Il Teorema “CPT”, o il motivo per cui un anti-universo sarebbe indistinguibile dal nostro

Ci sono pochi argomenti che fanno da musa ispiratrice sia per i fisici teorici che per i fisici sperimentali. Le simmetrie discrete rappresentano una guida importantissima con cui interpretiamo i risultati sperimentali e con cui strutturiamo la forma matematica delle teorie, perché hanno la capacità di predire “cosa è concesso e cosa è vietato”.

  • Vuoi osservare il decadimento di una particella e non sai quali proprietà aspettarti dai suoi prodotti di decadimento? Argomenti di simmetria scarteranno alcune tra le varie possibilità, permettendoti di focalizzare le tue misure su altre proprietà.
  • Vuoi scrivere una teoria che descrive l’interazione nucleare? Sappi che gli esperimenti non hanno mai osservato la violazione di una certa simmetria “A”, quindi assicurati che le tue equazioni abbiano la stessa simmetria!

Quando diciamo “il sistema ha una simmetria” dobbiamo prima specificare rispetto a quale trasformazione. Infatti una simmetria è sempre preceduta da una trasformazione, altrimenti dire “simmetria” perde ogni significato. (Per un’introduzione al concetto di simmetria rimando a un precedente articolo).

Non tutte le trasformazioni sono una simmetria di un certo sistema. Ciò non è un problema: in ogni caso abbiamo scoperto che è molto comodo catalogare gli oggetti in base al loro comportamento sotto determinate trasformazioni.
Ad esempio la freccia in figura possiamo chiamarla “generica freccia bianca con punta a destra”

Potremmo decidere arbitrariamente di studiare il comportamento di questa freccia sotto alcune trasformazioni interessanti: ad esempio la trasformazione “inversione speculare” trasforma la freccia in quest’altra:

L’oggetto ottenuto non è lo stesso di prima, ora la freccia ha la punta verso sinistra: diremo che “la riflessione speculare non è una sua simmetria della freccia”. Pazienza! Non tutto può essere simmetrico.
Abbiamo comunque imparato qualcosa di nuovo: possiamo dare un nuovo nome a questo sistema: tipo “freccia bianca che sotto riflessione va nel suo opposto“. Questo modo di chiamare un oggetto in base a come si comporta sotto una trasformazione è ciò che facciamo per catalogare le particelle e le interazioni fondamentali del Modello Standard.

Il Modello Standard è caratterizzato da tre simmetrie fondamentali: la simmetria di Lorentz (le leggi della Fisica hanno la stessa forma in tutti i sistemi di riferimento inerziali, o in altri termini, sono simmetriche sotto una trasformazione di Lorentz), la simmetria di gauge (gli oggetti matematici della Fisica presentano più variabili di quelle fisicamente necessarie), e la simmetria CPT. Le prime due sono abbastanza astratte rispetto all’ultima, su cui ci concentriamo oggi.

La simmetria “CPT” evidenzia un fatto importantissimo della nostra realtà: le leggi della Fisica rimangono inalterate se applichiamo tutte e tre le seguenti trasformazioni:

  • Inversione spaziale “P”
  • Inversione di carica “C”
  • Inversione temporale “T”

Le trasformazioni P, C, T sono chiamate in gergo “simmetrie discrete”. Svisceriamole una ad una.

La simmetria P: inversione spaziale

L’inversione spaziale, altrimenti nota come “trasformazione di parità” consiste nell’invertire tutte e tre le direzioni spaziali: le coordinate cartesiane (x,y,z) vengono mandate in (-x,-y,-z).
Per visualizzare meglio questa trasformazione, considera una freccia in tre dimensioni, ad esempio dotata di un certo spessore, una punta e due facce rettangolari. Chiamiamo “A” e “B” le due facce di questa freccia.

Le due facce “A” e “B” della stessa freccia.

