L’inversione del Tempo nella Gravità

Svuota la mente da tutte le complicazioni del mondo, elimina l’aria e altri attriti, e prova ad immaginare solo una palla sospesa sopra a un pavimento perfetto (cioè senza irregolarità nella sua superficie).

Lascia cadere la palla e registra quel che succede con una videocamera: la palla cade e rimbalza, ritornando su.

Ipotizza pure che la palla rimbalzi elasticamente in modo che la sua energia cinetica non sia dispersa in deformazione a causa dell’urto col pavimento.

La palla rimbalzerà fino a tornare all’altezza da cui è stata lanciata, per il principio di conservazione dell’energia totale. La sequenza in figura è da leggere come 1, 2 e 3.

Ok, wow. Che c’entra questo con l’inversione del tempo nella Gravità?

Abbiamo fatto un video di quanto accaduto, e la registrazione è suddivisibile in tre sequenze, indicate in figura dai numeri 1, 2 e 3. Che cosa vediamo ora se facciamo scorrere il filmato al contrario, cioè 3, 2, 1? Vediamo esattamente la stessa cosa: la palla inizia a scendere prima lentamente, poi sempre più velocemente fino a quando non rimbalza sul pavimento e arriva al fotogramma 1, in maniera del tutto identica alla sequenza 1, 2, 3!

Lo scenario 321 corrisponde all’inversione della freccia del tempo. L’inversione temporale consiste matematicamente nel cambiamento del segno davanti alla coordinata del tempo, indicata con “t”:

Impariamo quindi che la Gravità è simmetrica sotto inversione temporale! Significa che l’interazione gravitazionale rimane attrattiva indipendentemente dalla direzione del tempo.

Aspetta, ma se rimuovo il pavimento la palla cade verso il centro della Terra e rimane lì, non ritorna su!

Il filmato visto al contrario ha un aspetto ben diverso in quel caso: la palla arriva da giù e poi ritorna su (per starci), come se la Gravità fosse una forza repulsiva invece che attrattiva!

Ottima osservazione. Nel caso che hai citato, se guardassimo il filmato al contrario, sembrerebbe infatti che la Gravità stia “rigettando” la palla. In realtà bisogna studiare la situazione del filmato fotogramma per fotogramma come se fossimo degli investigatori.

  • Tempo normale: la palla parte dall’alto con velocità nulla, e viene man mano accelerata verso il basso per via dell’attrazione gravitazionale con la Terra. Come conseguenza la sua velocità (diretta verso il basso) ha un valore che aumenta sempre di più man mano che scende. C’è insomma qualche attrazione verso il basso che sta dicendo alla palla “vieni verso di me!”
  • Tempo invertito: la palla parte dal basso con grande velocità, ma stavolta direzionata verso l’alto. Man mano che la sua quota aumenta e si avvicina al punto da cui l’abbiamo lasciata cadere nel filmato originale, la sua velocità diminuisce sempre di più: c’è anche qui un’attrazione verso il basso che sta dicendo alla palla “fermati, torna da me, vieni verso di me!”

In entrambi i casi è la Gravità che dice alla palla di accelerare verso il basso, la direzione dell’accelerazione è sempre verso il centro della Terra. In questo senso intendiamo dire che la Gravità è simmetrica per inversione temporale.

Non so se debba sorprendermi o confondermi. E in ogni caso, mi pare una definizione costruita ad-hoc!

Almeno c’è un motivo fisico dietro?

Il motivo è molto semplice e sta dentro un dettaglio matematico. Chiamiamo dS lo spostamento in un piccolo segmento di traiettoria della palla, percorso in un tempo dt. Qui la lettera d ha un ruolo speciale che significa “piccola variazione di”:

  • dS significa “piccolo spostamento nello spazio S
  • dt significa “piccolo intervallo di tempo”

La velocità di un corpo è, a parole, quanto spazio abbiamo percorso in un certo tempo che abbiamo cronometrato. Normalmente si misura in metri al secondo, chilometri all’ora, etc. La preposizione articolata “al” sta a significare che spazio e tempo vanno divisi (matematicamente) tra loro. Infatti la velocità è definita come il rapporto tra dS e dt

Ok il fatto che la velocità cambi segno quando invertiamo il tempo dovrebbe vedersi da questa formula, giusto?

Esattamente, facciamo la trasformazione t \to (-t) nella formula e vedrai che il segno si propaga dal denominatore a tutta la frazione: segno invertito!

Questo ce lo aspettavamo: nel filmato la palla si muove effettivamente al contrario rispetto a prima, ma il suo valore assoluto non cambia (in particolare, il valore assoluto nel tempo rimane uguale punto per punto della traiettoria).

L’accelerazione invece (che nel nostro caso è dettata dall’interazione gravitazionale) è definita come la variazione della velocità nel tempo:

  • dv significa “piccola variazione nella velocità”

definita quindi come:

Abbiamo semplicemente sostituito al posto di v la sua espressione v=dS/dt data sopra.

Vuoi dirmi che da qui dovrebbe essere evidente che l’accelerazione conserva sempre lo stesso segno anche se invertiamo la coordinata del tempo?

Esattamente! Lo vedi applicando t \to (-t) nella formula:

meno per meno fa più, e il segno sparisce! All’accelerazione non frega nulla della freccia del tempo. Nel caso dell’accelerazione gravitazionale questo è proprio ciò che osserviamo.

