Cosa ho imparato da Einstein sul Problem Solving: come si studiano gli argomenti più rognosi?

Non che io sia così intelligente, semplicemente studio i problemi più a lungo

Albert Einstein

Questa citazione è una tra le più famose di Einstein e secondo me evidenzia un punto cruciale del suo modo di lavorare, che lo ha portato a rivoluzionare importanti concetti che altri fisici suoi contemporanei mettevano sotto al tappeto.

Come molti problemi che dobbiamo affrontare nel nostro percorso di studi, quelli che Einstein decise di studiare erano scomodi, fuori dalla zona comfort, non sempre ben posti.

Albert Einstein (1879-1955).

Hai presente quella spiacevole sensazione di inadeguatezza quando ci viene chiesto di risolvere un problema che apparentemente è al di sopra delle nostre capacità? Quella sensazione di avere un muro mentale che ci impedisce anche solo di iniziare a impostare il problema? Ma soprattutto, quel senso di fallimento nel soddisfare le aspettative che abbiamo di noi stessi, e di sentirsi fuori posto: “se non so risolvere questo problema, cosa ci sto a fare qui?”.

Tutte queste emozioni negative sono il pane quotidiano dei ricercatori. Infatti, per definizione, il ricercatore è colui che prova a risolvere problemi mai risolti da nessuno, e nel fare ciò finisce per sbattere continuamente contro quel muro mentale, per cercare di avanzare anche solo di uno 0.1%.

Noto che viene poco enfatizzato il fatto che i ricercatori sono comunque prima di tutto studenti. Questo è un fatto molto importante, perché non stai facendo ricerca se non ti metti a studiare cose che vanno al di là delle tue capacità. Per questo motivo il modus operandi del ricercatore dovrebbe essere preso come modello per gli studenti più giovani.

Gli anni febbrili di Einstein

Dal 1907 al 1915 Einstein lavorò incessantemente alla teoria della Relatività Generale, andando a sbattere la testa contro difficoltà teoriche e matematiche che all’epoca rappresentavano l’apice della Fisica Teorica.

In questo processo Einstein dovette imparare quasi da zero il linguaggio matematico più adatto per formulare le sue idee (la geometria di Riemann e il formalismo di Minkowski per lo spaziotempo), e l’impresa si dimostrò così eccezionale che dovette collaborare continuamente con due amici matematici, Marcel Grossmann e Michele Besso.

Le difficoltà però non erano solo matematiche. Einstein cambiò più di qualche volta le principali strutture concettuali con cui desiderava conciliare la gravità di Newton con la sua relatività ristretta, e fino all’ultimo momento non fu mai esattamente convinto di quali fossero i reali fondamenti teorici.

Per chi mastica un po’ di inglese consiglio il magistrale lavoro dello storico Michel Janssen “No success like failure: Einstein’s quest for General Relativity, 1907-1920“, il quale ha saputo rintracciare tutto il percorso concettuale di quegli anni.

Nelle pagine di Janssen non c’è la moderna figura mitologica dell’Einstein “tutto d’un pezzo”, al quale bastò immaginarsi “una persona in caduta libera” per formulare la nuova teoria della gravitazione. Invece viene fuori l’Einstein ricercatore, pieno di dubbi e ripensamenti, ma che faceva di queste tre qualità principali le sue armi di battaglia:

  • Lungimiranza. Einstein era di sicuro un visionario perché era capace di sintetizzare tutte le difficoltà teoriche in pochissimi punti cardine: se doveva esistere una teoria della gravità compatibile con la relatività, allora doveva rispettare un principio di covarianza delle leggi della fisica sotto qualsiasi trasformazione di coordinate. La visione di Einstein era ben delineata: credeva ciecamente nel principio di Galileo e sapeva che in un modo o nell’altro la teoria corretta doveva racchiuderlo in una nuova veste.
  • Umiltà intellettuale. La storia è cosparsa di ricercatori che hanno dedicato gran parte della loro carriera a teorie che si dimostravano fallaci e inconcludenti. Il loro principale nemico era il proprio ego, che non gli permetteva di ammettere di essere stati nel torto tutto il tempo.
    Al contrario, Einstein era capace anche di pubblicare un articolo al mese in cui nel successivo smontava la maggior parte delle cose dette nel precedente. Continuò a ripetere questo processo di “avanzamento-smentita” per almeno 3 anni, dal 1913 al 1915.
  • Perseveranza. Einstein era un lavoratore incallito, disposto a dedicare tutto il tempo che riteneva necessario per la risoluzione di un problema. Laddove i suoi colleghi mollavano, lui continuava. Aveva capito che la mente è in grado di fare avanzamenti importanti solo quando le si dà tempo sufficiente.
La famosa foto della scrivania di Einstein nel suo ufficio a Princeton.

