse qui il segreto per iniziare a conciliare gravità e meccanica quantistica?

Secondo me questo paradosso meriterebbe di essere illustrato maggiormente nei libri di testo introduttivi di Relatività Generale, perché nasconde il cuore concettuale della materia. Per questo motivo ho pensato di portare in superficie l’osservazione di Rovelli, uno dei pochi autori moderni che ha scelto di parlarne a un secolo di distanza.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Cosa impariamo da Einstein sul Problem Solving: come si affrontano gli argomenti più difficili?

Non che io sia così intelligente, semplicemente studio i problemi più a lungo

Albert Einstein

Questa citazione è una tra le più famose di Einstein e secondo me evidenzia un punto cruciale del suo modo di lavorare, che lo ha portato a rivoluzionare importanti concetti che altri fisici suoi contemporanei mettevano sotto al tappeto.

Come molti problemi che dobbiamo affrontare nel nostro percorso di studi, quelli che Einstein decise di studiare erano scomodi, fuori dalla zona comfort, non sempre ben posti.

Albert Einstein (1879-1955).

Hai presente quella spiacevole sensazione di inadeguatezza quando ci viene chiesto di risolvere un problema che apparentemente è al di sopra delle nostre capacità? Quella sensazione di avere un muro mentale che ci impedisce anche solo di iniziare a impostare il problema? Ma soprattutto, quel senso di fallimento nel soddisfare le aspettative che abbiamo di noi stessi, e di sentirsi fuori posto: “se non so risolvere questo problema, cosa ci sto a fare qui?”.

Tutte queste emozioni negative sono il pane quotidiano dei ricercatori. Infatti, per definizione, il ricercatore è colui che prova a risolvere problemi mai risolti da nessuno, e nel fare ciò finisce per sbattere continuamente contro quel muro mentale, per cercare di avanzare anche solo di uno 0.1%.

Noto che viene poco enfatizzato il fatto che i ricercatori sono comunque prima di tutto studenti. Questo è un fatto molto importante, perché non stai facendo ricerca se non ti metti a studiare cose che vanno al di là delle tue capacità. Per questo motivo il modus operandi del ricercatore dovrebbe essere preso come modello per gli studenti più giovani.

Gli anni febbrili di Einstein

Dal 1907 al 1915 Einstein lavorò incessantemente alla teoria della Relatività Generale, andando a sbattere la testa contro difficoltà teoriche e matematiche che all’epoca rappresentavano l’apice della Fisica Teorica.

In questo processo Einstein dovette imparare quasi da zero il linguaggio matematico più adatto per formulare le sue idee (la geometria di Riemann e il formalismo di Minkowski per lo spaziotempo), e l’impresa si dimostrò così eccezionale che dovette collaborare continuamente con due amici matematici, Marcel Grossmann e Michele Besso.

Le difficoltà però non erano solo matematiche. Einstein cambiò più di qualche volta le principali strutture concettuali con cui desiderava conciliare la gravità di Newton con la sua relatività ristretta, e fino all’ultimo momento non fu mai esattamente convinto di quali fossero i reali fondamenti teorici.

Per chi mastica un po’ di inglese consiglio il magistrale lavoro dello storico Michel Janssen “No success like failure: Einstein’s quest for General Relativity, 1907-1920“, il quale ha saputo rintracciare tutto il percorso concettuale di quegli anni.

Nelle pagine di Janssen non c’è la moderna figura mitologica dell’Einstein “tutto d’un pezzo”, al quale bastò immaginarsi “una persona in caduta libera” per formulare la nuova teoria della gravitazione. Invece viene fuori l’Einstein ricercatore, pieno di dubbi e ripensamenti, ma che faceva di queste tre qualità principali le sue armi di battaglia:

  • Lungimiranza. Einstein era di sicuro un visionario perché era capace di sintetizzare tutte le difficoltà teoriche in pochissimi punti cardine: se doveva esistere una teoria della gravità compatibile con la relatività, allora doveva rispettare un principio di covarianza delle leggi della fisica sotto qualsiasi trasformazione di coordinate. La visione di Einstein era ben delineata: credeva ciecamente nel principio di Galileo e sapeva che in un modo o nell’altro la teoria corretta doveva racchiuderlo in una nuova veste.
  • Umiltà intellettuale. La storia è cosparsa di ricercatori che hanno dedicato gran parte della loro carriera a teorie che si dimostravano fallaci e inconcludenti. Il loro principale nemico era il proprio ego, che non gli permetteva di ammettere di essere stati nel torto tutto il tempo.
    Al contrario, Einstein era capace anche di pubblicare un articolo al mese in cui nel successivo smontava la maggior parte delle cose dette nel precedente. Continuò a ripetere questo processo di “avanzamento-smentita” per almeno 3 anni, dal 1913 al 1915.
  • Perseveranza. Einstein era un lavoratore incallito, disposto a dedicare tutto il tempo che riteneva necessario per la risoluzione di un problema. Laddove i suoi colleghi mollavano, lui continuava. Aveva capito che la mente è in grado di fare avanzamenti importanti solo quando le si dà tempo sufficiente.
La famosa foto della scrivania di Einstein nel suo ufficio a Princeton.

Gli ultimi anni di gestazione della Relatività Generale furono intensissimi, specialmente l’ultimo anno in cui Einstein si ritrovò a rivaleggiare con nientemeno che David Hilbert (il più grande matematico del suo tempo), il quale aveva fiutato la possibilità di trovare le equazioni corrette prima di Einstein. Proprio a questo punto (inverno del 1915) il lavoro di Einstein divenne febbrile: si lasciò assorbire completamente dal proprio obbiettivo, dimenticandosi persino di scrivere agli amici. Oggi il suo stato mentale sarebbe probabilmente classificato in psicologia come “flusso”.

Spesso sono così assorbito dal lavoro che mi dimentico di pranzare.

Albert Einstein in una lettera a suo figlio Hans, 1915.

Lo stato mentale di “flusso” è comune a tantissimi artisti, ed è spesso descritto come uno degli stati di coscienza più sereni dell’esistenza, in quanto il cervello ha piena libertà espressiva e lavora all’unisono con emozioni e corpo.

In ogni caso, ciò che condusse Einstein a risolvere il problema più difficile della sua carriera fu un mix di qualità da cui tutti possiamo trarre ispirazione per migliorare il nostro problem solving in generale.

In fondo, i principali nemici di Einstein erano quelli che accomunano tutti i noi: dubbio, insicurezza, ripensamento, il non sentirsi all’altezza. Queste sanguisughe emotive tolgono energia preziosa che invece occorrerebbe investire nel cercare di risolvere il problema in sé.

Come vanno approcciati gli argomenti più rognosi

La mente è capace di produrre i più grandi successi, ma anche di condizionare i più grandi fallimenti. Dipende tutto da come la si usa, e forse la nostra società dedica troppo poco tempo all’educazione sul suo corretto utilizzo.
Come sosteneva David J. Schwartz, professore alla Georgia State University, davanti a un problema molto rognoso le persone solitamente scelgono di investire le energie mentali in uno tra due modi:

  • Distruttivo. La maggior parte delle energie mentali vengono spese per ricercare tutte le buone ragioni per cui non siamo in grado di risolvere il problema che ci è stato posto di fronte.
  • Creativo. La maggior parte delle energie mentali vengono spese cercando di capire come possiamo fare anche solamente un piccolo avanzamento verso la soluzione.

Questo è ciò che ho imparato anche nella mia esperienza universitaria. È capitato spesso agli esami che tra due persone ugualmente preparate solo la più intraprendente delle due riuscisse a strappare un voto più alto, tentando di rispondere alla “domanda bonus” dell’esame. Questo perché, a differenza del collega, riusciva a investire le proprie energie mentali concentrandosi solo sul problema, senza ascoltare le sanguisughe emotive. Mentre uno dei due cercava la soluzione, l’altro cercava delle scuse per autoconvincersi di non essere in grado.

Una pagina degli appunti di Einstein sulla sua teoria della gravitazione.

Io stesso mi sono accorto di aver fatto questo errore specialmente il primo anno di università.
Nel momento in cui mi sono accorto di questo cattivo approccio mentale ho cercato di non ripeterlo più, e i risultati sono arrivati subito.

In generale nel momento in cui dobbiamo studiare qualsiasi argomento particolarmente rognoso, mal posto o semplicemente noioso, l’approccio corretto è quello creativo: bisogna cercare di trovare la volontà di concentrarsi solo sull’argomento, aprendo una bolla intellettuale in cui eliminiamo tutte le interferenze della nostra vita. Occorre mettere via smartphone e social media ed entrare dentro la materia.