Sì, molto bene. Però ho capito dove sta la furbizia: il mondo non funziona così!

Nel primo esempio la palla perde sempre anche solo una minuscola quantità di energia cinetica nel rimbalzo: si chiama dissipazione. Anche l’aria fa da attrito! Dunque, rivedendo il filmato al contrario, sarò capace di distinguere una direzione del tempo dall’altra.

La palla non tornerà mai esattamente alla stessa altezza da dove l’ho lasciata cadere.

Giustissima osservazione, di nuovo. Il punto è che quegli effetti non sono dovuti alla Gravità, ma alle interazioni della palla col mondo circostante. In un mondo senza attrito, la simmetria del tempo della Gravità è solo molto più evidente, tutto qua.

In fondo, ciò che ci permette di distinguere tra passato e futuro è proprio la dissipazione di energia in calore, collegato con l’aumento dell’entropia dell’universo.

D’accordo, ma perché secondo te tutto questo discorso è interessante?

Questa simmetria della Gravità sotto inversione temporale viene rotta esplicitamente nell’orizzonte di un buco nero, anche senza scomodare i concetti di entropia. Avrai forse sentito (clicca qui per un video pedagogico sull’argomento) che una volta superato il cosiddetto “orizzonte degli eventi” nulla può tornare indietro, neanche la luce può uscire.

Illustrazione bidimensionale dello spaziotempo attorno a un buco nero.

Se invertiamo la freccia del tempo sull’orizzonte, la Gravità si comporta in maniera diversa dato che non potremo mai vedere un oggetto tornare indietro superando l’orizzonte.

Possiamo vedere un oggetto che oltrepassa l’orizzonte venendo da fuori, ma non possiamo mai vederlo oltrepassarlo venendo dall’interno?

In realtà non lo vediamo nemmeno nel primo caso, dato che la luce ci mette sempre più tempo per raggiungerci man mano che l’oggetto si avvicina all’orizzonte. L’oggetto ci apparirà come “immobile” sull’orizzonte, ipotizzando che lo osserviamo a una certa distanza dal buco nero.

Ok stai tirando in ballo la Relatività Generale di Einstein senza dirlo pubblicamente. Se non masticassi l’argomento ti perderei qui, chiaro?

D’accordo allora concentriamoci sul messaggio da portare a casa: alcuni gruppi di ricerca stanno ipotizzando che la famosa “singolarità” di un buco nero preveda la possibilità di un “ribaltamento” della direzione del tempo.

L’interno dello spaziotempo di un buco nero potrebbe transitare quantisticamente in una configurazione in cui il tempo è invertito.

Tale transizione consiste nella trasformazione di un buco nero in un buco bianco.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Da un buco nero nulla può uscire, in un buco bianco nulla può entrare. Un buco bianco è il futuro di un buco nero, il suo interno vede il tempo scorrere al contrario, e ora il suo orizzonte prevede la fuoriuscita di materia invece che il suo assorbimento [tutto ciò è discusso divulgativamente da C.Rovelli in “Buchi Bianchi” (Adelphi, 2023)].

La chiave di tutto ciò è che all’esterno un buco nero e un buco bianco sono del tutto simili: lo spaziotempo attorno è identico, la Gravità rimane attrattiva nonostante la direzione del tempo in un buco bianco sia ribaltata. Il motivo è proprio quello che abbiamo discusso prima: l’accelerazione è insensibile alla freccia del tempo.

Questo, di fatto, legittima l’ipotesi dei buchi bianchi: all’esterno, la loro esistenza non contraddice le leggi della Relatività Generale, l’Universo funziona ugualmente anche includendo i buchi bianchi. Il ribaltamento del tempo è compatibile con quanto sappiamo dell’Universo.

Invece, all’interno degli orizzonti, l’inversione del tempo gioca un ruolo fondamentale dato che consiste nel diverso comportamento di queste due entità.
Due entità (buco nero e buco bianco) che all’esterno sono indistinguibili, ma che all’interno si comportano in maniera opposta (uno fa l’inverso dell’altro).

Ho come l’impressione che tutto ciò sia solo un’introduzione molto semplificata. Dove sta l’entropia in questo gioco? La distinzione tra passato e futuro?

E inoltre, non avevi illustrato che un buco nero è in grado di emettere energia e rimpicciolirsi tramite la radiazione di Hawking? Come fa a evolversi in un buco bianco tenendo conto di ciò?

Hai detto bene, questo è solo un assaggio con cui spero di avere acceso la tua curiosità. Come per ogni argomento di ricerca, le questioni tecniche sono tante e intricatissime. Cercherò di dissenzionarle una ad una in futuro, anche perché voglio vederci meglio pure io. Sono poi curioso di sapere come si evolverà il campo nei prossimi dieci anni, e di come questa ipotesi dei buchi bianchi andrà a stimolare discussioni sulla natura della freccia del Tempo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

La caduta libera in un buco nero di Schwarzschild in coordinate di Fermi

Cosa percepisce un astronauta in caduta libera oltre l’orizzonte degli eventi?
Vengono utilizzate le coordinate normali di Fermi per descrivere lo spaziotempo in una piccola regione che circonda la traiettoria di un corpo in caduta libera verso un buco nero di Schwarzschild.