Gli ultimi anni di gestazione della Relatività Generale furono intensissimi, specialmente l’ultimo anno in cui Einstein si ritrovò a rivaleggiare con nientemeno che David Hilbert (il più grande matematico del suo tempo), il quale aveva fiutato la possibilità di trovare le equazioni corrette prima di Einstein. Proprio a questo punto (inverno del 1915) il lavoro di Einstein divenne febbrile: si lasciò assorbire completamente dal proprio obbiettivo, dimenticandosi persino di scrivere agli amici. Oggi il suo stato mentale sarebbe probabilmente classificato in psicologia come “flusso”.

Spesso sono così assorbito dal lavoro che mi dimentico di pranzare.

Albert Einstein in una lettera a suo figlio Hans, 1915.

Lo stato mentale di “flusso” è comune a tantissimi artisti, ed è spesso descritto come uno degli stati di coscienza più sereni dell’esistenza, in quanto il cervello ha piena libertà espressiva e lavora all’unisono con emozioni e corpo.

In ogni caso, ciò che condusse Einstein a risolvere il problema più difficile della sua carriera fu un mix di qualità da cui tutti possiamo trarre ispirazione per migliorare il nostro problem solving in generale.

In fondo, i principali nemici di Einstein erano quelli che accomunano tutti i noi: dubbio, insicurezza, ripensamento, il non sentirsi all’altezza. Queste sanguisughe emotive tolgono energia preziosa che invece occorrerebbe investire nel cercare di risolvere il problema in sé.

Come vanno approcciati gli argomenti più rognosi

La mente è capace di produrre i più grandi successi, ma anche di condizionare i più grandi fallimenti. Dipende tutto da come la si usa, e forse la nostra società dedica troppo poco tempo all’educazione sul suo corretto utilizzo.
Come sosteneva David J. Schwartz, professore alla Georgia State University, davanti a un problema molto rognoso le persone solitamente scelgono di investire le energie mentali in uno tra due modi:

  • Distruttivo. La maggior parte delle energie mentali vengono spese per ricercare tutte le buone ragioni per cui non siamo in grado di risolvere il problema che ci è stato posto di fronte.
  • Creativo. La maggior parte delle energie mentali vengono spese cercando di capire come possiamo fare anche solamente un piccolo avanzamento verso la soluzione.

Questo è ciò che ho imparato anche nella mia esperienza universitaria. È capitato spesso agli esami che tra due persone ugualmente preparate solo la più intraprendente delle due riuscisse a strappare un voto più alto, tentando di rispondere alla “domanda bonus” dell’esame. Questo perché, a differenza del collega, riusciva a investire le proprie energie mentali concentrandosi solo sul problema, senza ascoltare le sanguisughe emotive. Mentre uno dei due cercava la soluzione, l’altro cercava delle scuse per autoconvincersi di non essere in grado.

Una pagina degli appunti di Einstein sulla sua teoria della gravitazione.

Io stesso mi sono accorto di aver fatto questo errore specialmente il primo anno di università.
Nel momento in cui mi sono accorto di questo cattivo approccio mentale ho cercato di non ripeterlo più, e i risultati sono arrivati subito.

In generale nel momento in cui dobbiamo studiare qualsiasi argomento particolarmente rognoso, mal posto o semplicemente noioso, l’approccio corretto è quello creativo: bisogna cercare di trovare la volontà di concentrarsi solo sull’argomento, aprendo una bolla intellettuale in cui eliminiamo tutte le interferenze della nostra vita. Occorre mettere via smartphone e social media ed entrare dentro la materia.

Ho notato che il modo più rapido che ho di farmi piacere qualcosa è leggere ciò che ha entusiasmato altre persone di quell’argomento. Spesso non ci piace qualcosa solo perché ne sappiamo troppo poco, o perché chi ce l’ha presentata non è riuscito a trasmetterci il motivo per cui dovremmo studiarla. Internet è un posto fantastico proprio per questo motivo: con pochi click puoi avere accesse alla vita e alle opinioni di migliaia di persone che hanno studiato la nostra stessa cosa.