Visualizziamo la freccia in una certa posizione iniziale, ad esempio disponiamola con la faccia “A” rivolta verso di noi (quindi la faccia “B” è rivolta verso la pagina di questo articolo), e la punta è rivolta verso destra.
Per ottenere una trasformazione di parità eseguiamo due step: anzitutto ruotiamo di 180 gradi la freccia attorno alla direzione della sua punta ed infine invertiamo la punta. Infatti così facendo abbiamo mandato la faccia “A” nel suo opposto (cioè la faccia B), poi abbiamo invertito il basso con l’alto, ed infine abbiamo invertito la destra con la sinistra. Gli step sono illustrati in figura

Una trasformazione di parità della freccia. Dall’alto verso il basso: la freccia nella sua posizione iniziale, la freccia dopo una rotazione di 180 gradi attorno alla direzione della sua punta, e poi l’inversione della punta nell’ultimo step.

Nota bene, una trasformazione di parità è ben diversa da una trasformazione “speculare”. Non è come vedere la freccia davanti a uno specchio!

Una trasformazione speculare della freccia.

Spesso invece capita di sentire che l’inversione spaziale corrisponde a “vedere l’universo attraverso uno specchio”, come mai questa inesattezza?
Immagina per un attimo se la freccia avesse due facce uguali e non ci fosse modo di distinguere il basso dall’alto, in quel caso la riflessione speculare e la trasformazione di parità coincidono!

Questo perché la freccia iniziale era simmetrica sotto una rotazione di 180 gradi rispetto alla direzione della punta (quindi il primo step della trasformazione di parità la lascia invariata). Moltissimi sistemi fisici di interesse godono di una simmetria sotto rotazioni attorno a una certa direzione, per cui non è così scorretto dire che l’inversione spaziale “coincide” con l’osservare l’universo allo specchio.

"Però mi sfugge cosa c'entri con la Fisica tutto questo discorso sull'inversione dello spazio. Cosa gliene frega alle particelle se prendo gli assi cartesiani in un verso o nell'altro?" 

Magari non è immediato vederlo, ma la connessione è piuttosto profonda e ha a che fare con le interazioni fondamentali.

In particolare ha a che fare con il modo con cui scriviamo le teorie della Fisica.
Se le evidenze sperimentali suggeriscono ad esempio che un processo ha la stessa probabilità di avvenire in una direzione rispetto alla direzione opposta, allora sarà meglio che la teoria sia simmetrica sotto una trasformazione di parità dal punto di vista matematico! Lo schema di queste ragionamento è il seguente:

Per fare un esempio consideriamo la teoria di Dirac per un fermione di massa m. Nella teoria il termine di massa è scritto accoppiando i campi ψ del fermione nel seguente modo:

La trasformazione di parità dei campi fermionici si ottiene moltiplicandoli per una matrice detta “di Dirac”: γ0

Trasformazione di parità per i campi fermionici. La matrice di Dirac è caratterizzata dall’equazione (γ0)2 =1, cioè il suo quadrato è uguale all’identità.

A questo punto mostriamo che il termine di massa della teoria di Dirac è invariante sotto parità:

La trasformazione di parità dei campi fermionici lascia invariato il termine di massa grazie al fatto che 0)2 =1. La teoria di Dirac è costruita in modo da essere invariante sotto parità (ciò era suggerito dagli esperimenti).

In teoria nulla garantisce che le leggi della Natura siano invarianti sotto inversione spaziale, è una nostra assunzione ragionevole, confermata dalla maggior parte dei risultati sperimentali e per la maggior parte delle interazioni fondamentali.
Negli anni 50′, con grossa sorpresa, si scoprì che la nostra assunzione non corrispondeva alla realtà.

L’interazione debole e la violazione della parità

È arcinota l’importanza dei vettori nella Fisica. Siccome i vettori sono quantità riferite agli assi cartesiani, invertire gli assi con una trasformazione di parità invertirà anche i vettori.
Un vettore r verrà mandato nel suo opposto –r in seguito a una trasformazione di parità. Se però consideriamo il prodotto di due vettori, ad esempio come il momento angolare L=rxp , sotto una trasformazione di parità si ha

I segni meno si cancellano e il momento angolare rimane uguale a se stesso, non si inverte.

Un giroscopio davanti a uno specchio. L’asse di rotazione del giroscopio è perpendicolare alla superficie dello specchio: il verso di rotazione rimane inalterato nella riflessione.