Ho notato che il modo più rapido che ho di farmi piacere qualcosa è leggere ciò che ha entusiasmato altre persone di quell’argomento. Spesso non ci piace qualcosa solo perché ne sappiamo troppo poco, o perché chi ce l’ha presentata non è riuscito a trasmetterci il motivo per cui dovremmo studiarla. Internet è un posto fantastico proprio per questo motivo: con pochi click puoi avere accesse alla vita e alle opinioni di migliaia di persone che hanno studiato la nostra stessa cosa.

Sii come Einstein, immergiti dentro al tuo lavoro. Solo dopo esserti immerso saprai se quell’argomento ti piace o meno. Se stai risolvendo un problema: cerca soluzioni, non scuse. Se proprio non trovi nessun indizio per riuscire a risolverlo: informati su come le persone hanno risolto problemi simili, e magari torna sul libro per approfondire il capitolo riguardante quel problema. L’approccio attivo batte sempre l’approccio passivo.

Un’altra cosa che ha funzionato nel mio caso quando mi sono confrontato con argomenti piuttosto noiosi o problemi apparentemente insormontabili è quella di “renderli memorabili”. Mi convincevo che quello che stavo facendo era davvero importante, e davo un tono solenne alla mia impostazione del problema, fingendomi un ricercatore. Spesso sono arrivato anche a scrivere degli articoli in PDF in cui proponevo la mia soluzione: l’atto di scrivere quei PDF mi motivava a concentrarmi solennemente sul problema. Questo piccolo accorgimento riusciva a fregare il cervello, spazzare via quell’apatia che crea il mindset distruttivo per lasciare spazio alla creatività.
Anche quando stai risolvendo esercizi apparentemente banali o che i tuoi colleghi ritengono semplici (triviali), continua comunque a darti quell’aria solenne per motivarti ad andare avanti. Prima o poi gli altri si lasceranno ingoiare dall’apatia e presto smetteranno di confrontarsi con i problemi più complessi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Infine, un’ultima nota sul concetto di “esaurimento”, o come va di moda dire oggi “burnout“.

Risolvere problemi o studiare materie molto complesse porta via tanta energia. Nonostante ci siano comunque tanti modi di ottimizzare l’energia giornaliera, ad esempio eliminando le distrazioni, pianificando le cose da fare, ed eliminando la mentalità distruttiva (cioè non sprecare energia mentale per trovare scuse o motivi per cui fallirai in ciò che stai per fare), in ogni caso è facile arrivare a un punto in cui si è semplicemente esaurita tutta l’energia.

Cosa possiamo fare quando ci sentiamo completamente esausti riguardo lo studio, nonostante ci siamo riposati e ricaricati in altri modi? Mi è rimasto impresso il suggerimento del monaco benedettino David Steindl-Rast, secondo il quale:
il rimedio all’esaurimento non è smettere di fare ciò che stiamo facendo, ma iniziare a farlo mettendoci tutto ciò che abbiamo, anima e corpo, il 100% della nostra dedizione e concentrazione.

Secondo Steindl-Rast, l’energia che cercavamo era già dentro di noi, soppressa dal fatto che non stavamo lavorando al 100% della nostra concentrazione, ma magari al 60-70%. Quante volte ci siamo dedicati a un argomento, o a un problema, avendo però la testa rivolta verso altri argomenti o altri problemi? O magari avendo la testa occupata dalle sanguisughe emotive? Questo multitasking mentale comporta un consumo energetico molto più elevato del “dedicarsi al 100%”.

Sii come Einstein, dedicati a un argomento o un problema alla volta, organizzandoti il tempo. Pensa in grande e solennemente, non togliere importanza al lavoro che fai. Solo questo è in grado di scacciare l’apatia e le sanguisughe emotive che ti trattengono dall’imparare cose nuove o dal risolvere i problemi più complessi.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Fermi: quel 21enne che contribuì alla Relatività Generale

Uno degli scopi principali di Internet dovrebbe essere quello di dare la possibilità di condividere per aiutarsi a vicenda negli studi. In questo senso trovo appagante quando riesco a trovare un articolo di un altro studente che sta studiando un particolare argomento tecnico e ha voglia di condividere il risultato con gli altri, per aiutarli nella stessa ricerca. Ho tratto beneficio da questo tipo di pratiche, quindi mi sento di condividere a mia volta.