Sii come Einstein, immergiti dentro al tuo lavoro. Solo dopo esserti immerso saprai se quell’argomento ti piace o meno. Se stai risolvendo un problema: cerca soluzioni, non scuse. Se proprio non trovi nessun indizio per riuscire a risolverlo: informati su come le persone hanno risolto problemi simili, e magari torna sul libro per approfondire il capitolo riguardante quel problema. L’approccio attivo batte sempre l’approccio passivo.

Un’altra cosa che ha funzionato nel mio caso quando mi sono confrontato con argomenti piuttosto noiosi o problemi apparentemente insormontabili è quella di “renderli memorabili”. Mi convincevo che quello che stavo facendo era davvero importante, e davo un tono solenne alla mia impostazione del problema, fingendomi un ricercatore. Spesso sono arrivato anche a scrivere degli articoli in PDF in cui proponevo la mia soluzione: l’atto di scrivere quei PDF mi motivava a concentrarmi solennemente sul problema. Questo piccolo accorgimento riusciva a fregare il cervello, spazzare via quell’apatia che crea il mindset distruttivo per lasciare spazio alla creatività.
Anche quando stai risolvendo esercizi apparentemente banali o che i tuoi colleghi ritengono semplici (triviali), continua comunque a darti quell’aria solenne per motivarti ad andare avanti. Prima o poi gli altri si lasceranno ingoiare dall’apatia e presto smetteranno di confrontarsi con i problemi più complessi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Infine, un’ultima nota sul concetto di “esaurimento”, o come va di moda dire oggi “burnout“.

Risolvere problemi o studiare materie molto complesse porta via tanta energia. Nonostante ci siano comunque tanti modi di ottimizzare l’energia giornaliera, ad esempio eliminando le distrazioni, pianificando le cose da fare, ed eliminando la mentalità distruttiva (cioè non sprecare energia mentale per trovare scuse o motivi per cui fallirai in ciò che stai per fare), in ogni caso è facile arrivare a un punto in cui si è semplicemente esaurita tutta l’energia.

Cosa possiamo fare quando ci sentiamo completamente esausti riguardo lo studio, nonostante ci siamo riposati e ricaricati in altri modi? Mi è rimasto impresso il suggerimento del monaco benedettino David Steindl-Rast, secondo il quale:
il rimedio all’esaurimento non è smettere di fare ciò che stiamo facendo, ma iniziare a farlo mettendoci tutto ciò che abbiamo, anima e corpo, il 100% della nostra dedizione e concentrazione.

Secondo Steindl-Rast, l’energia che cercavamo era già dentro di noi, soppressa dal fatto che non stavamo lavorando al 100% della nostra concentrazione, ma magari al 60-70%. Quante volte ci siamo dedicati a un argomento, o a un problema, avendo però la testa rivolta verso altri argomenti o altri problemi? O magari avendo la testa occupata dalle sanguisughe emotive? Questo multitasking mentale comporta un consumo energetico molto più elevato del “dedicarsi al 100%”.

Sii come Einstein, dedicati a un argomento o un problema alla volta, organizzandoti il tempo. Pensa in grande e solennemente, non togliere importanza al lavoro che fai. Solo questo è in grado di scacciare l’apatia e le sanguisughe emotive che ti trattengono dall’imparare cose nuove o dal risolvere i problemi più complessi.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Cosa possiamo imparare dal diario degli appunti di Feynman

Richard P. Feynman (1918-1988)

Fin da quando ho iniziato il mio percorso nella Fisica sono stato affascinato tanto dalla materia quanto dalle personalità che l’hanno costruita. Anzi, ripensandoci devo ammettere che traevo ispirazione dalle azioni quotidiane, dalle abitudini o dai modi di ragionare dei grandi fisici del passato. Non che volessi “emularli” , semplicemente li ammiravo così tanto da voler portare dei pezzi di loro dentro di me, per sentirli più vicini, per guidarmi nelle decisioni e nella motivazione.

Una parte che trovo estremamente interessante della storia di ogni fisico è il suo metodo di studio, e non di quando era già grande e formato, ma di quando era giusto agli inizi.