Ciò si capisce intuitivamente se pensiamo a un sistema invariante sotto rotazioni e caratterizzato da un asse di rotazione, come un giroscopio. Per questo oggetto la trasformazione di parità equivale alla riflessione speculare (come precisato sopra). Se mettiamo un giroscopio rotante davanti allo specchio, il suo verso di rotazione non viene invertito: se gira in senso orario nel “nostro mondo”, continuerà a girare in verso orario anche nello specchio.

Fatta questa premessa, consideriamo uno degli esperimenti cruciali nella Fisica delle particelle: l’esperimento di Wu (1956).
Nell’esperimento di Wu si considerò un particolare decadimento nucleare del Cobalto-60, che provocava l’emissione di elettroni e antineutrini.
Tramite l’accensione di un campo magnetico, il team di Wu orientò gli spin dei nuclei di Cobalto in una direzione privilegiata, proprio come si farebbe con degli aghi magnetici. Per la conservazione del momento angolare, gli spin dell’elettrone e dell’antineutrino emessi dovevano avere lo stesso orientamento spaziale degli spin dei nuclei di Cobalto.
L’obbiettivo dell’esperimento era di seguire le traiettorie degli elettroni e vedere quale direzione prendessero rispetto allo spin del nucleo decaduto. Dopo un po’ di raccolta dati, si scoprì che gli elettroni avevano una direzione preferita di emissione: opposta allo spin nucleare. L’informazione raccolta sulla Fisica del problema era l’osservazione sperimentale: “la direzione preferita di emissione da parte degli elettroni è quella opposta allo spin del nucleo.”

Di primo acchito questa osservazione non sembra presentare nulla di problematico. Consideriamo però una trasformazione di parità: lo spin nucleare (essendo analogo a un momento angolare) viene mandato in se stesso come abbiamo visto, ma la direzione di moto degli elettroni viene invertita. Quindi in un mondo speculare (con asse di riflessione coincidente con quello dello spin) la conclusione dell’esperimento è che la direzione di emissione preferita da parte degli elettroni è quella concorde allo spin del nucleo.

Sotto una trasformazione di parità le conclusioni sperimentali sono diverse, in netta contrapposizione l’una con l’altra! Per la prima volta nella storia della Fisica una conclusione sperimentale è modificata da una trasformazione di parità, cioè la parità NON è una simmetria del sistema!

Perché la parità potesse essere una simmetria del sistema, ci saremmo aspettati tanti elettroni emessi nella direzione dello spin nucleare, quanti emessi nella direzione opposta. Ciò non è quello che si osserva, per cui siamo portati alla conclusione che la parità non è una simmetria fondamentale della natura, nonostante sia una simmetria delle forze nucleari e delle forze elettromagnetiche.

Interpretazione dell’esperimento di Wu

L’interpretazione dell’esperimento fu la seguente: esiste un’interazione fondamentale capace di far decadere un nucleo emettendo elettroni e antineutrini (oggi nota come interazione debole) che non è simmetrica rispetto a una trasformazione di parità. La parità NON è più una simmetria fondamentale della Natura.
L’universo visto allo specchio ha un comportamento diverso se si considerano i decadimenti deboli di alcuni nuclei. Questa distinzione fu abbastanza sconcertante e i fisici dell’epoca rimasero piuttosto sorpresi.

La simmetria C: inversione di carica

La trasformazione matematica di un elettrone in un positrone.

Una trasformazione di inversione di carica viene effettuata sulle funzioni d’onda che descrivono le particelle.
Le funzioni d’onda possono essere caratterizzate da numeri quantici come: carica elettrica, numero leptonico, numero barionico e numero leptonico di sapore.
L’inversione di carica, come suggerito dal nome, inverte tutti questi numeri quantici: non solo la carica elettrica, ma anche numero leptonico, numero barionico e sapore!


Ad esempio l’inversione di carica su un elettrone lo trasforma in un positrone (cioè una particella con stessa massa, ma carica elettrica opposta e numero leptonico opposto). Quindi effettivamente l’inversione di carica trasforma una particella nella sua anti-particella (per un resoconto su come siamo arrivati a teorizzare le antiparticelle rimando a un precedente articolo).

D’altra parte, una particella senza carica elettrica e senza altri numeri quantici (come il fotone) viene mandato in se stesso da questa trasformazione: il fotone è l’antiparticella di se stesso.