Una delle questioni che mi hanno lasciato insoddisfatto quando ho studiato Relatività Generale era la scarsa enfasi posta dai corsi e dai libri di testo introduttivi nei confronti delle coordinate di un osservatore in caduta libera.

Nella meccanica classica è spesso cruciale porsi nei panni di un osservatore che interagisce con l’universo intorno a sé, per capire come questi descrive i fenomeni intorno a lui, e le interpretazioni fisiche che ne dà.

Se ad esempio una particella in movimento si trova nella stessa regione di spazio di un’altra carica elettrica, è di nostro interesse capire quale sia il campo “visto” dalla particella, immedesimandoci in lei con un opportuno cambio di coordinate. Ciò ci permette di interpretare alcune proprietà del suo moto che altrimenti ci sarebbe apparso meno intuitivo.

Il principio di equivalenza

La Relatività Generale si fonda sul principio che un osservatore in caduta libera in un campo gravitazionale rappresenta un sistema localmente inerziale. Cioè nei pressi della sua traiettoria, dal suo punto di vista, lo spaziotempo è quello della relatività ristretta: piatto.

Questo principio permette di derivare la struttura matematica delle equazioni di Einstein per lo spaziotempo attorno a una distribuzione di massa o di energia qualunque. Tuttavia nella maggior parte delle trattazioni introduttive, il ruolo del principio di equivalenza finisce qui.

Ad esempio la soluzione che descrive lo spaziotempo attorno a un buco nero di Schwarzschild viene fornita nelle coordinate di un osservatore che si trova ad infinita distanza dal buco nero, e difficilmente viene affrontato il problema, (ben più interessante dal mio punto di vista), di come appaia lo spaziotempo attorno a un buco nero dal punto di vista di un osservatore che ci stia cascando dentro.

Questo è un gran peccato perché una delle curiosità più interessanti riguarda proprio ciò che percepirebbe un malcapitato nei pressi dell’orizzonte degli eventi!

La cosa curiosa è che nemmeno Einstein, il padre del principio di equivalenza e della relatività, si preoccupò di cercare quale fosse la trasformazione di coordinate per un osservatore in caduta libera (o meglio, si accontentò della prima approssimazione più semplice, e cioè lo spaziotempo piatto di un osservatore inerziale). Ma questo non ci dice nulla sullo spaziotempo poco più distante dalla traiettoria dell’osservatore, dove inizierebbero a manifestarsi gli effetti della curvatura!

Il giovanissimo Fermi

Sorprendentemente ci pensò l’allora 21enne Enrico Fermi, il quale scrisse quelle che oggi sono note come “coordinate di Fermi”. Il suo lavoro fu pubblicato nel 1922 con il nome “Sopra i fenomeni che avvengono in vicinanza di una linea oraria” e fu pionieristico.

Le coordinate di Fermi descrivono lo spaziotempo nelle vicinanze di un osservatore in caduta libera, e possono essere applicate per provare a soddisfare la curiosità di cosa succeda davvero nell’orizzonte degli eventi di un buco nero molto semplice, non rotante ed eterno: un buco nero di Schwarzschild.

Sfortunatamente queste coordinate sono poco trattate nei corsi introduttivi, e la letteratura è poco accessibile. Da questa insoddisfazione ho deciso di fare un po’ di ricerca a proposito e come risultato ho scritto un piccolo compendio con il fine di rendere questo argomento più accessibile a uno studente del primo anno di un corso magistrale.

Il file in PDF può essere scaricato qui sotto:

Naturalmente lascia a bocca aperta la maturità con la quale l’allora 21enne Enrico Fermi, geniale nella matematica, affrontò la questione. Ciò fu immediatamente riconosciuto dai fisici matematici italiani (come Levi Civita).

Oggi le coordinate di Fermi rappresentano uno strumento molto utile, e sono usate nella ricerca più avanzata nelle computazioni teoriche della relatività generale.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

La caduta libera in un buco nero di Schwarzschild in coordinate di Fermi

Cosa percepisce un astronauta in caduta libera oltre l’orizzonte degli eventi?
Vengono utilizzate le coordinate normali di Fermi per descrivere lo spaziotempo in una piccola regione che circonda la traiettoria di un corpo in caduta libera verso un buco nero di Schwarzschild.