Un filo conduttore che ho notato è il seguente: per capire a fondo una materia, devi farla tua. Per fare ciò servono due step fondamentali:

  • Bisogna essere autodidatti per una buona percentuale del tempo. Il professore ha il ruolo di mostrare la via più proficua e fornire gli schemi per aiutarti a non perderti, il resto devi coltivarlo da solo usando dei libri adeguati allo scopo.
  • Dopo aver letto il libro devi estrapolare le tue visioni e i tuoi schemi per poi riorganizzarli come preferisci in forma scritta, su diari o quadernini personali.
Il diario di Feynman: “The Calculus”, in italiano “Il calcolo infinitesimale”.

Uno dei più grandi che seguiva questo metodo era Richard Feynman, celebre fisico teorico americano (Nobel 1965). Ne sono venuto a conoscenza perché sono incappato di recente in un articolo di Physics Today in cui è stato riesumato da un archivio il “diario degli appunti” di quando Feynman decise di imparare il calcolo infinitesimale da autodidatta quando era ancora al liceo.

Il giovane Feynman decise che il curriculum di matematica liceale (che arrivava a stento alla trigonometria) non era abbastanza per chi volesse iniziare ad interessarsi di Fisica. Per sua fortuna il matematico Edgar Thompson decise di scrivere una serie di libri con l’intento di rendere più accessibili alcune tecniche matematiche che all’epoca erano ancora trattate in maniera piuttosto “aulica”. Feynman trovò particolarmente utile il libro di Thompson “Il calcolo infinitesimale reso facile” del 1923, su cui decise di basare tutta la sua preparazione (introduttiva) alla matematica universitaria.

Trovo giusto rimarcare un attimo l’importanza dell’opera di personaggi come Thompson: se Feynman non avesse potuto sviluppare da solo certe attitudini grazie a libri così accessibili, avrebbe magari avuto più dubbi nel suo percorso, e chissà magari non avremmo mai sentito parlare dei “diagrammi di Feynman”.

Cosa possiamo imparare?

Ci sono poche immagini condivise in rete sul diario di Feynman. Tuttavia da quel poco che abbiamo possiamo comunque trarre alcuni spunti interessanti, oltre ad evidenziare alcuni tratti fondamentali che per Feynman diventeranno caratteristici del suo metodo di lavoro.

L’importanza della schematicitià

La cosa che mi ha sorpreso di più di questo diario è anzitutto la presenza di un indice.

L’indice del diario di Feynman. I capitoli sono organizzati in una maniera molto simile a quella del libro di Thompson.

Uno degli ingredienti fondamentali per imparare una materia nuova e complessa è infatti quello di riuscire a organizzare le informazioni in maniera che siano rapidamente accessibili. L’indice è probabilmente il modo migliore per visualizzare graficamente tutti gli aspetti di una materia, e non parlo dell’indice di un libro, ma dell’indice dei propri appunti. Nel mio caso, se i tuoi appunti non hanno un indice è più facile provare un senso di confusione generale quando scorri le pagine. Questo piccolo dettaglio può trasformare una “confusa raccolta” in un serio “arsenale di conoscenze”.
Feynman conservò tutta la vita questa propensione per la schematicità. James Gleick riporta un aneddoto di quando Feynman era ancora studente a Princeton:

[…] Aprì un quaderno degli appunti. Il titolo era “DIARIO DELLE COSE CHE NON SO”. […] Lavorava per settimane per disassemblare ogni branca della Fisica, semplificandone le parti e mettendo tutto assieme, cercando nel mentre inconsistenze e punti spigolosi. Provava a trovare il cuore essenziale di ogni argomento.

James Gleick

Qui non siamo solo davanti a un esercizio “di umiltà” che consiste nel cercare di perfezionare le proprie lacune, ma a una ricerca sistematica, ottimizzata.

Quando Feynman aveva finito il lavoro, si ritrovava con un diario degli appunti di cui andava particolarmente orgoglioso.

James Gleick

La schematicità di questo lavoro permetteva a Feynman di accedere rapidamente a tutti gli argomenti che lui riteneva più importanti, nella grafia e nello stile di presentazione che a lui era più congeniale: il suo.

Da questa lezione possiamo imparare l’importanza della rielaborazione e della schematicità: non solo bisogna far proprio un argomento, ma bisogna organizzare le proprie note in modo che siano accessibili con il minor sforzo possibile, solo così si può andare avanti con una mente abbastanza lucida, pronta ad imparare cose ancora più difficili.