Per la maggior parte dei processi fisici, l’inversione di carica C è una simmetria: potremmo sostituire tutte le particelle del processo con le rispettive antiparticelle e il processo rimarrebbe lo stesso (stesse previsioni teoriche e stessi risultati sperimentali).
Ancora una volta fa eccezione l’interazione debole: per questa interazione entrambe le trasformazioni P e CP (combinazione di C e P) non sono una simmetria. Si pensa che questo fatto sia la risposta al quesito: perché il nostro universo è composto per la maggior parte da materia rispetto ad antimateria? In qualche momento dopo il big bang ci fu una maggior produzione di materia forse proprio grazie al fatto che l’interazione debole presenta questa asimmetria nel trattare particelle e antiparticelle.

La simmetria T: inversione temporale

L’ultima trasformazione discreta è l’inversione temporale: si inverte il tempo nelle equazioni della Fisica. L’inversione del tempo agisce su tutte quelle quantità in cui il tempo compare, ad esempio la quantità di moto (contenendo la velocità definita come il rapporto tra spazio e tempo) acquista un segno negativo sotto inversione temporale: p va in –p. Il momento angolare acquista un segno negativo anche lui, dato che L=rxp e r va in se stesso, ma p va in –p, quindi rx(-p)=-L.

Di nuovo, la maggior parte delle teorie fisiche rimane inalterata sotto inversione temporale, ad eccezione della solita guastafeste: l’interazione debole!

Ciò non sconforta ormai più di tanto, dato che le eventuali simmetrie sotto C,P e T separatamente non hanno motivo di esistere se non per la nostra soddisfazione personale.
Esiste un’unica simmetria che però deve essere rispettata affinché non crolli tutto il palazzo della Fisica Teorica, ed infatti esiste un Teorema che lo dimostra precisamente. Questa simmetria è la combinazione simultanea di C, P e T: la simmetria CPT.

Il Teorema CPT

Il Teorema CPT discende dall’unione tra meccanica quantistica e relatività ristretta, nel contesto della teoria quantistica dei campi. La sua dimostrazione dipende fortemente da tutto ciò che sappiamo essere verificato sperimentalmente sulla meccanica quantistica e sulla relatività ristretta. TUTTE le leggi della Natura sono invarianti se applichiamo successivamente: un’inversione di tutte le coordinate spaziali, un’inversione della carica di tutte le particelle (cioè la trasformazione di tutte le particelle in antiparticelle) e l’inversione temporale dei processi fisici.

Stiamo dicendo che non è possibile distinguere un esperimento di Fisica condotto in un anti-universo composto da anti-particelle, studiate con coordinate spaziali invertite e con i processi che avvengono al contrario nel tempo.

Per capire il significato del teorema, dobbiamo ricollegarci all’interpretazione di Feynman-Stückelberg sulle antiparticelle, come discusso in un articolo precedente. Un’antiparticella può essere interpretata come una particella che si muove “indietro nel tempo”.

Siccome la trasformazione combinata “CP” trasforma tutte le particelle in anti-particelle e inverte le coordinate spaziali (in modo da farle muovere “all’indietro” rispetto alle coordinate originali), se applichiamo un’ulteriore trasformazione “T” di inversione temporale stiamo facendo muovere queste antiparticelle all’indietro nel tempo e in una direzione spaziale opposta alle coordinate originali. Tradotto: siamo ritornati punto e a capo, e cioè all’universo originale. Quindi, se operiamo un’ulteriore trasformazione di inversione temporale “T”, l’anti-universo ottenuto con la trasformazione “CP” può essere reso indistinguibile dall’universo iniziale.

Una delle prime dimostrazioni del teorema CPT è dovuta a Wolfgang Pauli, il quale fu tra i primi a formalizzare il concetto di simmetria discreta nella teoria quantistica dei campi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

La violazione di CP e T, ma non di CPT

Sottolineiamo: la simmetria sempre conservata è la combinazione simultanea CPT, ma ciascuna delle trasformazioni separate C, P o T può comunque non essere una simmetria delle teorie fisiche.

Abbiamo visto che l’interazione debole viola la simmetria P. Sappi che viola anche la simmetria CP, cioè la combinazione simultanea di C e P ( è stato verificato sperimentalmente). Questo fatto mise in grave allarme i fisici dell’epoca, perché la simmetria CPT era quindi in pericolo, e assieme a lei tutta la struttura matematica della teoria quantistica dei campi.