Prendersi un po’ più sul serio

Il secondo aspetto su cui voglio soffermarmi riguarda queste due pagine di appunti:

L’argomento riguarda l’analisi matematica ordinaria: l’angolo iperbolico e le funzioni iperboliche, ma non è questa la cosa interessante, bensì è l’utilizzo di intermezzi stilistici del tipo: “come abbiamo visto”, “se dividiamo…” tutti rivolti al plurale, proprio come farebbe un professore che sta spiegando un argomento in un’aula. Feynman si prendeva sul serio. Questo prendersi sul serio lo portava a redigere gli appunti con uno stile che poteva essere letto da tutti, aumentandone la facilità di lettura e senza sacrificare la rigorosa riorganizzazione delle informazioni.
Ricordiamo: Feynman era appena un adolescente mentre scriveva questo diario, non stiamo parlando di uno studente universitario che si suppone abbia già consolidato certi metodi di studio. Qui sta la precoce genialità di Feynman.

Il diario degli appunti di Enrico Fermi.

Se si vogliono scrivere degli appunti che ci potrebbero essere utili in futuro, bisogna farlo prendendosi sul serio, scrivendo come se dovessimo esporre in un’aula con persone che su quell’argomento non sanno nulla.
Se non si fa ciò, si rischia di ritrovarsi con degli appunti illeggibili presi distrattamente qualche anno prima, con il risultato di aver sprecato ore di studio senza poter riacquisire in maniera rapida le conoscenze dimenticate.

Anche uno dei più grandi fisici del novecento, Enrico Fermi, usò la tecnica del diario degli appunti fin da quando era al liceo. Proprio come Feynman, Fermi era ossessivo nel redigere i propri appunti, dedicandovi una meticolosa attenzione, fin dalla stesura dell’indice:

L’indice di un quaderno di Fermi.

Come testimoniarono i suoi colleghi e amici, Fermi riutilizzava spesso i propri quadernini anche in età adulta, proprio perché gli consentivano l’accesso immediato a numerose branche del sapere, diventando quasi “un’estensione” del proprio cervello.
Di nuovo, la loro efficacia stava probabilmente nel fatto di essere stati scritti in uno stile a lui più congeniale, usando schemi con cui aveva maggiore confidenza. Qualcuno disse che Fermi aveva fatto sua tutta la Fisica, tanto da definirlo “l’ultimo uomo che sapeva tutto“.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

“La tua ricerca è inadeguata!” Quando la Fisica ha bisogno di uno schiaffo

Ci sono svariati motivi per cui la Scienza, pur essendo una disciplina di matrice umana e quindi predisposta all’errore, riesce sempre a raddrizzarsi. Il motivo più cruciale è la spietatezza del giudizio tra pari: l’oggettività e il metodo scientifico non guardano in faccia nessuno.

Naturalmente per garantire il continuo raddrizzamento servono grandi personalità, che devono essere la base di ogni comunità scientifica. E non parlo di “grandi personalità” solo dal punto di vista accademico, servono grandi capacità relazionali e grande onestà intellettuale, anche a costo di dire qualcosa di molto scomodo. La scienza inizia a morire quando inizia a prendere piede il pensiero di gregge, dal quale nessuno ha il coraggio di discostarsi.
A capo del gregge servono dei pastori, pochi fari nella notte, ma sempre accesi e messi nei punti giusti.

In questo contesto, qualche tempo fa sono incappato in una storia condivisa da Freeman Dyson, che è stato uno dei più importanti fisici teorici del secondo novecento. Credo che questa storia riassuma perfettamente lo stato esistenziale del ricercatore: la ricerca è un mondo appassionante in tutti i sensi, passione emotiva e passione in senso latino, “patire, soffrire”.

Un po’ di contesto storico

Un tipico processo di elettrodinamica quantistica, un fotone virtuale viene scambiato tra due elettroni.

Alla fine degli anni ’40 si era raggiunta una soddisfacente descrizione dei processi atomici. L’unica forza fondamentale del mondo quantistico allora compresa, l’elettrodinamica quantistica, aveva come ingredienti i campi fermionici come elettroni, protoni e neutroni, e il campo elettromagnetico (rappresentato dal suo quanto di eccitazione, il fotone).
Come descritto in un precedente articolo, essendo il mediatore di un’interazione a raggio d’azione infinito, il fotone ha massa nulla. Un principio di simmetria, assieme alle nozioni dell’elettrodinamica classica, ci guidano a scrivere l’interazione elettrodinamica, come spiegato in un precedente articolo, con la seguente struttura:

L’accoppiamento tra campi fermionici ψ e il campo elettromagnetico Aμ.
L’intensità dell’interazione è specificata dalla carica dell’elettrone in unità fondamentali (unità di c=ℏ=1).
Freeman Dyson (1923-2020)

A partire da questa struttura, si è in grado di calcolare tutti i processi elettromagnetici possibili, e verificare l’accuratezza della teoria confrontando i valori ottenuti con i dati sperimentali. Questa era l’occupazione di Freeman Dyson e il suo gruppo di studenti. Dyson, allora un giovanissimo professore di Fisica Teorica alla Cornell, era riuscito con il suo gruppo ad ottenere uno spettacolare accordo tra le previsioni teoriche e i dati sperimentali: l’elettrodinamica era una teoria in grado di fare previsioni molto accurate.

Dopo questi successi, nel 1951 il gruppo di Dyson era alla ricerca di altri problemi da conquistare. Uno particolarmente promettente era il problema di studiare cosa tenesse assieme i nuclei: l’interazione nucleare.
All’epoca la Fisica Nucleare era una scienza prettamente empirica: i modelli teorici erano pochi, confusi e dallo scarso potere predittivo. Quello che era certo, almeno alla scala di energia che si esplorava all’epoca, è che il mediatore della forza nucleare doveva essere massivo (per sapere perché leggi qua) perché al di fuori del nucleo la forza nucleare cessava di esistere.
Se il mediatore dell’elettrodinamica era il fotone, il mediatore dell’interazione nucleare fu individuato nel pione. L’obbiettivo era quindi fare degli esperimenti in cui si facevano collidere pioni con altre particelle nucleari, per studiarne l’interazione.

Dyson e il suo gruppo, avendo avuto così tanto successo con il modello dell’elettrodinamica, decisero che la struttura migliore per l’interazione doveva essere molto simile:

L’accoppiamento tra i campi fermionici ψ e il campo del pione ϕ.
L’intensità dell’interazione è specificata dalla costante “g” , che ha un valore molto più elevato della costante di accoppiamento elettromagnetica “e”.
Un protone ed un neutrone interagiscono scambiandosi un pione neutro.
Nota la somiglianza con il diagramma dell’elettrodinamica.


Questa teoria era conosciuta come “teoria del pione pseudoscalare” , e il gruppo di Dyson ci lavorò a tempo pieno per due anni. Dopo uno sforzo di proporzioni eroiche, nel 1953 riuscirono a produrre delle predizioni teoriche in accettabile accordo con i dati disponibili all’epoca. La carriera di alcuni studenti di Dyson dipendeva dal successo di questa teoria, dato che erano per la maggior parte dottorandi o post-doc.

I dati sperimentali con cui confrontavano le loro previsioni teoriche erano stati raccolti da uno dei migliori fisici del novecento, nonché uno dei padri fondatori della ricerca nucleare: Enrico Fermi, professore a Chicago e al tempo uno dei leader nella costruzione del Ciclotrone con cui si studiavano le interazioni nucleari.
Fermi era anche uno dei migliori fisici teorici della sua generazione, quindi Dyson pensò fosse il caso di andare a trovarlo per discutere sul successo del proprio lavoro, prima di pubblicarlo.

Enrico Fermi (1901-1954), premio Nobel per la Fisica 1938.

L’incontro con Fermi

Nella primavera del ’53, Dyson si diresse a Chicago per andare a trovare Fermi nel suo ufficio, portando con sé una pila di fogli con alcuni grafici che riproducevano i dati sperimentali calcolati dal suo gruppo.

Fermi aveva la nomea di incutere una certa soggezione, di certo non solo per la sua fama di grande scienziato, ma anche per l’acutezza del suo giudizio. Quindi è facile immaginarsi che Dyson si sentisse un po’ teso per quell’incontro.
La sua tensione si trasformò presto in soggezione quando vide che Fermi diede solo un rapido sguardo ai fogli che gli aveva portato, per poi invitarlo a sedersi e chiedergli con un tono amichevole come stessero sua moglie e suo figlio neonato.