Grazie all’interpretazione di Feynman-Stückelberg sappiamo che, se CP è violata, allora l’unico modo per avere simmetria CPT è che anche T sia violata. Un po’ come dire: se voglio ottenere +1 dal prodotto di due numeri, dovranno essere entrambi negativi in modo che si cancelli il segno “-“, in questo modo (-1)(-1)=+1. Fisicamente corrisponde a dire:

Analogia tra la violazione delle simmetrie e la moltiplicazione tra numeri negativi.

I risultati sperimentali odierni sembrano confermare che la simmetria T sia violata, quindi la CPT dovrebbe essere salva, assieme a tutto il castello della Fisica Teorica.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

[Immagine di copertina: Kelly Sikkema]

Come l’antimateria nasce dalla relatività

Antiparticella = particella di uguale massa, ma con carica elettrica opposta

Il concetto di antimateria si è imposto praticamente da solo e prepotentemente, senza che nessuno lo abbia cercato di proposito, nel momento in cui sono state unificate meccanica quantistica e relatività ristretta alla fine degli anni ’20. Le prove sperimentali arrivarono fin dai primi anni ’30.
Oggi siamo in grado di produrre antimateria anche a fini medici (si pensi alla PET dove si sfruttano gli anti-elettroni, noti come positroni).

Ha un fascino particolare provare a seguire il percorso concettuale che, dalla relatività di Einstein, ha condotto alla teorizzazione dell’antimateria (dovuta a Dirac).

Facciamo finta di star scoprendo noi stessi il concetto di antiparticella in questo momento, e ripercorriamo tutte le tappe logiche fondamentali in cui potremo apprezzare il ruolo fondamentale giocato dalla teoria di Einstein.

L’energia di una particella

Nella meccanica quantistica ordinaria l’energia di una particella libera avente una quantità di moto p e una massa m si trova inserendo dentro l’equazione di Schrödinger la soluzione di onda piana (che è il modo quantistico di dire “particella esente da forze”). Il risultato è

La relatività di Einstein impone invece che tale espressione matematica per l’energia sia solo la versione approssimata della seguente

c è la velocità della luce

nell’approssimazione di quantità di moto molto piccole rispetto all’energia di massa. Fin qui nessun problema, la Fisica funziona così: quella che oggi sembra la forma definitiva di un’equazione, sarà l’approssimazione della versione più completa scoperta in futuro.

Il vero problema nasce quando si tenta di rendere l’equazione di Schrödinger relativistica

Lo schema è lo stesso: l’equazione non relativistica è solo l’approssimazione di quella relativistica, la quale, ad oggi, è la “vera equazione del moto” in quanto rispetta il principio di relatività di Einstein.

Il principio di relatività cambia la struttura matematica dell’equazione di Schrödinger, e se si prova a calcolare l’energia di una particella libera inserendovi al suo interno una soluzione di onda piana, si ottiene stavolta l’energia in questa forma curiosa e problematica

“Scusa, ma dove sta il problema? Abbiamo appena detto che la vera energia di una particella è data da quell'espressione brutta con m e c al quadrato e così via, non siamo contenti che l'equazione relativistica di Schrödinger restituisca la stessa energia per la particella libera?"

Il punto è che la struttura matematica dell’equazione di Schrödinger relativistica ci pone ora dinanzi a due vie, perché non ci dà l’energia, ma l’energia al quadrato!

Prima o poi nella vita siamo stati tutti mazziati dalla seguente proprietà matematica:

Ora il gioco è lo stesso, per la prima volta in Fisica l’equazione del moto di una particella esente da forze ci impone che l’energia possa essere data sia da un numero negativo che da un numero positivo

“E che ci vuole? Buttiamo via la soluzione negativa come si fa a scuola. Non esistono particelle libere con energia negativa!"

Facciamo però l’avvocato del diavolo e scegliamo di ascoltare la matematica imposta dalla relatività ristretta (ha sempre portato bene nella storia della Fisica!). Facciamo finta che possa esistere una particella ad energia negativa.

Come si comporta una particella di energia negativa?

L’energia in meccanica quantistica è importante perché ci dice come si evolve, nel tempo, la dinamica di una particella. Tale evoluzione è descritta, in soldoni, da

è insomma un esponenziale di un certo numero (di Eulero) avente come esponente il prodotto tra il numero complesso “i”, l’energia “E” e il tempo “t”. Non soffermarti sul perché, non è questo il punto.

Concentrati solo sul fatto che l’evoluzione dipende dal prodotto tra energia e tempo.

Se l’energia di una particella è negativa, il prodotto viene mandato in:

Ed ora è il momento di dire la cruda verità: ai fisici non piace per niente il fatto che le particelle possano avere energie negative, perché ci sarebbero non pochi problemi riguardo alla stabilità stessa della materia (mancherebbe un limite inferiore all’energia, un fatto molto pericoloso perché la natura vuole sempre occupare stati a energia minore).

Ma allora è tutto da buttare?


Continuiamo a fare gli avvocati del diavolo. Forse c’è un modo interessante di interpretare quel segno meno nel prodotto.

Continuiamo a seguire ciò che ci ha insegnato la relatività ristretta sulla struttura spaziotemporale della nostra realtà.

Questione di interpretazione: lo spaziotempo di Einstein

Supponiamo di osservare due eventi (contrassegnati da “1″ e “2″) che accadono in due punti dello spazio e a due istanti di tempo diversi. Li annotiamo sul nostro taccuino come

Ipotizziamo che, secondo noi, l’evento 1 sia avvenuto prima dell’evento 2. Matematicamente chiediamo quindi che sia

Se un altro osservatore in moto con una velocità costante “v” rispetto a noi osserva gli stessi eventi, annoterà anche lui i due eventi sul suo taccuino usando le sue personalissime coordinate

Einstein ci ha insegnato a collegare le due descrizioni dello stesso evento con la seguente trasformazione:

dove “γ” è una quantità positiva che dipende dalla velocità, di cui non devi preoccuparti.

Preoccupiamoci invece di sottrarre le due equazioni di sopra per ottenere la differenza tra gli istanti di tempo dei due eventi rilevati dall’osservatore in moto, rispetto alle nostre coordinate (così per curiosità, perché non farlo?)

La matematica della relatività ci tenta di porre la seguente domanda “e se la differenza tra i due istanti di tempo per il secondo osservatore fosse negativa?”. Ciò si tradurrebbe in:

La seconda condizione è possibile se la velocità del secondo osservatore è tale che

A patto però, come dicono le regole di Einstein, che v non superi la velocità della luce. Cioè deve essere

L’ultima condizione ci dice che la distanza spaziale tra i due eventi deve essere maggiore della distanza percorsa da un raggio di luce (di velocità c) nel tempo che intercorre tra i due eventi stessi. Se gli eventi soddisfano questa particolare caratteristica, allora è possibile trovare un osservatore con una velocità v tale da rendere

ovvero l’ordine degli eventi è invertito per il secondo osservatore: secondo lui è successo prima l’evento “2″ dell’evento “1”.

In relatività ristretta è permesso che l’ordine temporale degli eventi possa essere invertito dal punto di vista di un osservatore in moto

“Aspetta un attimo, ma questo mi consentirebbe di vedere la gallina prima dell'uovo, no? Non c'è un problema di causa-effetto?"

Ottima osservazione, ma non c’è nessun problema! Infatti l’inversione temporale avviene solo per eventi che non possono essere connessi da alcuna relazione causale: non ci può essere trasmissione di informazioni tra eventi che distano nello spazio più della distanza percorribile dalla luce nel tempo che li separa! Lo abbiamo incluso tacitamente nella condizione:

“Ok...e quindi? Cosa c'entrano nella fisica gli eventi senza connessione causale? La fisica è fatta di causalità! Mi pare che tu stia a chiacchierare di metafisica!“

Ora interviene la meccanica quantistica!

Per il principio di indeterminazione di Heisenberg, è possibile che una particella si propaghi da un punto all’altro dello spazio anche se questi due punti non sono connessi causalmente.

Se una particella viene emessa in un punto A ed assorbita in un punto B (e tali punti non sono causalmente connessi per ipotesi) allora un osservatore che si muove con una certa velocità (calcolata sopra), vedrebbe l’assorbimento della particella nel punto B in un tempo che precede l’istante in cui viene emessa nel punto A.

Come si esce da questo paradosso?

L’interpretazione di Feynman-Stückelberg

Il fisico americano Richard Feynman

Torniamo al prodotto tra energia e tempo per quanto riguarda l’evoluzione temporale di una particella. Avevamo detto che se l’energia è negativa abbiamo

Immagina che io ti abbia bendato gli occhi e avessi messo il segno meno davanti al prodotto senza dirti a quale fattore è stato applicato. Potrei benissimo aver cambiato segno a “t” invece che all’energia, senza dirti nulla. Il risultato è a tutti gli effetti equivalente:

Matematicamente non cambia nulla, ma il risultato è rivoluzionario:

Una particella di energia negativa può essere pensata anche come una particella di energia positiva che si muove indietro nel tempo!

Questa è l’interpretazione di Feynman-Stückelberg, i quali volevano cancellare dall’esistenza il concetto di energia negativa. Dal punto di vista delle interazioni tra le particelle, la relatività prevede l’inversione temporale, come abbiamo discusso sopra.

“Ma che senso ha questa propagazione indietro nel tempo? A me pare ancora che si stia parlando di metafisica qui..."

Hai ragione. Infatti bisogna sedersi un attimo e ragionare su cosa significhi, dal punto di vista fisico, l’inversione temporale.

L’interpretazione dell’inversione temporale

Generalmente classifichiamo le particelle in base al modo in cui si comportano nelle interazioni fondamentali. In particolare ci interessa studiarne la traiettoria in una regione in cui è presente un campo elettromagnetico.

L’accoppiamento tra una particella e un campo elettromagnetico ha un nome tutto suo: la carica elettrica “q”.

La forza elettromagnetica su una carica “q” modifica la sua traiettoria accelerandola.

Le particelle descrivono traiettorie in una certa direzione, in base al segno della carica “q”, che può essere positivo o negativo.

Tra tutti i simboli dell’equazione appena scritta, concentriamoci solo sul tempo “τ“. Ci sono solo due termini che contengono il tempo esplicitamente, ed entrambi si trovano al denominatore ed appaiono come

Se invertiamo il tempo, otteniamo che il termine a sinistra non cambia (essendo un quadrato). Quindi cambia solo il secondo e si ha

Quindi sotto inversione temporale compare un segno meno globale per tutta l’equazione.
Ora immagina di nuovo che io ti abbia bendato gli occhi e avessi fatto spuntare fuori questo segno meno senza dirti che ho invertito il tempo. Potresti benissimo interpretare il segno meno in questo modo

Dal punto di vista sperimentale, l’effetto è quello di aver invertito il segno della carica elettrica. Le equazioni del moto relativistiche ci dicono che invertire il tempo si traduce, sperimentalmente, come il moto di una particella di carica elettrica opposta.

Una particella di energia positiva che si muove indietro nel tempo può essere interpretata come una particella di energia positiva, ma con carica opposta, che si muove avanti nel tempo.

Ecco che sparisce tutta la stranezza dell’inversione temporale! Ed ecco cosa ci ha insegnato la relatività ristretta applicata alla meccanica quantistica!

Le particelle ad energia negativa possono essere interpretate come delle particelle ad energia positiva che si muovono avanti nel tempo, ma che hanno carica opposta.

Oggi abbiamo un nome particolare per questo tipo di particelle che differiscono dalle particelle originali solo per il segno della carica elettrica e degli altri numeri quantici: le antiparticelle.

Una particella di energia negativa può essere interpretata come un’antiparticella di energia positiva che si muove, come tutte le altre particelle, avanti nel tempo. L’antiparticella differisce dalla particella solo per il segno della carica elettrica e di altri numeri quantici.

In questo modo abbiamo risolto anche il paradosso enunciato sopra:

Mettiamo che io veda una particella emessa in un punto A ed assorbita in un punto B. Come ci dice la relatività un altro osservatore potrebbe invece vedere una particella assorbita in B in un istante che precede la sua emissione nel punto A (se A e B non sono connessi causalmente). Ma ora sappiamo che ciò equivale ad osservare una particella di carica opposta che viene emessa in B ed assorbita in A. La causalità è salva.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).