Dopo qualche chiacchiera, improvvisamente Fermi rilasciò il suo giudizio nella maniera più calma e schietta possibile

Ci sono due modi di fare i calcoli in Fisica Teorica. Il primo modo, che io preferisco, è di avere un chiaro schema mentale del processo fisico che vuoi calcolare. L’altro modo è di avere un preciso ed auto-consistente formalismo matematico. Voi non avete nessuno dei due.

Dyson rimase ammutolito, anche se la parte più orgogliosa di lui era comunque incredula. Quindi cercò di capire cosa non andasse, secondo Fermi, con la teoria del pione pseudoscalare.

Fermi aveva un intuito fisico eccezionale su cui fondò letteralmente una scuola di pensiero in grado di far fruttare ben 8 premi Nobel per la Fisica tra i suoi studenti.

La teoria del pione pseudoscalare, secondo il suo intuito, non poteva essere corretta perché a differenza dell’elettrodinamica l’interazione era molto più intensa e nei calcoli era necessario mascherare alcune divergenze senza avere un chiaro schema fisico di quello che stesse succedendo.

Inoltre, quando Dyson gli chiese, ancora orgogliosamente, come mai secondo lui i dati fossero comunque in accordo con le sue previsioni nonostante la teoria fosse inadeguata, Fermi gli fece notare che il numero di parametri utilizzato (quattro) era troppo alto, e che con un numero così elevato fosse possibile raggiungere un raccordo tra le previsioni teoriche e qualunque dato sperimentale.

In sostanza Fermi demolì, con estrema calma e schiettezza, gli ultimi due anni di lavoro dell’intero gruppo di Dyson, composto da dottorandi e post-doc la cui carriera in quel momento dipendeva dal successo di quella teoria.

La storia diede ragione a Fermi. La teoria del pione pseudoscalare non era quella corretta, al modello delle forze nucleari mancava un pezzo fondamentale del puzzle: i quark, teorizzati da Gell-Mann il decennio successivo, quando Fermi era già morto.

Dopo quell’incontro traumatico, Dyson e il suo gruppo pubblicarono comunque il lavoro, ma abbandonarono completamente quel campo di ricerca. Negli anni successivi, ripensando a quell’evento, Dyson espresse di essere grato eternamente a Fermi per quello “schiaffo” morale, perché la sua teoria non avrebbe portato nessun frutto e avrebbe fatto sprecare preziosi anni di ricerca a lui e al suo gruppo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

No, le equazioni di Maxwell non furono capite subito

Se consideriamo i più importanti avanzamenti scientifici del XIX secolo, la teoria elettromagnetica di James Clerk Maxwell è seconda solo al lavoro di Darwin “l’origine delle specie”.

Tuttavia questa importanza non fu riconosciuta subito, e non parlo di qualche anno. Rimasi sorpreso quando scoprii che ci vollero circa 30 anni affinché le equazioni di Maxwell fossero capite a pieno, e che addirittura per i primi 20 anni furono praticamente ignorate.
Dopo un po’ di ricerche, ho individuato due motivi principali per spiegare ciò:

James Clerk Maxwell (1831-1879)
  • Il carico concettuale della teoria di Maxwell.
  • La modestia di Maxwell.

Il tangibile e l’intangibile

La teoria di Maxwell, pubblicata per la prima volta nel 1865, risulta ancora oggi un po’ indigesta per la maggior parte dei neofiti, figuriamoci per i fisici del 1800!
Immaginiamo il contesto culturale di questi fisici: l’universo newtoniano era composto da oggetti tangibili, in grado di interagire “a distanza” l’uno con l’altro in maniera misteriosa. Nonostante l’azione a distanza, le quantità misurabili erano tangibili, e questo era quello che contava!
Prima Faraday e poi Maxwell introdussero il giochino astratto dei “campi” intangibili che si estendono nello spazio e producono perturbazioni locali nel moto dei corpi. Per i fisici dell’epoca si trattava giusto di un giochino, un utensile fantasioso per schematizzare un meccanismo che funzionava bene anche senza.

Un disegno originale di Maxwell sulle linee di forza e le superfici equipotenziali.

Infatti i fisici classici ragionavano in termini meccanicistici perché erano figli del loro tempo, a cavallo tra la prima e la seconda rivoluzione industriale. Per loro i “campi” erano la manifestazione di strutture meccaniche composte da una moltitudine di piccoli vortici in grado di trasmettere gli stress meccanici tra cariche e correnti.

Maxwell era un visionario, ma pur sempre un fisico del 1800, per cui i campi da esso descritti avevano come fine ultimo quello di inserirsi nel contesto della teoria dei vortici. Il risultato era di una difficoltà paurosa e fu un po’ come darsi la zappa sui piedi.

Questo fu uno dei principali freni alla comprensione della teoria: per i suoi contemporanei era dannatamente complicata, difficile da visualizzare e senza nessun vantaggio rispetto al framework newtoniano.

Nel framework newtoniano il campo elettrico e il campo magnetico venivano descritti come due entità ben distinte, e la loro azione sui corpi veniva descritta con le leggi empiriche di Faraday, Lenz e Gauss, usando il concetto misterioso di forza a distanza.

Maxwell invece fece uno dei più grandi passi avanti nella Storia del Pensiero: l’interazione si propagava alla velocità della luce attraverso un certo mezzo (l’etere) sotto forma di onda elettromagnetica, e cioè di una nuova entità fisica che vede campo elettrico e campo magnetico come due facce della stessa medaglia.

Nessuno era pronto per capire la portata di questa grande unificazione. Nessuno l’aveva richiesta, e nessuno era volenteroso di imparare la matematica necessaria.

Infatti un altro problema fu che Maxwell non scrisse le sue equazioni nella forma elegante che conosciamo oggi (grazie al lavoro di Heaviside)

Sinistra: le equazioni di Maxwell originali. Destra: le equazioni di Maxwell in notazione di Heaviside.

bensì scrisse delle equazioni vettoriali componente per componente, per un totale di 20 equazioni, e con una notazione un po’ buffa. Pensa che disastro dover fare una peer review di un lavoro simile!

Quando la modestia è controproducente

È riportato che durante una conferenza Maxwell riservò alla sua teoria elettromagnetica giusto una breve menzione:

“[…] Un’altra teoria dell’elettricità che io preferisco rinnega l’azione a distanza e attribuisce l’azione elettrica alle tensioni e pressioni di un mezzo che pervade l’universo. Queste tensioni sono dello stesso tipo di quelle familiari agli ingegneri, e il mezzo è lo stesso in cui si pensa che avvenga la propagazione della luce.”

James Clerk Maxwell

Tutto qui? Tutto qui. Quando Newton scoprì le leggi della gravitazione le annunciò al mondo con un sonoro “Ora dimostrerò la struttura del sistema del Mondo”, mentre Maxwell si limita a citare il proprio lavoro con la frase “un’altra teoria che io preferisco…”


La sua modestia spinse i fisici dell’epoca a non prendere sul serio la teoria, ritardandone la comprensione per almeno 20 anni, fino ai lavori di Hertz, Lorentz e Einstein, i quali crebbero già in un contesto più amichevole al concetto di campo, per cui ai loro occhi sembrava quasi ovvio che il mondo dovesse parlare il linguaggio della teoria di Maxwell.

La transizione concettuale

La teoria di Maxwell diventa semplice e intellegibile solo quando si esegue una transizione concettuale: gli oggetti primari non sono più i modelli meccanici: le forze sono solo un ingrediente secondario, il campo elettromagnetico è l’ingrediente primario!

Ciò che è misurabile non è direttamente il campo elettromagnetico, ma una sua particolare espressione matematica: ad esempio il modulo quadro del campo rappresenta la sua energia, che è una quantità misurabile. Le quantità misurabili, a differenza della teoria di Newton, diventano una manifestazione secondaria di ciò che si nasconde dietro, il quale è molto più profondo.

Questo innovativo modo di pensare è stato replicato per tutto il XX secolo: oggi abbiamo ridotto all’osso le equazioni di Maxwell, capendole dal punto di vista della relatività di Einstein. Dalle 20 equazioni originali, passando per le 4 equazioni di Heaviside, arriviamo alla forma elegantissima di oggi, la quale le condensa tutte in due righe:

Le equazioni di Maxwell nell’elettrodinamica relativistica.

Questo è stato fatto grazie a un altro salto concettuale: il potenziale vettore del campo elettromagnetico, un tempo considerato solo come uno strumento astratto, si è rivelato come l’unico modo per trasportare l’elettromagnetismo nel reame della teoria classica dei campi. Questa necessità ha spalancato le porte alla formulazione dell’elettrodinamica quantistica e di tutta l’infrastruttura delle teorie di gauge moderne.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg