Come la gravità ci impedisce di misurare distanze più piccole della lunghezza di Planck

Uno dei punti fondamentali per la conquista dell’unificazione tra gravità e meccanica quantistica riguarda la comprensione dello spaziotempo a una scala subatomica di lunghezza.

Lo spaziotempo è essenzialmente un concetto classico: possiamo immaginarcelo come una struttura invisibile che può essere descritta utilizzando i numeri reali (cioè quelli della quotidianità: 2.3, 0.01, \pi, e^{-\pi/2}, -3/4, 2.9999...).

Come immaginiamo la griglia dello spaziotempo curvata dalla massa.

I numeri reali costituiscono un insieme non numerabile, in parole povere non solo abbiamo a disposizione un’infinità di numeri da -\infty a +\infty, ma anche che tra due numeri come 0 e 1 è compresa un’altra infinità di numeri. Inoltre è anche un insieme continuo, cioè dato un certo numero x, è sempre possibile trovare un altro numero y sufficientemente “vicino” al primo in modo che la distanza x-y tra i due si avvicini a zero fino alla cifra decimale che si desidera.
Nei numeri interi, invece, la distanza tra due numeri può solo coincidere con lo zero nel caso in cui i due numeri siano uguali, altrimenti esiste una distanza minima che è quella che riguarda due numeri consecutivi come 4 e 5.

Ecco, classicamente si pensa che lo spaziotempo possa essere descritto con un insieme di numeri reali piuttosto che di numeri naturali. Non è definita una distanza minima se non quella uguale a zero.

Cosa succede quando tiriamo in ballo la meccanica quantistica?

Ispirato dal seguente brillante articolo di Calmet, Graesser e Hsu pubblicato nella Physical Review Letters, ho deciso di volgarizzare un ragionamento che ho trovato molto intrigante, dato che su questi temi si discute sempre pochino e male.

Immaginiamo di avere un certo detector per rivelare la distanza tra due punti x(t) e x(0) nella griglia dello spaziotempo, uno al tempo t=0 e l’altro al tempo t.
Supponiamo per semplicità che il detector, di grandezza L e massa M, misuri questi due punti spostandosi con una velocità v=p/M dove p è la sua quantità di moto. Avremo cioè

Il discorso che sto per fare ora si basa su un’approssimazione euristica al fine di scongiurare l’introduzione di operatori quantistici, dato che aggiungerebbero poco o niente alla sostanza del discorso principale.

Una volta misurate le posizioni x(t) e x(0) con una certa incertezza \Delta x(t) e \Delta x(0), possiamo anche stimare l’incertezza sulla quantità di moto \Delta p usando le formule sulla propagazione delle incertezze:

Considerando ad esempio il punto x(t), varrà il principio di indeterminazione di Heisenberg:

A questo punto sostituiamo dentro il principio di Heisenberg l’espressione di \Delta p=(M/t)[\Delta x(t)+\Delta x(0)] trovata con la propagazione delle incertezze. Trascurando termini quadratici del tipo (\Delta x(t))^2 essendo più piccoli di un ordine di grandezza, si arriva a una relazione interessante:

Le incertezze sulla posizione iniziale e finale sono legate da un principio di indeterminazione, il cui valore aumenta all’aumentare del tempo. Di sicuro questa è una relazione interessante.
Ancora più interessante è chiedersi quale sia l’incertezza sulla distanza tra x(t) e x(0), cioè s=x(t)-x(0). Anche ora, per via della propagazione degli errori, si ha che

    \[\Delta s=\Delta x(t)+\Delta x(0)\]

Se \Delta x(t) diminuisce allora \Delta x(0) aumenta al fine di mantenere vera la \Delta x(0)\Delta x(t)\ge \frac{\hbar t}{2M}, quindi \Delta s è limitato dal valore più grande tra \Delta x(0) e \Delta x(t).

Nel caso in cui \Delta x(t)\approx \Delta x(0) cioè misuriamo i punti x(t) e x(0) con incertezze circa uguali, il principio di indeterminazione fornisce:

Quindi da un punto di vista quantistico possiamo misurare una lunghezza spaziale con una precisione

Dove ricordiamo, t è il tempo che abbiamo lasciato correre tra una misura e l’altra, e M è la massa del nostro detector (che abbiamo fatto interagire con lo spazio attorno a sé lasciandolo muovere liberamente).
Controllando questi due parametri possiamo rendere \Delta s piccolo a piacere. Possiamo costruire un detector molto massivo e fare tante misure consecutive separate da intervalli di tempo t molto piccoli.
Rendendo piccolo il rapporto t/M possiamo rendere \Delta s piccolo a piacere.

Tutto ciò andrebbe bene in un mondo in cui non esiste la gravità. Questo è il messaggio da portare a casa! Se non ci fosse di mezzo la gravità, come puoi vedere, nulla impedirebbe di rendere \Delta s piccolo a piacere (anche se non può mai essere nullo, per via del principio di Heisenberg).

L’intervento della gravità

Ho mentito, non possiamo rendere t piccolo a piacere! Se L è la dimensione del nostro detector, dobbiamo considerare dei tempi t tali che t>L/c cioè maggiori del tempo impiegato dalla luce a percorrere il nostro detector (altrimenti solo una frazione del detector può essere considerato “detector”).

Inoltre non possiamo rendere M grande a piacere: se rendiamo M troppo grande rispetto alle dimensioni L del detector, questi potrebbe collassare in un buco nero, e ciò impedirebbe di leggere qualsiasi informazione sulle misure del nostro esperimento. Il parametro di lunghezza fondamentale di un buco nero è dato dall’orizzonte degli eventi

    \[r_s\sim \frac{GM}{c^2}\]

dove G è la costante di gravitazione di Newton e c la velocità della luce.

Affinché il detector non sia un buco nero da cui non escono informazioni, desideriamo che sia L>r_s. Mettendo tutto assieme avremo quindi

La quantità risultante è identificata come lunghezza di Planck \ell_p, definita come:

La lunghezza di Planck, costante fondamentale della Fisica.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non c’è nessun parametro che possiamo controllare nella formula della lunghezza di Planck: è composta da costanti fondamentali della Fisica come G, \hbar, c (costante di gravitazione di Newton, costante di Planck e velocità della luce). Quindi \Delta s\ge \ell_p è un limite inferiore che non possiamo sormontare in alcun modo ingegnoso: la gravità impedisce di misurare distanze più piccole della lunghezza di Planck.

Se vuoi sapere da dove spunta fuori la lunghezza di Planck da un punto di vista storico, ho scritto un articolo a riguardo.

Quanto è piccola una lunghezza di Planck nelle nostre unità di misura quotidiane? \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

Il punto fondamentale è che se non ci fosse la gravità, non esisterebbe una lunghezza minima misurabile e potremmo rendere piccola a piacere l’incertezza quantistica della misura!

Ad avere l’ultima parola sulle dimensioni spaziali subatomiche non è quindi la quantistica, ma la gravità!
Questo risultato è molto significativo per la Fisica! Perché?

Quando si effettuano esperimenti di Fisica delle interazioni fondamentali (come le collisioni tra particelle) si esplorano scale di energia sempre più alte (che equivale a dire: si esplorano regioni di spazio sempre più piccole). La presenza di una scala di lunghezza sotto la quale non si può andare implica anche l’esistenza di una scala di energia sopra la quale non si può andare (perché la gravità diventerebbe rilevante e si inizierebbe a parlare di collasso in buco nero, avendo accumulato tanta energia in una regione di dimensioni molto ridotte). Un altro pezzo del puzzle per la lunga scalata che ci porterà verso la gravità quantistica?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché secondo Rovelli la Relatività suggerisce di abbandonare il concetto di spaziotempo

Durante il secolo scorso, la Relatività Generale si è presentata con il più grande colpo di scena che la Fisica abbia mai visto:

L’interpretazione ortodossa della relatività generale: esiste uno spaziotempo che viene curvato dalle sorgenti di massa.
Le altre masse non possono fare altro che “seguire la curvatura” e quindi essere attratte.

Il campo gravitazionale non esiste, la gravità è il risultato della curvatura dello spaziotempo.

Chiunque si sia mai interessato di relatività generale si è quindi abituato a visualizzare questa affermazione con la splendida rappresentazione dello spaziotempo “curvato”.

Lo spaziotempo è per noi una “griglia immaginaria” che esiste fin dal Big Bang, una qualche costruzione geometrica su cui si collocano tutti gli eventi della nostra realtà.
Questi eventi possono essere descritti con le coordinate che vogliamo, e queste coordinate vanno a strutturare il palcoscenico matematico a cui diamo il nome “spaziotempo” dal punto di vista dei calcoli. Ma in ogni caso stiamo sempre assumendo che questa griglia invisibile e sottostante esista sempre, e in genere diamo anche a lei il nome di spaziotempo.


Di sicuro è una rappresentazione che ci consente di fare i conti in maniera molto comoda, ma ciò ha un determinato prezzo da pagare.

Questa rappresentazione assume in qualche modo che lo spaziotempo esista indipendentemente dalla materia e da ogni altra sorgente di energia, e questo è proprio ciò che sancisce il divorzio completo con la visione “quantistica” delle interazioni, come illustrato nel seguente schema:

Ciò pone non pochi problemi dal punto di vista della gravità quantistica, la quale si ritrova a dover mediare tra due visioni nettamente diverse! Nonostante ciò, entrambe le teorie funzionano in maniera impeccabile nei loro rispettivi campi di applicazione. In particolare anche la relatività generale ha ricevuto l’ennesima schiacciante conferma di validità secondo i dati recenti sull’osservazione del buco nero al centro della nostra galassia (EHT).

Eppure, nonostante sia data per scontata, questa interpretazione dello spaziotempo in relatività generale è tutt’altro che definitiva.

Di recente mi è capitato di studiare dei paragrafi del testo specialistico “Quantum Gravity” di Carlo Rovelli, incappando in un’osservazione che ritengo di altissimo valore concettuale e che aiuta a risolvere un importante paradosso delle equazioni di Einstein.

In realtà questa argomentazione non è dovuta solo a Rovelli, ma risale fino agli albori della relatività generale. È il cosidetto “hole argument” di Einstein, il quale giunse alle importanti conclusioni illustrate anche da Rovelli.

Un paradosso molto arguto

Immaginati una regione nello spaziotempo senza sorgenti di gravità, cioè senza massa o altre forme di energia come quella elettromagnetica. Magari questa regione di spaziotempo la prendiamo piccola a piacere per non complicarci le idee.

Con il simbolo delle tre ondine increspate, intendiamo uno spaziotempo curvo in quel punto.

Considera ora due punti A e B in questa regione vuota, e supponi di essere in grado di misurare la curvatura dello spaziotempo in entrambi i punti. Per intenderci, definiamo lo spaziotempo con il simbolo g_{\mu\nu}.

Per via di una particolarissima disposizione delle sorgenti esterne alla regione che stiamo considerando, supponi che lo spaziotempo sia curvo nel punto A e piatto nel punto B.

Ora usufruiremo del nome “Relatività Generale”, che non è stato assegnato a caso! Questo nome testimonia il postulato fondamentale su cui è basata tutta la teoria: la Fisica non può dipendere dalle coordinate di chi la osserva. Quando passiamo da un sistema di coordinate ad un altro stiamo eseguendo una trasformazione che chiamiamo \phi. Quando lasciamo agire \phi su una quantità “e“, otteniamo il suo trasformato \bar{e}=\phi\,e indicato con \bar{e}. Le quantità importanti della relatività generale non cambiano sotto la trasformazione \phi.

Se io calcolo una soluzione delle equazioni di Einstein che mi restituisce il valore della curvatura dello spaziotempo, il quale dipende da g_{\mu\nu}(x) in ogni suo punto x, allora un cambiamento di coordinate ottenuto con la trasformazione \phi genererà un’altra soluzione delle stesse equazioni, che ha la stessa validità della soluzione precedente.

Il punto è che \bar{g}_{\mu\nu} risolve le stesse equazioni di Einstein con le stesse sorgenti, non è cambiato nulla rispetto a prima. Cambia solo il linguaggio in cui abbiamo espresso g_{\mu\nu} (cioè le coordinate particolari che utilizziamo).

Supponiamo di trasformare le nostre coordinate in modo da mandare il punto A nel punto B e lasciare invariati tutti gli altri punti al di fuori del buco. Anche la soluzione delle equazioni di Einstein trasformerà come \bar{g}=\phi\,g. In sostanza, abbiamo fatto la seguente cosa:

Una trasformazione che lascia invariato tutto lo spazio tranne i punti all’interno della regione vuota. Dopo la trasformazione lo spaziotempo presenta una curvatura nel punto B , mentre la curvatura è nulla nel punto A.

Nelle nuove coordinate lo spaziotempo nel punto A è quindi piatto, mentre ora è curvo nel punto B.

Ripeto, \bar{g}_{\mu\nu} è una soluzione altrettanto valida, e la trasformazione che abbiamo fatto è consentita dalle leggi della Relatività Generale.

Ma allora lo spaziotempo nel punto A è piatto oppure curvo? Ci troviamo di fronte a un paradosso, come se le equazioni di Einstein fossero completamente inutili perché non sono in grado di descrivere lo spaziotempo univocamente.

Questo aspetto turbò gravemente Einstein in persona, tanto da fargli dubitare più volte che il principio di relatività generale avesse senso fisico.

In realtà, come fa notare Rovelli, la soluzione del paradosso sta nel ripensare la nozione di “punto dello spaziotempo”, o in generale: smetterla di attribuire tanta importanza a una griglia immaginaria come lo spaziotempo.

In realtà stavamo risolvendo un problema sbagliato.

La domanda fondamentale “com’è lo spaziotempo nel punto A? Ha in realtà meno significato di quello che pensavamo. Il problema era mal posto, o meglio, non aveva senso considerarlo un problema.

In Relatività Generale assumiamo l’esistenza di questa griglia invisibile chiamata “spaziotempo”, dandole un significato intrinseco che è maggiore di quello che realmente ha.
Nonostante accettiamo senza problemi il fatto che possiamo usare qualsiasi tipo di coordinate vogliamo per elencare i punti di questa griglia, qualcosa nella nostra intuizione ci porta a credere che la griglia abbia davvero un significato fisico.

Una rappresentazione bidimensionale della griglia spaziotemporale che ci immaginiamo nella nostra testa.

Il concetto di griglia ha però, come molti altri concetti, solo una natura strumentale. Spesso ci permette di capire ciò che stiamo facendo, ma non dovremmo dargli un significato ontologicamente maggiore di quello strumentale, o almeno questo è il suggerimento di Einstein e Rovelli.

Hai visto come il domandarci quale fosse la curvatura dello spaziotempo in uno specifico punto ci ha portato al paradosso che le equazioni di Einstein descrivono due cose diverse con due soluzioni che dicono in realtà la stessa cosa? Stavamo risolvendo un problema sbagliato, questo è l’errore a cui siamo condotti se non seguiamo il suggerimento.

Considera invece questa situazione: supponiamo che nel punto A si incrocino anche le traiettorie spaziotemporali di due particelle (cioè le loro geodetiche):

Le geodetiche delle particelle sono indicate con la linea tratteggiata blu.

Le coordinate con cui descriviamo il punto A adesso racchiudono non solo l’informazione sulla curvatura dello spazio tempo g_{\mu\nu}, ma anche l’informazione “si sono incrociate le geodetiche delle due particelle!“.
Anche le geodetiche dipendono dalle coordinate che utilizziamo, quindi se ora eseguiamo la stessa trasformazione di coordinate di prima, cioè mappiamo un punto nell’altro, dobbiamo spostare anche il punto di incontro delle geodetiche!

Come vedi ora sia la curvatura dello spaziotempo sia il punto di incontro delle geodetiche sono stati trasportati dal punto A al punto B. Supponiamo di voler rispondere, grazie alle equazioni di Einstein, alla seguente domanda:

“Com’è la curvatura dello spaziotempo nel punto in cui si incontrano le geodetiche delle due particelle?”

Questa domanda, a differenza di prima, è tutta un’altra questione: è ben posta ed ha una soluzione univoca data dalla soluzione delle equazioni di Einstein. Come puoi vedere, sia prima che dopo la trasformazione di coordinate esiste una curvatura nel punto di incontro delle due geodetiche. Lo spaziotempo è curvo nel punto in cui le due geodetiche si incontrano. Questa informazione non dipende da quali coordinate stiamo utilizzando. Quindi è questa la vera domanda da porsi in una situazione simile.

La Relatività Generale ci suggerisce che la griglia immaginaria ha molto meno significato fisico di quello che credevamo: ha poco senso fisico chiedersi quale sia il valore della curvatura dello spaziotempo in un suo specifico punto senza introdurre campi di materia o interazioni tra particelle che possano interagire in quel punto.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Uno spaziotempo senza materia e particelle non ha significato fisico, la realtà non è composta da spaziotempo e campi, ma da campi su campi, secondo Rovelli. Possiamo fare affermazioni fisicamente sensate solo nel momento in cui iniziamo a relazionare campi di materia con altri campi di materia (come l’incrocio delle due geodetiche visto nell’esempio).

Questo punto di vista capovolge ancora una volta il significato che attribuiamo alla Relatività Generale: non è che la gravità non esiste ed è solo lo spaziotempo a farci sembrare che ci sia, sono le interazioni con le particelle che danno un significato fisico allo spaziotempo. Lo spaziotempo emerge grazie alle particelle, e non il contrario. Per la gravità quantistica questa interpretazione è nettamente più favorevole in quanto il mediatore smette di essere indipendente dalla materia che interagisce (vedi lo schema fatto all’inizio).

Gli oggetti non sono immersi nello spazio. Gli oggetti costituiscono lo spazio. Come un matrimonio: non è che marito e moglie “percepiscono il matrimonio”, loro sono il matrimonio, lo costituiscono. […] Allo spazio non rimane nulla se togli tutte le cose che lo abitano. Lo spazio è costituito dalle cose.

Carlo Rovelli

Si nasconde forse qui il segreto per iniziare a conciliare gravità e meccanica quantistica?

Secondo me questo paradosso meriterebbe di essere illustrato maggiormente nei libri di testo introduttivi di Relatività Generale, perché nasconde il cuore concettuale della materia. Per questo motivo ho pensato di portare in superficie l’osservazione di Rovelli, uno dei pochi autori moderni che ha scelto di parlarne a un secolo di distanza.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Come ho imparato ad amare i numeri immaginari

Ho molta difficoltà nel visualizzare cosa sarebbe la Fisica teorica, o la Scienza in generale, senza i numeri immaginari. Non fraintendermi, il mondo esisterebbe lo stesso e la Terra continuerebbe a girare attorno al Sole. Dico solo che senza l’ausilio dei numeri immaginari faremmo molta più fatica nella costruzione di tantissime teorie della Fisica.
Ma il vantaggio non è solo teorico, questi speciali numeri sono così utili che anche gli ingegneri non saprebbero proprio farne a meno, dalla fluidodinamica fino alla teoria dei segnali elettrici.

Cosa c’è di immaginario nei numeri immaginari?

Alla fine ha poco senso definire un numero “immaginario” o reale, in quanto la matematica è di fatto un’invenzione umana e possiamo decidere a piacere cosa sia “reale” o meno.

Invece mi piace pensare che l’aggettivo “immaginario” si riferisca piuttosto a una qualità particolare di chi li ha pensati per la prima volta. Chi ha scoperto questi numeri era una persona ricca di immaginazione, disposta a fare quel passo in più e a sfidare lo status quo. Una persona che ha saputo sfruttare il potere del pensare in grande, del “e se fosse..?“. Alla fine questa è la storia di un “bighellonare produttivo”.

Il bighellonare produttivo

I matematici del XVI secolo erano maggiormente indaffarati con la fondazione dell’algebra e della geometria analitica. Nel frattempo si divertivano a risolvere alcuni “cruciverba“ come: “trova le radici dell’equazione polinomiale x2+3x-4=0 usando gli assiomi dell’algebra”. Era importante specificare “usando gli assiomi dell’algebra” perché, come ogni gioco, anche la matematica ha le sue regole. Ad esempio sarebbe facile, in una partita di calcio, prendere la palla con le mani e lanciarla verso la porta per fare gol, ma a quel punto staremmo parlando proprio di un altro sport. La matematica è tale proprio per via delle sue regole.

Le regole del gioco della matematica di allora prevedevano che fosse proibito affermare che il quadrato di un numero potesse essere un numero negativo: “meno per meno fa più, e più per più fa più“. Se così non fosse, romperemmo ogni logica del gioco. Queste regole impedivano che alcune equazioni polinomiali avessero una soluzione. Ad esempio x2-2x+2=0 non ammette soluzioni: non esiste un numero “x” che inserito in quella equazione dia zero come risultato. Graficamente stiamo parlando di una parabola che non tocca mai l’asse y=0

Un modo semplice di vedere perché l’equazione non ha soluzioni è con un cambio di variabile:

Cioè, definendo t=x-1, risolvere x2-2x+2=0 equivale a risolvere:

È quindi chiaro perché quella parabola non tocca mai lo zero! Se lo facesse staremmo rompendo le regole del gioco: il quadrato di un numero non può mai essere negativo.

Il matematico italiano Gerolamo Cardano sapeva bene che qualcosa come x2-2x+2=0 non ammette soluzioni, eppure decise di bighellonarci attorno. Cardano fece finta che in qualche modo fosse possibile che un numero al quadrato potesse essere negativo. Possiamo immaginare che forse lo fece per gioco, o magari per puro sfizio, in ogni caso si divertì a scrivere la radice quadrata di -1:

La radice quadrata di un numero negativo è l’unico numero che moltiplicato per se stesso ha come risultato un numero negativo.

Et voilà, ora anche x2+1=0 ammette due soluzioni come moltissime altre equazioni di secondo grado.
Questa soluzione non fu presa sul serio dai matematici dell’epoca. Rafael Bombelli, altro matematico italiano che osò bighellonare su queste questioni, definiva queste soluzioni “quantità silvestri“.


Questo piccolo passo segnò però l’inizio di una nuova comprensione della matematica: si possono modificare le regole del gioco e riuscire comunque a creare dei costrutti logici autoconsistenti.

Chiaramente la radice quadrata di un numero negativo non può essere rappresentata sul piano cartesiano, perché è un numero che rompe le regole dei numeri cartesiani di tutti i giorni. Ma per questo motivo non è un numero che ha meno diritti degli altri, è semplicemente un numero diverso che merita il proprio “asse cartesiano”, magari con un nome diverso. I matematici dei secoli successivi definirono quindi i numeri immaginari come un’estensione dei numeri reali, aventi la loro algebra e i loro assiomi.

Torniamo però un attimo alla soluzione di x2-2x+2=0. Avevamo visto che questa era equivalente a risolvere t2=-1 che ha due soluzioni immaginarie date dalla radice di -1. Avevamo definito t=x-1, quindi possiamo scrivere la soluzione con la variabile originale

Puoi verificare che inserendo queste soluzioni nell’equazione di partenza ottieni zero. Clever trick!

Quindi la soluzione non è un numero puramente immaginario: il numero “1″ è un numero “normalissimo”, reale, che rispetta gli assiomi dei numeri reali. Tuttavia è sommato (o sottratto) con un numero immaginario (la radice di -1). Che senso ha, e come può essere rappresentato questo numero? I matematici lo definirono numero complesso, cioè un ibrido tra numero reale e numero immaginario.

Un numero complesso venne definito come un oggetto costituito da due parti: una parte reale e una parte immaginaria. La parte reale e la parte immaginaria sono rappresentate comunque da numeri reali, quindi in un certo senso un numero complesso non è altro che una coppia di numeri reali che soddisfa alcune proprietà speciali. Vedremo tra poco il senso di questa affermazione.
Per comodità di notazione fu definito un simbolo speciale per l’unità immaginaria, “i“, in modo che ogni numero immaginario sia un suo multiplo:

L’unità immaginaria “i”.

Un numero complesso “z” può essere espresso con più notazioni equivalenti:

Un numero complesso è costituito da una parte reale e da una parte immaginaria.


La cosa curiosa è che la notazione con le parentesi (parte reale, parte immaginaria) ricorda quella utilizzata per rappresentare i vettori in due dimensioni (componente x, componente y). Questa cosa è del tutto intenzionale, come vedremo tra poco.

Dal XVIII secolo in poi i numeri complessi vennero considerati un’estensione dei numeri reali, nel senso che un numero reale non è altro che un numero complesso con parte immaginaria nulla.

Diagramma di Venn per i campi dell’algebra.

Con molta astuzia, furono identificate delle operazioni di somma e prodotto di numeri complessi che rendessero tutto autoconsistente.

La somma di due numeri complessi è un altro numero complesso con parte reale data dalla somma delle parti reali e con parte immaginaria data dalla somma delle parti immaginarie.
Il prodotto di due numeri complessi è un altro numero complesso, le sue parti reale e immaginaria non sono però semplicemente il prodotto delle parti reali e immaginarie. Questa particolarità è necessaria per avere un’algebra autoconsistente nel campo dei numeri complessi.

Cosa mi ha fatto amare i numeri immaginari

I matematici capirono presto che per i numeri complessi esisteva un’interpretazione geometrica piuttosto semplice, ed è per questo motivo che scelsero di rappresentarli con una notazione simile a quella usata per i vettori in due dimensioni.

La volta che mi affezionai ai numeri immaginari fu quando realizzai quanto fossero utili in un contesto geometrico. A un certo punto mi si sbloccò il seguente ragionamento.
Prendiamo un vettore a componenti reali, innocentissimo, bidimensionale: una freccia. Se moltiplichiamo il vettore per il numero “-1” ne invertiamo la direzione:

Siccome i vettori possono essere ruotati sul piano, possiamo interpretare l’inversione come una rotazione di un angolo piatto!

La rotazione di 180 gradi di un vettore restituisce il suo inverso.

Quindi il numero -1 è un numero molto speciale perché esegue la stessa mansione di una rotazione di 180 gradi.

Il punto è che potremmo anche arbitrariamente pensare che la rotazione di 180 gradi sia un processo a due step, una composizione di due rotazioni di 90 gradi:

Due rotazioni consecutive di 90 gradi generano una rotazione di 180 gradi.

Uno può quindi chiedersi: esiste un numero speciale in grado di ruotare un vettore di 90 gradi moltiplicando entrambe le sue componenti per esso?
Assumiamo che esista, a quel punto dobbiamo riconoscere che moltiplicare il vettore due volte consecutive per questo numero equivale a ruotare il vettore di 180 gradi, e quindi questo numero deve avere a che fare con “-1″, perché esegue la stessa azione

Applicare due volte la moltiplicazione per un numero speciale “a” equivale a ruotare il vettore di 180 gradi.

Quindi se il vettore è ruotato di 180 gradi deve valere

Quindi il quadrato di questo numero deve dare -1: deduciamo che “a=i”, cioè proprio l’unità immaginaria.

Questa è stata la connessione che mi ha fatto apprezzare i numeri complessi: possono essere utilizzati per ruotare degli oggetti! Per questo motivo i matematici inventarono un piano cartesiano dedicato ai numeri complessi, il piano di Gauss!

In questo piano abbiamo due assi: l’asse reale e l’asse immaginario. Un numero complesso è “molto simile” a un vettore, perché ha una componente reale a una componente immaginaria date dalle proiezioni su questi assi ortogonali:

Il piano di Gauss dei numeri complessi.

Il vantaggio algebrico di avere un numero che moltiplicato per se stesso dà “-1” è il potere di ruotare degli oggetti moltiplicandoli tra loro!

Se prendiamo come riferimento l’angolo tra il numero complesso e l’asse reale, la moltiplicazione di due numeri complessi ha l’effetto di produrre un nuovo numero complesso avente come nuovo angolo la somma degli angoli iniziali, come mostrato in figura:

La moltiplicazione di due numeri complessi ha restituito un numero complesso la cui angolazione è data dalla somma dei due angoli iniziali: abbiamo quindi eseguito una rotazione usando la moltiplicazione.

Infatti si ha, per le regole stabilite sopra:

E questa è secondo me la principale utilità dei numeri complessi: ci permettono di trasformare oggetti usando la notazione più compatta possibile.

Infatti se “ρ” è il modulo del numero complesso (definito proprio come il modulo dei vettori):

Il modulo di un numero complesso si ottiene facendo la radice della somma dei quadrati delle parti reale e immaginaria (esclusa la “i” ovviamente).

Allora possiamo scrivere le componenti reale e immaginaria usando la trigonometria proprio come si fa per i vettori in notazione polare. Se θ è l’angolo formato con l’asse reale si ha

La quantità tra parentesi (che ha modulo unitario per via della relazione trigonometrica fondamentale) può essere semplificata usando una relazione utilissima dimostrabile in analisi matematica, la quale lega il numero di Eulero con i numeri complessi:

La famosa relazione di Eulero. Può essere dimostrata sviluppando in serie di Taylor entrambi i membri dell’equazione.

Quindi un numero complesso può essere espresso con la elegantissima notazione

Un numero complesso in notazione polare.

La moltiplicazione di due numeri complessi ha quindi il seguente effetto:

Con questa notazione è anche più facile vedere che gli angoli si sommano, grazie alla proprietà degli esponenziali.

In sostanza, i numeri complessi sono davvero uno spasso (di sicuro sono meno monotoni dei numeri reali), ma prima di tutto sono i numeri più popolari della Scienza:

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
  • Moltissime trasformazioni nella fisica teorica sono generate da operatori complessi. Alcune tra le più importanti equazioni del Modello Standard sono scritte in notazione complessa.
  • In ingegneria, la teoria dei segnali è fondata sull’utilizzo dei numeri complessi.
  • In aerodinamica, l’analisi complessa è utilizzata per mappare il flusso dei fluidi attorno ad alcuni oggetti.
  • ….

Di sicuro potremmo fare tutte queste cose anche senza i numeri complessi, solo che faremmo molta più fatica! I numeri complessi sono una short-cut, ci semplificano la vita ogni giorno, e per questo dovremmo amarli.

Tuttavia a volte non si tratta solo di semplificare la vita. Di recente ho incrociato un articolo su Physics Today che parlava della necessità dei numeri complessi nella meccanica quantistica.
In sostanza, non solo non esiste un modo semplice per formulare la meccanica quantistica usando solo variabili reali, ma la versione della teoria senza numeri complessi non è in grado di replicare le previsioni sperimentali della teoria complessa. Questa conclusione mi ha lasciato un po’ sorpreso, dato che implicherebbe una supremazia quasi metafisica dei numeri complessi. Ho quindi intenzione di approfondirla in un prossimo articolo, dopo che mi sarò informato adeguatamente.

  • Esercizio: come ultima chicca ti sfido a scoprire una cosa che ritengo molto carina. Prendi la relazione di Eulero:

Questa è un’identità, quindi l’uguaglianza vale per qualsiasi valore di θ. Ti invito a inserirci θ=π/2 e usare quanto sai sul valore di seno e coseno per l’angolo retto. Dopodiché eleva entrambi i membri per “i”, cosa ottieni?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Demistificando il Principio di Heisenberg

Il principio di indeterminazione di Heisenberg è considerato l’essenza della meccanica quantistica. Per questo motivo è uno degli argomenti più chiacchierati a livello divulgativo. Persino l’enunciato è celebre:

È impossibile misurare con precisione arbitraria la quantità di moto e al contempo la posizione di una particella

Enunciato del principio di Heisenberg

Anche la versione matematica dell’enunciato è piuttosto celebre: se indichiamo con “∆x” e “∆p” le incertezze sulla posizione e sulla quantità di moto, vale la disuguaglianza

Se rendiamo piccolo “∆p“, cioè se riduciamo l’incertezza sulla quantità di moto, per far valere ancora la disuguaglianza dobbiamo aumentare “∆x“.
ℏ è la costante di Planck divisa per 2π.

Negli anni ho notato alcune imprecisioni concettuali nelle analisi di questo principio, per cui ho deciso di rifletterci un po’ e dare il mio contributo. Ho trovato che il modo migliore per demistificarlo è il seguente:

Il principio di indeterminazione può essere compreso matematicamente una volta accettati i postulati della meccanica quantistica, tramite l’analisi di Fourier.

Lo scopo di questo articolo è quello di aiutarti ad apprezzare come la matematica della meccanica quantistica ci faccia comprendere meglio il principio di indeterminazione.

Non preoccuparti, non è una matematica di alto livello, useremo al massimo le funzioni trigonometriche (seni e coseni), e magari qualche integrale. È davvero tutto ciò che serve per apprezzare il discorso.

Teoria ed esperimento

Quando si costruisce una teoria fisica si cercano delle strutture concettuali che siano in grado di produrre dei risultati misurabili e in grado di giustificare i dati sperimentali. La meccanica quantistica è l’unica teoria in grado di spiegare accuratamente i risultati sperimentali dei fenomeni atomici, e ogni struttura concettuale della teoria ci aiuta a comprendere anche i risultati stessi, grazie alla matematica.

Ogni teoria presuppone dei postulati fondamentali (essenzialmente delle proposizioni che vengono assunte vere, senza necessità di dimostrazione). Ciò che ci servirà oggi è il postulato di De Broglie della meccanica quantistica. Infatti, una volta accettato questo postulato, la matematica parlerà da sola e ci aiuterà a capire il principio di Heisenberg.

“Scusa, ma non è un ragionamento circolare? Se devo accettare acriticamente un postulato, allora è possibile dimostrare tutto e il contrario di tutto. Io mi aspettavo che mi illustrassi il motivo metafisico per il quale non posso misurare contemporaneamente impulso e posizione di una particella!"

Il punto è che la Scienza funziona proprio così, dobbiamo accettare dei postulati se vogliamo fare delle previsioni verificabili. Se le previsioni sono verificate, allora la teoria può essere utilizzata anche come guida matematica alla comprensione dei risultati stessi. Funziona così da sempre. Senza la matematica saremmo scientificamente analfabeti.

Lo schema gerarchico per teoria ed esperimenti.

Uno dei postulati fondamentali della meccanica quantistica è quello di De Broglie: “le particelle sono descritte da funzioni d’onda ψ(x,t) dipendenti da tempo e spazio“, il cui modulo al quadrato rappresenta la densità di probabilità di trovare la particella in un certo punto dello spazio.

La teoria delle onde

La parola fondamentale su cui devi concentrarti è “funzione d’onda“. L’utilizzo di questa parola ha delle conseguenze molto pesanti, perché le onde hanno un comportamento speciale.
Nei prossimi paragrafi ti aspetta una carrellata di nozioni matematiche, ma ti assicuro che sono tutte essenziali per apprezzare meglio il principio di Heisenberg. Dagli una chance, ripaga bene!

Le onde sono perturbazioni nello spazio e nel tempo che possono essere più o meno regolari nella loro forma. Le “onde semplici” sono caratterizzate da una certa ampiezza e una frequenza di oscillazione costanti nel tempo, e ci piace chiamarle onde sinusoidali. Non tutte le onde sono semplici! Le sinusoidi sono matematicamente semplici da descrivere (probabilmente hai già incontrato seni e coseni da qualche parte), ma il mondo reale ha ben poco a che fare con le onde semplici. Purtroppo, la maggior parte dei segnali oscillanti nel tempo sono molto complessi:

Un’onda sinusoidale è caratterizzata dal fatto che la sua ampiezza e la sua frequenza non cambiano nel tempo, restano inalterate, preservando la forma ondulatoria.

Quindi non abbiamo speranza di descrivere matematicamente delle funzioni d’onda molto complesse? Fortunatamente entra in gioco uno dei risultati che a me piace definire come una delle pietre miliari nella storia della Scienza:

Qualsiasi segnale nel tempo può essere costruito sovrapponendo delle onde sinusoidali

È un po’ come se le onde sinusoidali fossero gli atomi elementari della teoria dei segnali: così come i corpi complessi sono composti da più atomi, i segnali complessi sono composti da onde sinusoidali.

In una notazione abbastanza simbolica e approssimativa, l’idea è la seguente: per ottenere il segnale desiderato basta sommare tante onde sinusoidali, pesate ciascuna con un certo coefficiente detto “di Fourier” (il quale dipenderà dal particolare segnale):

Cosa significa “sovrapporre onde sinusoidali”?

Qui entra in gioco la cara vecchia trigonometria. Un “atomo di segnale”, cioè un’onda sinusoidale, ha la seguente struttura:

Un’oscillazione dipendente dal tempo, y(t), è caratterizzata da una certa ampiezza “A” e da una certa frequenza “f“.

La magia si manifesta quando sommiamo due onde sinusoidali di ampiezze e frequenze diverse. Consideriamo ad esempio la somma delle seguenti onde:

Due sinusoidi, la prima di frequenza f=1 Hz, e la seconda di frequenza f=3/2 Hz. La seconda ha anche un’ampiezza doppia della prima.

Il risultato è il seguente: l’onda risultante dalla somma non è più un’onda semplice!

La somma di due onde semplici non è più un’onda semplice.

La spiegazione è puramente geometrica, ed è riassunta nelle formule di prostaferesi che si imparano a scuola. Infatti in generale:

L’applicazione delle formule di composizione di seni e coseni ci fa capire cosa succede quando sommiamo delle sinusoidi.

Lo so, non è molto carina da vedere, infatti non preoccuparti di leggerla tutta, è solo una giustificazione del perché la somma di due sinusoidi non è sempre una sinusoide: quei prodotti di seni modificano l’ampiezza dell’onda risultante nel tempo!

Alla fine questo è un concetto che caratterizza la vita di tutti giorni: anche una nota di un violino è una sovrapposizione di armoniche (onde sinusoidali di diverse frequenze), delle quali sentiamo maggiormente la dominante.

L’analisi di Fourier

Quel segnale complicato che abbiamo ottenuto sopra potrebbe sembrare irrilevante per il nostro discorso: sapendo quali sono gli atomi di partenza, è piuttosto facile costruire il segnale più complicato.
Il divertimento inizia quando decidiamo di invertire il problema di prima:

Dato un segnale complicato, è possibile capire la sua composizione in onde sinusoidali?

Questa è la domanda a cui vuole rispondere l’analisi di Fourier.

L’analisi di Fourier ci dice che esiste un altro modo di osservare un segnale. Quello che abbiamo illustrato prima è l’analisi temporale: cioè osserviamo il profilo dell’onda in funzione del tempo.

Ma l’analisi nel tempo è solo uno dei due modi. Possiamo anche studiare il segnale risultante andando a cercare le frequenze principali che lo costituiscono: stiamo facendo una radiografia del segnale per capire di quali atomi elementari è composto!

La descrizione temporale e la descrizione in frequenza sono due modi diversi di osservare lo stesso segnale, e il passaggio da una descrizione all’altra è garantito da un’operazione chiamata trasformata di Fourier.
Come illustrato nella figura, la trasformata di Fourier prende in pasto una funzione nel tempo e restituisce una nuova funzione, stavolta nella frequenza:

L’espressione matematica è la seguente:

L’integrale contiene l’unità immaginaria “i” nell’esponenziale.

Se non hai mai visto un integrale non lasciarti intimorire: questi simboli sono solo un modo intimidatorio per esprimere che stiamo sommando infiniti prodotti tra sinusoidi e il segnale in input “h(t)”. Le sinusoidi sono nascoste nell’esponenziale tramite la relazione di Eulero

La relazione di Eulero che lega l’esponenziale complesso con le funzioni trigonometriche.

Se questa relazione ti crea disagio fai finta che non ci sia. L’ho tirata fuori solo per dimostrarti che sono coinvolti, come promesso, dei seni e dei coseni. Queste sinusoidi vanno a moltiplicare il segnale in input “h(t)” in ogni istante di tempo, e la somma infinita produce una distribuzione del segnale nella frequenza “f“.
Ovviamente se partiamo dalla distribuzione in frequenza, esiste anche un’anti-trasformata di Fourier che ci riporta alla funzione nel tempo. Il cerchio si chiude.

Un esempio

Per dimostrarti che la trasformata di Fourier fa quanto promesso, consideriamo la somma delle sinusoidi che ti ho proposto prima.

Il segnale risultante, come abbiamo visto graficamente, non è una sinusoide semplice:

In blu e rosso le sinusoidi costituenti, in verde il segnale risultante.

Tiriamo fuori il problema inverso:
Supponiamo ora che qualcuno ci dia solo il segnale risultante come input e ci chieda di capire di quali “atomi sinusoidali” è composto. Questo è un lavoro per la trasformata di Fourier!

Il risultato è il seguente grafico nelle frequenze:

Cosa sono questi due picchi intimidatori? È il risultato di quell’integrale altrettanto intimidatorio. Osserva dove sono collocati i picchi: il primo picco è a “f=1” e il secondo picco a “f=3/2“. Quali erano le frequenze delle due sinusoidi iniziali? Esattamente “f1=1 Hz” e “f2=3/2 Hz”.

Questi due “picchi” ci stanno dicendo:
“Ehi, con la trasformata ho individuato due grosse frequenze costituenti, cioè il segnale che mi hai dato in pasto era costituito da due sinusoidi elementari di frequenze “f1=1 Hz” e “f2=3/2 Hz”.

Ovviamente noi sapevamo già che il segnale era composto da queste due sinusoidi, quindi il risultato non ci sorprende. Semmai ci rassicura su una cosa: la trasformata di Fourier funziona, ed è un ottimo modo per analizzare le componenti delle onde che usiamo nella Fisica.

Il cuore del principio di indeterminazione: gli spazi duali

Veniamo ora alla questione centrale. Voglio che noti una particolarità interessante della trasformata di Fourier. Supponiamo di dilatare la variabile temporale del segnale in input, cioè

Se b>1, è una dilatazione del tempo, se b<1 è una contrazione.

Questa è un’operazione matematica che ho scelto di fare: voglio modificare temporalmente il segnale in ingresso tramite una certa costante “b”. Che succede al segnale in frequenza? Per saperlo dobbiamo fare la trasformata di Fourier e fare un cambio di variabile:

Che è successo? Tra il passaggio (1) e il passaggio (2) ho cambiato variabile per ricondurmi alla forma standard della trasformata di Fourier. Questo passaggio ha generato il termine 1/b moltiplicativo, e mi ha portato a definire una nuova frequenza “f’=f/b” nel passaggio (3). Nel passaggio (3) abbiamo tra le mani la definizione di trasformata di Fourier del segnale con il tempo dilatato. Rispetto alla funzione in frequenza di prima, ora si ha:

Il risultato della dilatazione temporale sulla controparte in frequenza.

Quel “f/b” è davvero il succo del discorso, perché stiamo dividendo la variabile frequenza per un numero “b“. Se b>1, cioè se dilatiamo il tempo, otteniamo un restringimento delle frequenze. Viceversa, se b<1 cioè se contraiamo il tempo, otteniamo una dilatazione delle frequenze.
Il dominio temporale e il dominio delle frequenze si chiamano in gergo “spazi duali” , proprio perché hanno questo comportamento. Tempo e frequenza sono “variabili duali”.
A livello intuitivo potevamo aspettarcelo anche senza fare macello, basta ricordarsi che per definizione

cioè la frequenza è l’inverso del periodo di oscillazione, per cui se dilatiamo una delle due, l’altra si restringe.

Se restringiamo la durata del segnale, aumentiamo il suo contenuto in frequenza. Viceversa se estendiamo la durata del segnale, diminuiamo il suo contenuto in frequenza.

Possiamo spiegare questo comportamento intuitivamente:

  • Per creare un segnale corto nel tempo sono necessarie tantissime onde elementari per cancellare l’ampiezza di oscillazione al di fuori dell’intervallo di durata del segnale. Maggiore è il numero di onde elementari di varie frequenze che costituiscono il segnale, maggiore sarà il contenuto in frequenza del grafico della trasformata.

Per fare un esempio concreto, consideriamo il segnale in figura, che è quanto di meno sinusoidale si possa chiedere: un gradino di segnale tra i tempi t=-T e t=+T e zero altrove

La sua trasformata di Fourier nel dominio delle frequenze è illustrata sotto.
Ho assemblato diversi casi di durata del segnale da T=0.1 s a T=5 s per evidenziare l’effetto della dilatazione della durata temporale sul dominio delle frequenze. Per un segnale molto corto vengono coinvolte tantissime frequenze (quindi il grafico della trasformata è praticamente quasi piatto, vedi il caso T = 0.1 s).

La trasformata di Fourier di un segnale di durata 2T. Al crescere della durata del segnale, la controparte in frequenza si comprime.

L’analisi di Fourier sugli spazi duali apre le porte a una miriade di teoremi che portano a dimostrare le cosiddette “relazioni di incertezza“. In particolare ogni coppia di variabili duali è caratterizzata da una relazione di incertezza. Nel caso di tempo e frequenza abbiamo:

Questa è esattamente la forma matematica assunta dal principio di Heisenberg! Il prossimo passo sarà quindi tradurre quanto abbiamo appena detto nel regime di posizione “x” e quantità di moto “p“.

Posizione e impulso: altre variabili duali

Una volta accettato il postulato che le particelle sono descritte da una funzione d’onda spaziale, non è difficile accettare che la quantità di moto di una particella abbia qualcosa a che fare con la frequenza. Ce lo disse De Broglie! Ad esempio anche la luce (che è un’onda elettromagnetica) trasporta una quantità di moto, e per De Broglie questa quantità è data da:

“c” è la velocità della luce. La quantità di moto dell’onda è proporzionale alla frequenza dell’onda.

In generale a una particella non è assegnata una quantità di moto precisa, ma una distribuzione di quantità di moto, che vanno a comporre un certo “pacchetto d’onda”. Anche questa è una conseguenza del postulato fondamentale: la posizione della particella non è assegnata in ogni momento, ma è distribuita tramite la funzione d’onda della posizione. I picchi della funzione d’onda corrispondono ai punti dello spazio in cui è più probabile rivelare la particella:

Una generica funzione d’onda quantistica. I “picchi” sono punti in cui è più probabile trovare la particella. I punti in cui Ψ(x)=0 sono punti in cui la probabilità di trovare la particella è nulla.

Per rafforzare l’analogia con quanto discusso all’inizio ti basta realizzare che, come ogni onda, anche la funzione d’onda Ψ(x) è costituita da numerosi “atomi elementari” sinusoidali.

Siccome ora parliamo di particelle massive cambierà solo il linguaggio: ciò che prima era frequenza ora diventa quantità di moto, e ciò che prima era il tempo ora diventa lo spazio:

Il passaggio dalle onde sinusoidali nel tempo alle sinusoidi della meccanica quantistica.

È proprio ora che tutto inizia a fare “clic”. Basta tenere a mente questi due passaggi fondamentali:

  • 1) I picchi della funzione d’onda corrispondono ai punti dello spazio in cui è più probabile rivelare la particella.
  • 2) Per ottenere un picco della funzione d’onda è necessario sommare tante sinusoidi di “frequenze” diverse (cioè tante quantità di moto “p” diverse), come illustrato nell’animazione seguente:
Aggiungiamo tante sinusoidi di quantità di moto diverse per ottenere una funzione d’onda sempre più “piccata” in un certo punto dello spazio.

Questa animazione sta esattamente alla base del principio di indeterminazione: per ottenere la massima probabilità di trovare la particella in un punto (quindi rivelarla con precisione) è necessario che la sua quantità di moto diventi una sovrapposizione di numerosissime quantità di moto (che quindi si misurerà meno precisamente). È poco intuitivo? Le onde funzionano proprio così, non sono nate per soddisfare la nostra intuizione!

Analogamente a quanto discusso per i segnali nel tempo, la funzione d’onda della posizione può essere analizzata sia nel dominio dello spazio (dandoci informazioni sulla probabilità di trovare la particella nello spazio), sia nel dominio delle quantità di moto (dandoci informazioni su quale sia la probabilità di trovare la particella in un certo stato dinamico).

Il messaggio da portare a casa è questo:

La quantità di moto gioca lo stesso ruolo della frequenza, e la posizione gioca lo stesso ruolo del tempo: sono anche loro variabili duali.

La trasformata di Fourier della funzione d’onda Ψ(x) è una funzione dell’impulso ed è data da:

A parte l’integrale intimidatorio, la relazione che devi tenere a mente è la seguente:

Il principio di indeterminazione di Heisenberg è racchiuso nella definizione di trasformata di Fourier: se estendiamo la funzione d’onda nello spazio, stiamo restringendo la funzione d’onda nella quantità di moto: per descrivere una particella la cui funzione d’onda ha un’estensione infinita è sufficiente una sola quantità di moto, mentre per descrivere una particella la cui funzione d’onda ha un’estensione limitata, sono necessarie più sinusoidi diverse per cancellare i contributi nella regione in cui la funzione d’onda non esiste.
Se dilatiamo la variabile spaziale, l’effetto sulla trasformata nello spazio degli impulsi è:

Come ti accorgerai facendo avanti e indietro su questa pagina, il discorso è esattamente analogo al caso della frequenza-tempo. Anche qui i teoremi sull’analisi di Fourier determineranno quindi la famosa relazione:

Il principio di indeterminazione di Heisenberg
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Intuizione fisica

Il fatto che le variabili posizione e quantità di moto siano duali e rispettino un principio di indeterminazione è un limite invalicabile della natura. Non dipende dal fatto che la nostra strumentazione non è adeguatamente precisa.

Di certo è vero il fatto che se vogliamo seguire la traiettoria di una particella quantistica è necessario perturbare il suo moto (se voglio tracciare un elettrone devo ad esempio illuminarlo, ma nel fare ciò trasferisco quantità di moto sotto forma di radiazione luminosa, perturbando la misura), ma il motivo del principio di indeterminazione rimane insito nella natura degli oggetti quantistici, e il postulato sulla funzione d’onda di De Broglie ci aiuta a capirlo matematicamente.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

La Matematica di come diventiamo bravi in qualcosa

Spesso mi viene chiesto se la Fisica possa essere imparata da tutti, e quasi sempre ho la stessa difficoltà nel formulare una risposta.

Ovviamente mi viene da dire “Certo che sì, non c’è nulla di speciale, basta applicarsi con costanza“, ma dentro di me so che la parola cruciale è “costanza“: come per tutte le discipline la differenza sta nel reale interesse. Tutti possiamo imparare tutto, il punto è che tutti (com’è naturale) prima o poi scegliamo solo una tra le tante possibilità. La vita è una sola e quindi sarebbe poco pratico investire energie in più interessi.

La formulazione più corretta della mia risposta sarebbe quindi “Basta avere l’interesse, dopodiché bisogna riporre fiducia nella costanza della pratica”. Qui molti storcono il naso: “Devi esserci nato con la passione per la Fisica, non è per tutti, è roba poco accessibile”.

Quello della passione è in realtà un falso mito, e il discorso può essere applicato non solo alla Fisica, ma a tutte le discipline e tutti gli hobby che cerchiamo di imparare: sono infatti convinto che per diventare bravi in qualcosa bastino due ingredienti:

  • L’interesse.
  • La fiducia nella costanza.

L’autosabotaggio del cervello

Capita a tutti di avere, in qualcosa di specifico, abbastanza interesse da volerne sapere di più e imparare. Non sempre riusciamo a trovare la motivazione per dedicarci a questo interesse, semplicemente perché il cervello si lascia spaventare dalla mole necessaria di lavoro.
In sostanza ho imparato che in questi casi il cervello individua due macro-stati di esistenza:

  • 1) Ciò che so ora
  • 2) Ciò che saprò quando avrò “finito” di imparare

questa suddivisione innaturale elimina tutto quello che sta in mezzo, e cioè il processo stesso dell’imparare.
Il cervello si spaventa perché “imparare a fare quella cosa” diventa all’improvviso una montagna da scalare e non un semplice sentiero da percorrere in leggera pendenza. Diversamente, l’arte dell’apprendimento segue la stessa filosofia degli scalatori: guarda il sentiero, non la cima della montagna!

Inoltre la suddivisione elimina un prerequisito fondamentale dell’animo dello studente: non c’è mai fine all’apprendimento, e “imparare a fare qualcosa” non è un obbiettivo, ma un percorso, uno stato dell’esistenza.

Ho letto in giro che il primo passo per imparare qualcosa è togliere pressione da se stessi.
Bisogna cioè trasformare il nostro modo di formulare gli obbiettivi: passare da questa affermazione: “imparerò a suonare la chitarra” a quest’altra: “dedicherò qualche ora alla chitarra, perché mi piace”.
Questa trasformazione fa la differenza perché toglie tanta pressione al cervello.
Rimane però la questione annosa a cui siamo ben familiari: ma quanta fatica devo fare prima di vedere progressi in ciò che imparo?

Perché non faccio progressi?

Chiaro che non si possa ignorare il fatto che ci piace praticare solo ciò che ci dà un minimo di soddisfazione. Come si fa a “guardare solo il percorso” se non si vedono progressi immediati? È chiaro che si arrivi a credere di non essere portati se si osserva solo una minima percentuale di miglioramento.
Siamo campioni del mollare appena le cose non procedono come ci aspettiamo.

Il punto è che bisogna “imparare anche come impariamo”.

Ho preso ispirazione da un articolo di James Clear, in cui si evidenziava come le nostre aspettative sull’apprendimento siano completamente irrealistiche. Provo a riformulare il ragionamento nello stile che preferisco io. Iniziamo con un’affermazione su cui penso si possa concordare facilmente:

Ogni volta che facciamo pratica, miglioriamo dell’1% rispetto a prima.

Questa dell’1% è la nostra assunzione fondamentale su un modello dell’apprendimento molto semplificativo, non per forza realistico, ma che rende l’idea degli ordini di grandezza (è il modus operandi dei fisici).

Il punto è che è proprio quel 1% che ci scoraggia: ai nostri occhi è troppo poco!

Immaginiamo però di fare pratica “n“-volte su qualcosa che vogliamo imparare, e indichiamo con “Bi” la nostra bravura al tentativo “i“-esimo. All’inizio siamo completamente ignoranti perché abbiamo fatto zero tentativi, quindi la nostra bravura sarà indicata con “B0“. Dopo un tentativo, siamo migliorati solo dell’1% rispetto a prima. In formule ciò significa che la nostra bravura “B1” dopo il “tentativo 1″ sarà

Dopo 1 tentativo saremo l’1% più bravi di prima

Ora la nostra bravura è “B1“, per cui la prossima volta che faremo pratica miglioreremo ancora dell’1%, ma stavolta la nostra base di partenza è “B1” quindi al tentativo “2″ la nostra bravura “B2” sarà

Dopo 2 tentativi saremo l’1% più bravi di prima, ma ora non stiamo partendo da zero!

Detta così non sembra chissà cosa, ma ricordiamoci da dove siamo partiti: bisogna confrontarsi con la propria bravura di partenza “B0” inserendo l’espressione di “B1” nell’equazione precedente:

Al secondo tentativo siamo più bravi di un fattore (1.01)2=1.0201

Al secondo tentativo saremo un fattore (1.01)2=1.0201 più bravi del nostro stato iniziale, cioè un miglioramento del 2.01%.
D’altronde che ci aspettavamo? Se migliori dell’1% a ogni tentativo, è chiaro che dopo due tentativi sarai migliorato del 2%! Invece è proprio qui che la matematica degli esponenziali prende il sopravvento: nota che non siamo migliorati del 2%, ma del 2.01%, quel 0.1% in più fa tutta la differenza del mondo.

Magia esponenziale

Applicando “x“-volte lo stesso ragionamento, dopo “x“-tentativi saremo più bravi di un fattore:

Ad esempio al decimo tentativo non saremo migliorati del 10%, ma un po’ di più, perché (1.01)10 rappresenta invece un miglioramento del 10.46%. Sembra ancora molto poco, eppure le cifre decimali stanno crescendo abbastanza in fretta grazie al modello esponenziale.
Tuttavia il nostro cervello penserà di aver capito la matematica: “sì va bene, la nostra bravura crescerà, ma crescerà sempre molto poco, è intuitivo”. Il cervello ha un modo di ragionare lineare: “se sono migliorato di poco le prime volte, allora migliorerò di poco anche tutte le volte successive!”. In questo ragionamento si trascura però un punto fondamentale: ogni volta che facciamo un nuovo tentativo non stiamo più partendo da zero, ma stiamo accumulando esperienza dai tentativi precedenti. Il cervello non è bravo a capire questo dettaglio.
Per questo motivo ci immaginiamo che il grafico del progresso sia una retta y=mx:

Quello che ci immaginiamo quando stiamo imparando qualcosa di nuovo: il nostro cervello ragiona in maniera lineare.

Quindi il cervello si immagina che la differenza tra i nostri stati di bravura finale e iniziale stia in proporzionalità diretta con il numero di tentativi “x“, cioè “Bx-B0=0.01x”, (dove 0.01 è il miglioramento del 1%) che ha il seguente grafico:

Il grafico “mentale” che ci suggerisce di smettere di imparare: meglio lasciar stare, non si migliorerà mai.

Il punto cruciale è che questo grafico non è un modello sufficientemente realistico dell’apprendimento: ogni volta che impari un po’ di più, non stai partendo da capo! Un modello più realistico che tiene conto di ciò è invece quello esponenziale che abbiamo visto sopra, anche se è difficile accorgersi della differenza almeno all’inizio. Ciò è evidenziato nel seguente grafico in cui confronto i due modelli di crescita (esponenziale e lineare) fino a un numero 70 di tentativi:

I due andamenti (quello mentale e quello reale) sono quasi indistinguibili nei primi 70 tentativi. Il nostro cervello è bravo ad approssimare la realtà, ma qualcosa succede dopo il numero 70…

Anche se teniamo in conto di “non partire sempre da zero” e usiamo il modello di crescita esponenziale, i progressi che facciamo sono abbastanza trascurabili, almeno fino al tentativo 70, dopodiché entra in gioco la magia dell’esponenziale! Il grafico in rosso inizia a crescere leggermente di più del grafico in blu. Se aumentiamo ancora il numero di tentativi, arriviamo a questo risultato spettacolare:

Dopo tantissimi tentativi, i miglioramenti rispetto al nostro stato iniziale schizzano alle stelle. L’andamento è esattamente analogo a quello dell’interesse composto.

Riflettiamo un attimo davanti a questo grafico: noi tutti siamo soliti mollare la pratica ben prima del settantesimo tentativo, proprio perché osserviamo pochissimi progressi rispetto al nostro stato iniziale. Spesso ci sembra anzi di fare passi indietro, vuoi per via della scarsa memoria, vuoi perché semplicemente abbiamo capito male qualcosa che pensavamo di aver capito. Il punto è che i miglioramenti arrivano solo dopo centinaia e centinaia di tentativi: ad esempio dopo aver praticato qualcosa 300 volte, migliorando dell’1% ogni volta, arriviamo a diventare più bravi circa del 1878%!

Ne deduciamo che in molte cose della vita non è solo il talento innato che ci permette di fare progressi.
Ovviamente se uno ha un talento innato non migliorerà dell’1% ogni volta, ma magari del 3%. Poco importa, vorrà dire che per diventare eccellente farà 200-300 tentativi in meno di noi, il punto è che compararsi con gli altri ha poco valore nel momento in cui ci concentriamo nel percorso dello scalatore: il fine non è imparare “la cosa” in particolare, ma godersi il sentiero.

In verde: una persona che migliora del 3% ogni tentativo. In rosso: una persona che migliora del 1% ogni tentativo.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo discorso mi ha portato a ragionare su un aspetto importante: nella vita possiamo potenzialmente scegliere qualunque lavoro vogliamo, indipendentemente dai nostri talenti (a meno che quel lavoro non ci faccia proprio ribrezzo). Il punto sta nel capire quanti tentativi siamo disposti a fare prima di raggiungere un livello che pensiamo possa essere redditizio.
La volontà, dopo un lungo cammino, ci porta dovunque. Il talento ci porta dovunque, in aereo.

Per quanto riguarda ciò di cui mi occupo io, mi verrebbe da dare proprio questa risposta:
“Ok, ti piace la Fisica e vorresti impararla come hobby, ma quanti tentativi saresti disposto a fare? Pensi che se non migliorerai subito entro qualche mese sarà il caso di mollare? Pensi che sia necessario passare notte e giorno sui libri per tutto il resto della tua vita per vedere un miglioramento del 30%?”

Siamo ossessionati dal successo immediato, quindi l’idea di studiare una materia complicata si trasforma subito in una questione di vita o di morte: “Non ho il talento, per capirci qualcosa dovrei dedicarci il 90% della mia giornata!”, la mia risposta invece è “Non è umanamente possibile pretendere di dedicare a un hobby una percentuale così grossa dell’esistenza quotidiana, ma è certamente possibile migliorare di una percentuale insignificante, tipo l’1%, ogni mese per tutto il resto della propria vita”.
L’elefante si mangia a pezzetti.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Il Teorema “CPT”, o il motivo per cui un anti-universo sarebbe indistinguibile dal nostro

Ci sono pochi argomenti che fanno da musa ispiratrice sia per i fisici teorici che per i fisici sperimentali. Le simmetrie discrete rappresentano una guida importantissima con cui interpretiamo i risultati sperimentali e con cui strutturiamo la forma matematica delle teorie, perché hanno la capacità di predire “cosa è concesso e cosa è vietato”.

  • Vuoi osservare il decadimento di una particella e non sai quali proprietà aspettarti dai suoi prodotti di decadimento? Argomenti di simmetria scarteranno alcune tra le varie possibilità, permettendoti di focalizzare le tue misure su altre proprietà.
  • Vuoi scrivere una teoria che descrive l’interazione nucleare? Sappi che gli esperimenti non hanno mai osservato la violazione di una certa simmetria “A”, quindi assicurati che le tue equazioni abbiano la stessa simmetria!

Quando diciamo “il sistema ha una simmetria” dobbiamo prima specificare rispetto a quale trasformazione. Infatti una simmetria è sempre preceduta da una trasformazione, altrimenti dire “simmetria” perde ogni significato. (Per un’introduzione al concetto di simmetria rimando a un precedente articolo).

Non tutte le trasformazioni sono una simmetria di un certo sistema. Ciò non è un problema: in ogni caso abbiamo scoperto che è molto comodo catalogare gli oggetti in base al loro comportamento sotto determinate trasformazioni.
Ad esempio la freccia in figura possiamo chiamarla “generica freccia bianca con punta a destra”

Potremmo decidere arbitrariamente di studiare il comportamento di questa freccia sotto alcune trasformazioni interessanti: ad esempio la trasformazione “inversione speculare” trasforma la freccia in quest’altra:

L’oggetto ottenuto non è lo stesso di prima, ora la freccia ha la punta verso sinistra: diremo che “la riflessione speculare non è una sua simmetria della freccia”. Pazienza! Non tutto può essere simmetrico.
Abbiamo comunque imparato qualcosa di nuovo: possiamo dare un nuovo nome a questo sistema: tipo “freccia bianca che sotto riflessione va nel suo opposto“. Questo modo di chiamare un oggetto in base a come si comporta sotto una trasformazione è ciò che facciamo per catalogare le particelle e le interazioni fondamentali del Modello Standard.

Il Modello Standard è caratterizzato da tre simmetrie fondamentali: la simmetria di Lorentz (le leggi della Fisica hanno la stessa forma in tutti i sistemi di riferimento inerziali, o in altri termini, sono simmetriche sotto una trasformazione di Lorentz), la simmetria di gauge (gli oggetti matematici della Fisica presentano più variabili di quelle fisicamente necessarie), e la simmetria CPT. Le prime due sono abbastanza astratte rispetto all’ultima, su cui ci concentriamo oggi.

La simmetria “CPT” evidenzia un fatto importantissimo della nostra realtà: le leggi della Fisica rimangono inalterate se applichiamo tutte e tre le seguenti trasformazioni:

  • Inversione spaziale “P”
  • Inversione di carica “C”
  • Inversione temporale “T”

Le trasformazioni P, C, T sono chiamate in gergo “simmetrie discrete”. Svisceriamole una ad una.

La simmetria P: inversione spaziale

L’inversione spaziale, altrimenti nota come “trasformazione di parità” consiste nell’invertire tutte e tre le direzioni spaziali: le coordinate cartesiane (x,y,z) vengono mandate in (-x,-y,-z).
Per visualizzare meglio questa trasformazione, considera una freccia in tre dimensioni, ad esempio dotata di un certo spessore, una punta e due facce rettangolari. Chiamiamo “A” e “B” le due facce di questa freccia.

Le due facce “A” e “B” della stessa freccia.

Visualizziamo la freccia in una certa posizione iniziale, ad esempio disponiamola con la faccia “A” rivolta verso di noi (quindi la faccia “B” è rivolta verso la pagina di questo articolo), e la punta è rivolta verso destra.
Per ottenere una trasformazione di parità eseguiamo due step: anzitutto ruotiamo di 180 gradi la freccia attorno alla direzione della sua punta ed infine invertiamo la punta. Infatti così facendo abbiamo mandato la faccia “A” nel suo opposto (cioè la faccia B), poi abbiamo invertito il basso con l’alto, ed infine abbiamo invertito la destra con la sinistra. Gli step sono illustrati in figura

Una trasformazione di parità della freccia. Dall’alto verso il basso: la freccia nella sua posizione iniziale, la freccia dopo una rotazione di 180 gradi attorno alla direzione della sua punta, e poi l’inversione della punta nell’ultimo step.

Nota bene, una trasformazione di parità è ben diversa da una trasformazione “speculare”. Non è come vedere la freccia davanti a uno specchio!

Una trasformazione speculare della freccia.

Spesso invece capita di sentire che l’inversione spaziale corrisponde a “vedere l’universo attraverso uno specchio”, come mai questa inesattezza?
Immagina per un attimo se la freccia avesse due facce uguali e non ci fosse modo di distinguere il basso dall’alto, in quel caso la riflessione speculare e la trasformazione di parità coincidono!

Questo perché la freccia iniziale era simmetrica sotto una rotazione di 180 gradi rispetto alla direzione della punta (quindi il primo step della trasformazione di parità la lascia invariata). Moltissimi sistemi fisici di interesse godono di una simmetria sotto rotazioni attorno a una certa direzione, per cui non è così scorretto dire che l’inversione spaziale “coincide” con l’osservare l’universo allo specchio.

"Però mi sfugge cosa c'entri con la Fisica tutto questo discorso sull'inversione dello spazio. Cosa gliene frega alle particelle se prendo gli assi cartesiani in un verso o nell'altro?" 

Magari non è immediato vederlo, ma la connessione è piuttosto profonda e ha a che fare con le interazioni fondamentali.

In particolare ha a che fare con il modo con cui scriviamo le teorie della Fisica.
Se le evidenze sperimentali suggeriscono ad esempio che un processo ha la stessa probabilità di avvenire in una direzione rispetto alla direzione opposta, allora sarà meglio che la teoria sia simmetrica sotto una trasformazione di parità dal punto di vista matematico! Lo schema di queste ragionamento è il seguente:

Per fare un esempio consideriamo la teoria di Dirac per un fermione di massa m. Nella teoria il termine di massa è scritto accoppiando i campi ψ del fermione nel seguente modo:

La trasformazione di parità dei campi fermionici si ottiene moltiplicandoli per una matrice detta “di Dirac”: γ0

Trasformazione di parità per i campi fermionici. La matrice di Dirac è caratterizzata dall’equazione (γ0)2 =1, cioè il suo quadrato è uguale all’identità.

A questo punto mostriamo che il termine di massa della teoria di Dirac è invariante sotto parità:

La trasformazione di parità dei campi fermionici lascia invariato il termine di massa grazie al fatto che 0)2 =1. La teoria di Dirac è costruita in modo da essere invariante sotto parità (ciò era suggerito dagli esperimenti).

In teoria nulla garantisce che le leggi della Natura siano invarianti sotto inversione spaziale, è una nostra assunzione ragionevole, confermata dalla maggior parte dei risultati sperimentali e per la maggior parte delle interazioni fondamentali.
Negli anni 50′, con grossa sorpresa, si scoprì che la nostra assunzione non corrispondeva alla realtà.

L’interazione debole e la violazione della parità

È arcinota l’importanza dei vettori nella Fisica. Siccome i vettori sono quantità riferite agli assi cartesiani, invertire gli assi con una trasformazione di parità invertirà anche i vettori.
Un vettore r verrà mandato nel suo opposto –r in seguito a una trasformazione di parità. Se però consideriamo il prodotto di due vettori, ad esempio come il momento angolare L=rxp , sotto una trasformazione di parità si ha

I segni meno si cancellano e il momento angolare rimane uguale a se stesso, non si inverte.

Un giroscopio davanti a uno specchio. L’asse di rotazione del giroscopio è perpendicolare alla superficie dello specchio: il verso di rotazione rimane inalterato nella riflessione.

Ciò si capisce intuitivamente se pensiamo a un sistema invariante sotto rotazioni e caratterizzato da un asse di rotazione, come un giroscopio. Per questo oggetto la trasformazione di parità equivale alla riflessione speculare (come precisato sopra). Se mettiamo un giroscopio rotante davanti allo specchio, il suo verso di rotazione non viene invertito: se gira in senso orario nel “nostro mondo”, continuerà a girare in verso orario anche nello specchio.

Fatta questa premessa, consideriamo uno degli esperimenti cruciali nella Fisica delle particelle: l’esperimento di Wu (1956).
Nell’esperimento di Wu si considerò un particolare decadimento nucleare del Cobalto-60, che provocava l’emissione di elettroni e antineutrini.
Tramite l’accensione di un campo magnetico, il team di Wu orientò gli spin dei nuclei di Cobalto in una direzione privilegiata, proprio come si farebbe con degli aghi magnetici. Per la conservazione del momento angolare, gli spin dell’elettrone e dell’antineutrino emessi dovevano avere lo stesso orientamento spaziale degli spin dei nuclei di Cobalto.
L’obbiettivo dell’esperimento era di seguire le traiettorie degli elettroni e vedere quale direzione prendessero rispetto allo spin del nucleo decaduto. Dopo un po’ di raccolta dati, si scoprì che gli elettroni avevano una direzione preferita di emissione: opposta allo spin nucleare. L’informazione raccolta sulla Fisica del problema era l’osservazione sperimentale: “la direzione preferita di emissione da parte degli elettroni è quella opposta allo spin del nucleo.”

Di primo acchito questa osservazione non sembra presentare nulla di problematico. Consideriamo però una trasformazione di parità: lo spin nucleare (essendo analogo a un momento angolare) viene mandato in se stesso come abbiamo visto, ma la direzione di moto degli elettroni viene invertita. Quindi in un mondo speculare (con asse di riflessione coincidente con quello dello spin) la conclusione dell’esperimento è che la direzione di emissione preferita da parte degli elettroni è quella concorde allo spin del nucleo.

Sotto una trasformazione di parità le conclusioni sperimentali sono diverse, in netta contrapposizione l’una con l’altra! Per la prima volta nella storia della Fisica una conclusione sperimentale è modificata da una trasformazione di parità, cioè la parità NON è una simmetria del sistema!

Perché la parità potesse essere una simmetria del sistema, ci saremmo aspettati tanti elettroni emessi nella direzione dello spin nucleare, quanti emessi nella direzione opposta. Ciò non è quello che si osserva, per cui siamo portati alla conclusione che la parità non è una simmetria fondamentale della natura, nonostante sia una simmetria delle forze nucleari e delle forze elettromagnetiche.

Interpretazione dell’esperimento di Wu

L’interpretazione dell’esperimento fu la seguente: esiste un’interazione fondamentale capace di far decadere un nucleo emettendo elettroni e antineutrini (oggi nota come interazione debole) che non è simmetrica rispetto a una trasformazione di parità. La parità NON è più una simmetria fondamentale della Natura.
L’universo visto allo specchio ha un comportamento diverso se si considerano i decadimenti deboli di alcuni nuclei. Questa distinzione fu abbastanza sconcertante e i fisici dell’epoca rimasero piuttosto sorpresi.

La simmetria C: inversione di carica

La trasformazione matematica di un elettrone in un positrone.

Una trasformazione di inversione di carica viene effettuata sulle funzioni d’onda che descrivono le particelle.
Le funzioni d’onda possono essere caratterizzate da numeri quantici come: carica elettrica, numero leptonico, numero barionico e numero leptonico di sapore.
L’inversione di carica, come suggerito dal nome, inverte tutti questi numeri quantici: non solo la carica elettrica, ma anche numero leptonico, numero barionico e sapore!


Ad esempio l’inversione di carica su un elettrone lo trasforma in un positrone (cioè una particella con stessa massa, ma carica elettrica opposta e numero leptonico opposto). Quindi effettivamente l’inversione di carica trasforma una particella nella sua anti-particella (per un resoconto su come siamo arrivati a teorizzare le antiparticelle rimando a un precedente articolo).

D’altra parte, una particella senza carica elettrica e senza altri numeri quantici (come il fotone) viene mandato in se stesso da questa trasformazione: il fotone è l’antiparticella di se stesso.

Per la maggior parte dei processi fisici, l’inversione di carica C è una simmetria: potremmo sostituire tutte le particelle del processo con le rispettive antiparticelle e il processo rimarrebbe lo stesso (stesse previsioni teoriche e stessi risultati sperimentali).
Ancora una volta fa eccezione l’interazione debole: per questa interazione entrambe le trasformazioni P e CP (combinazione di C e P) non sono una simmetria. Si pensa che questo fatto sia la risposta al quesito: perché il nostro universo è composto per la maggior parte da materia rispetto ad antimateria? In qualche momento dopo il big bang ci fu una maggior produzione di materia forse proprio grazie al fatto che l’interazione debole presenta questa asimmetria nel trattare particelle e antiparticelle.

La simmetria T: inversione temporale

L’ultima trasformazione discreta è l’inversione temporale: si inverte il tempo nelle equazioni della Fisica. L’inversione del tempo agisce su tutte quelle quantità in cui il tempo compare, ad esempio la quantità di moto (contenendo la velocità definita come il rapporto tra spazio e tempo) acquista un segno negativo sotto inversione temporale: p va in –p. Il momento angolare acquista un segno negativo anche lui, dato che L=rxp e r va in se stesso, ma p va in –p, quindi rx(-p)=-L.

Di nuovo, la maggior parte delle teorie fisiche rimane inalterata sotto inversione temporale, ad eccezione della solita guastafeste: l’interazione debole!

Ciò non sconforta ormai più di tanto, dato che le eventuali simmetrie sotto C,P e T separatamente non hanno motivo di esistere se non per la nostra soddisfazione personale.
Esiste un’unica simmetria che però deve essere rispettata affinché non crolli tutto il palazzo della Fisica Teorica, ed infatti esiste un Teorema che lo dimostra precisamente. Questa simmetria è la combinazione simultanea di C, P e T: la simmetria CPT.

Il Teorema CPT

Il Teorema CPT discende dall’unione tra meccanica quantistica e relatività ristretta, nel contesto della teoria quantistica dei campi. La sua dimostrazione dipende fortemente da tutto ciò che sappiamo essere verificato sperimentalmente sulla meccanica quantistica e sulla relatività ristretta. TUTTE le leggi della Natura sono invarianti se applichiamo successivamente: un’inversione di tutte le coordinate spaziali, un’inversione della carica di tutte le particelle (cioè la trasformazione di tutte le particelle in antiparticelle) e l’inversione temporale dei processi fisici.

Stiamo dicendo che non è possibile distinguere un esperimento di Fisica condotto in un anti-universo composto da anti-particelle, studiate con coordinate spaziali invertite e con i processi che avvengono al contrario nel tempo.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per capire il significato del teorema, dobbiamo ricollegarci all’interpretazione di Feynman-Stückelberg sulle antiparticelle, come discusso in un articolo precedente. Un’antiparticella può essere interpretata come una particella che si muove “indietro nel tempo”.

Siccome la trasformazione combinata “CP” trasforma tutte le particelle in anti-particelle e inverte le coordinate spaziali (in modo da farle muovere “all’indietro” rispetto alle coordinate originali), se applichiamo un’ulteriore trasformazione “T” di inversione temporale stiamo facendo muovere queste antiparticelle all’indietro nel tempo e in una direzione spaziale opposta alle coordinate originali. Tradotto: siamo ritornati punto e a capo, e cioè all’universo originale. Quindi, se operiamo un’ulteriore trasformazione di inversione temporale “T”, l’anti-universo ottenuto con la trasformazione “CP” può essere reso indistinguibile dall’universo iniziale.

La violazione di CP e T, ma non di CPT

Sottolineiamo: la simmetria sempre conservata è la combinazione simultanea CPT, ma ciascuna delle trasformazioni separate C, P o T può comunque non essere una simmetria delle teorie fisiche.

Abbiamo visto che l’interazione debole viola la simmetria P. Sappi che viola anche la simmetria CP, cioè la combinazione simultanea di C e P ( è stato verificato sperimentalmente). Questo fatto mise in grave allarme i fisici dell’epoca, perché la simmetria CPT era quindi in pericolo, e assieme a lei tutta la struttura matematica della teoria quantistica dei campi.

Grazie all’interpretazione di Feynman-Stückelberg sappiamo che, se CP è violata, allora l’unico modo per avere simmetria CPT è che anche T sia violata. Un po’ come dire: se voglio ottenere +1 dal prodotto di due numeri, dovranno essere entrambi negativi in modo che si cancelli il segno “-“, in questo modo (-1)(-1)=+1. Fisicamente corrisponde a dire:

Analogia tra la violazione delle simmetrie e la moltiplicazione tra numeri negativi.

I risultati sperimentali odierni sembrano confermare che la simmetria T sia violata, quindi la CPT dovrebbe essere salva, assieme a tutto il castello della Fisica Teorica.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

[Immagine di copertina: Kelly Sikkema]

“La tua ricerca è inadeguata!” Quando la Fisica ha bisogno di uno schiaffo

Ci sono svariati motivi per cui la Scienza, pur essendo una disciplina di matrice umana e quindi predisposta all’errore, riesce sempre a raddrizzarsi. Il motivo più cruciale è la spietatezza del giudizio tra pari: l’oggettività e il metodo scientifico non guardano in faccia nessuno.

Naturalmente per garantire il continuo raddrizzamento servono grandi personalità, che devono essere la base di ogni comunità scientifica. E non parlo di “grandi personalità” solo dal punto di vista accademico, servono grandi capacità relazionali e grande onestà intellettuale, anche a costo di dire qualcosa di molto scomodo. La scienza inizia a morire quando inizia a prendere piede il pensiero di gregge, dal quale nessuno ha il coraggio di discostarsi.
A capo del gregge servono dei pastori, pochi fari nella notte, ma sempre accesi e messi nei punti giusti.

In questo contesto, qualche tempo fa sono incappato in una storia condivisa da Freeman Dyson, che è stato uno dei più importanti fisici teorici del secondo novecento. Credo che questa storia riassuma perfettamente lo stato esistenziale del ricercatore: la ricerca è un mondo appassionante in tutti i sensi, passione emotiva e passione in senso latino, “patire, soffrire”.

Un po’ di contesto storico

Un tipico processo di elettrodinamica quantistica, un fotone virtuale viene scambiato tra due elettroni.

Alla fine degli anni ’40 si era raggiunta una soddisfacente descrizione dei processi atomici. L’unica forza fondamentale del mondo quantistico allora compresa, l’elettrodinamica quantistica, aveva come ingredienti i campi fermionici come elettroni, protoni e neutroni, e il campo elettromagnetico (rappresentato dal suo quanto di eccitazione, il fotone).
Come descritto in un precedente articolo, essendo il mediatore di un’interazione a raggio d’azione infinito, il fotone ha massa nulla. Un principio di simmetria, assieme alle nozioni dell’elettrodinamica classica, ci guidano a scrivere l’interazione elettrodinamica, come spiegato in un precedente articolo, con la seguente struttura:

L’accoppiamento tra campi fermionici ψ e il campo elettromagnetico Aμ.
L’intensità dell’interazione è specificata dalla carica dell’elettrone in unità fondamentali (unità di c=ℏ=1).
Freeman Dyson (1923-2020)

A partire da questa struttura, si è in grado di calcolare tutti i processi elettromagnetici possibili, e verificare l’accuratezza della teoria confrontando i valori ottenuti con i dati sperimentali. Questa era l’occupazione di Freeman Dyson e il suo gruppo di studenti. Dyson, allora un giovanissimo professore di Fisica Teorica alla Cornell, era riuscito con il suo gruppo ad ottenere uno spettacolare accordo tra le previsioni teoriche e i dati sperimentali: l’elettrodinamica era una teoria in grado di fare previsioni molto accurate.

Dopo questi successi, nel 1951 il gruppo di Dyson era alla ricerca di altri problemi da conquistare. Uno particolarmente promettente era il problema di studiare cosa tenesse assieme i nuclei: l’interazione nucleare.
All’epoca la Fisica Nucleare era una scienza prettamente empirica: i modelli teorici erano pochi, confusi e dallo scarso potere predittivo. Quello che era certo, almeno alla scala di energia che si esplorava all’epoca, è che il mediatore della forza nucleare doveva essere massivo (per sapere perché leggi qua) perché al di fuori del nucleo la forza nucleare cessava di esistere.
Se il mediatore dell’elettrodinamica era il fotone, il mediatore dell’interazione nucleare fu individuato nel pione. L’obbiettivo era quindi fare degli esperimenti in cui si facevano collidere pioni con altre particelle nucleari, per studiarne l’interazione.

Dyson e il suo gruppo, avendo avuto così tanto successo con il modello dell’elettrodinamica, decisero che la struttura migliore per l’interazione doveva essere molto simile:

L’accoppiamento tra i campi fermionici ψ e il campo del pione ϕ.
L’intensità dell’interazione è specificata dalla costante “g” , che ha un valore molto più elevato della costante di accoppiamento elettromagnetica “e”.
Un protone ed un neutrone interagiscono scambiandosi un pione neutro.
Nota la somiglianza con il diagramma dell’elettrodinamica.


Questa teoria era conosciuta come “teoria del pione pseudoscalare” , e il gruppo di Dyson ci lavorò a tempo pieno per due anni. Dopo uno sforzo di proporzioni eroiche, nel 1953 riuscirono a produrre delle predizioni teoriche in accettabile accordo con i dati disponibili all’epoca. La carriera di alcuni studenti di Dyson dipendeva dal successo di questa teoria, dato che erano per la maggior parte dottorandi o post-doc.

I dati sperimentali con cui confrontavano le loro previsioni teoriche erano stati raccolti da uno dei migliori fisici del novecento, nonché uno dei padri fondatori della ricerca nucleare: Enrico Fermi, professore a Chicago e al tempo uno dei leader nella costruzione del Ciclotrone con cui si studiavano le interazioni nucleari.
Fermi era anche uno dei migliori fisici teorici della sua generazione, quindi Dyson pensò fosse il caso di andare a trovarlo per discutere sul successo del proprio lavoro, prima di pubblicarlo.

Enrico Fermi (1901-1954), premio Nobel per la Fisica 1938.

L’incontro con Fermi

Nella primavera del ’53, Dyson si diresse a Chicago per andare a trovare Fermi nel suo ufficio, portando con sé una pila di fogli con alcuni grafici che riproducevano i dati sperimentali calcolati dal suo gruppo.

Fermi aveva la nomea di incutere una certa soggezione, di certo non solo per la sua fama di grande scienziato, ma anche per l’acutezza del suo giudizio. Quindi è facile immaginarsi che Dyson si sentisse un po’ teso per quell’incontro.
La sua tensione si trasformò presto in soggezione quando vide che Fermi diede solo un rapido sguardo ai fogli che gli aveva portato, per poi invitarlo a sedersi e chiedergli con un tono amichevole come stessero sua moglie e suo figlio neonato.

Dopo qualche chiacchiera, improvvisamente Fermi rilasciò il suo giudizio nella maniera più calma e schietta possibile

Ci sono due modi di fare i calcoli in Fisica Teorica. Il primo modo, che io preferisco, è di avere un chiaro schema mentale del processo fisico che vuoi calcolare. L’altro modo è di avere un preciso ed auto-consistente formalismo matematico. Voi non avete nessuno dei due.

Dyson rimase ammutolito, anche se la parte più orgogliosa di lui era comunque incredula. Quindi cercò di capire cosa non andasse, secondo Fermi, con la teoria del pione pseudoscalare.

Fermi aveva un intuito fisico eccezionale su cui fondò letteralmente una scuola di pensiero in grado di far fruttare ben 8 premi Nobel per la Fisica tra i suoi studenti.

La teoria del pione pseudoscalare, secondo il suo intuito, non poteva essere corretta perché a differenza dell’elettrodinamica l’interazione era molto più intensa e nei calcoli era necessario mascherare alcune divergenze senza avere un chiaro schema fisico di quello che stesse succedendo.

Inoltre, quando Dyson gli chiese, ancora orgogliosamente, come mai secondo lui i dati fossero comunque in accordo con le sue previsioni nonostante la teoria fosse inadeguata, Fermi gli fece notare che il numero di parametri utilizzato (quattro) era troppo alto, e che con un numero così elevato fosse possibile raggiungere un raccordo tra le previsioni teoriche e qualunque dato sperimentale.

In sostanza Fermi demolì, con estrema calma e schiettezza, gli ultimi due anni di lavoro dell’intero gruppo di Dyson, composto da dottorandi e post-doc la cui carriera in quel momento dipendeva dal successo di quella teoria.

La storia diede ragione a Fermi. La teoria del pione pseudoscalare non era quella corretta, al modello delle forze nucleari mancava un pezzo fondamentale del puzzle: i quark, teorizzati da Gell-Mann il decennio successivo, quando Fermi era già morto.

Dopo quell’incontro traumatico, Dyson e il suo gruppo pubblicarono comunque il lavoro, ma abbandonarono completamente quel campo di ricerca. Negli anni successivi, ripensando a quell’evento, Dyson espresse di essere grato eternamente a Fermi per quello “schiaffo” morale, perché la sua teoria non avrebbe portato nessun frutto e avrebbe fatto sprecare preziosi anni di ricerca a lui e al suo gruppo.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Le radici quantistiche della Fisica classica: da dove arriva il principio di minima azione?

Probabilmente avrai sentito parlare delle proprietà degli oggetti quantistici, in particolare della doppia natura ondulatoria-corpuscolare delle particelle. Avrai anche sentito da qualche parte che il mondo macroscopico è solo un’approssimazione di quello quantistico, ma forse non ti è mai stato detto in che senso.

Anche il mondo macroscopico è misterioso!

La fisica macroscopica è dominata dal misteriosissimo principio dell’azione stazionaria, il cui enunciato è:

La traiettoria seguita da un corpo è tale da estremizzare il prodotto fra la differenza di energia cinetica e potenziale e il tempo impiegato a percorrere la traiettoria.

Una traiettoria che unisce i punti A e B per un corpo in caduta libera. La suddividiamo in varie porzioni e per ciascuna calcoliamo la differenza tra energia cinetica T e potenziale U, moltiplicando poi per il tempo impiegato ∆t.

In soldoni: una massa in caduta libera (e quindi sottoposta al potenziale gravitazionale) segue, come sappiamo, una traiettoria rettilinea dall’alto verso il basso.

Fin qui nulla di speciale, non può mica fare le piroette per aria un grave, giusto? Sì, però perché? Andiamo a vedere cosa ha di speciale questa traiettoria.

Se per ogni porzione piccolissima di questa traiettoria calcoliamo la differenza tra energia cinetica ed energia potenziale del grave, e poi moltiplichiamo tale differenza per il tempo impiegato a percorrere tale porzione, e poi sommiamo tutti i risultati delle singole porzioni, otteniamo un certo numero che chiamiamo “S”.

Tieni bene a mente questo numerino “S” dato che è molto speciale, calcolabile per qualsiasi traiettoria e sistema fisico. In sostanza è un’indicazione di quanto eccesso di energia cinetica rispetto all’energia potenziale abbiamo avuto nella traiettoria, e per quanto tempo lo abbiamo avuto.


Se ora immaginiamo di avere poteri soprannaturali per modificare la traiettoria del grave in qualsiasi modo preferiamo, e rifacciamo lo stesso calcolo, scopriamo che è letteralmente impossibile ottenere un valore più basso di quello ottenuto prima, che era “S”. La traiettoria naturale del grave è tale da rendere minimo il numero “S”.

Tradotto: puoi immaginare di far compiere al grave qualche piroetta in aria, prima di farlo cadere dal punto più alto al punto più basso, e il numerino ”S” che provi a calcolare risulterà sempre maggiore di quello ottenuto con la traiettoria rettilinea naturale.
Se invece fai compiere al corpo traiettorie molto vicine a quella naturale, il numero ”S” si discosterà pochissimo da quello originale, cioè ∆S=0.

I punti A e B possono essere uniti da tante traiettorie immaginarie. Il principio dell’azione stazionaria ci dice che la traiettoria effettivamente seguita in natura è quella che estremizza il numero “S”.

I fisici calcolano in questo modo le traiettorie dei corpi nella meccanica classica, cercando cioè quella che minimizza il numero “S”.

Il mistero:


Il motivo per cui ciò debba essere così è letteralmente un mistero: perché la natura fa seguire delle traiettorie che estremizzano o minimizzano quella quantità, e scarta tutte le altre traiettorie?


In che modo il principio più importante della fisica teorica ci è suggerito dalle leggi quantistiche?

La soluzione:

Procediamo per piccoli step. Forse avrai già visto da qualche parte questa immagine, riguardo il comportamento degli oggetti quantistici

Se pratichiamo due fori su una parete S2 e vi facciamo passare un fascio di oggetti quantistici, le loro posizioni di arrivo sullo schermo F si dispongono a strisce, con un pattern ben determinato di interferenza. Se la natura di tali oggetti fosse solo corpuscolare ci aspetteremmo invece, come suggeritoci dall’intuito, solo due strisce, in corrispondenza dei fori.

Questa figura di interferenza è dovuta al fatto che gli oggetti quantistici si comportano come onde, e le onde hanno un modo molto speciale di interagire con l’ambiente: in corrispondenza dei due fori vengono a crearsi due nuove versioni dell’onda incidente, che finiscono poi per interferire tra loro: dove l’interferenza è costruttiva sullo schermo F, osserviamo un massimo (striscia chiara), mentre dove l’interferenza è distruttiva osserviamo un minimo (striscia scura).

I fisici quantistici interpretano il comportamento ondulatorio dicendo “Ok, alla particella è associata una certa ampiezza di probabilità (l’ampiezza dell’onda), e l’ampiezza totale di probabilità di trovare la particella su F deve essere data dalla somma delle ampiezze dei due fori”. La probabilità si trova poi facendo il quadrato dell’ampiezza totale, per cui la probabilità di arrivo in F è

Il quadrato della somma è diverso dalla somma di quadrati. Il termine misto è responsabile dell’interferenza.

Che succede se pratichiamo tre fori invece che due? Indovinato, dobbiamo sommare anche la terza ampiezza e fare il quadrato della somma delle tre. Se invece usiamo quattro fori? La stessa cosa. Ormai dovrebbe essere chiaro.
E se volessimo essere malefici e usare due pareti invece che una sola?

La probabilità di arrivare in O si ottiene facendo il quadrato della somma delle ampiezze B1,B2,B3, ma la probabilità che la particella arrivi in B1,B2 o B3 è data anch’essa dal quadrato della somma delle probabilità di A1,A2,A3. Si può ripetere il ragionamento ricorsivamente aggiungendo altre pareti.

Il fascio di oggetti quantistici parte dalla sorgente S e deve attraversare ora ben due pareti: si “propaga” in maniera probabilistica da ciascun foro A1,A2,A3 verso ciascuno dei fori B1,B2,B3,B4, dai quali, nuovamente, si propagherà per essere raccolto dallo schermo nel punto O con una certa probabilità che dipende da tutte le combinazioni possibili delle probabilità precedenti.

Che succede se al posto di praticare solo tre o quattro fori, usiamo una parete con centinaia, migliaia di fori? Esattamente la stessa cosa: la particella arriverà in O con una probabilità data dalla combinazione di tutte le ampiezze e i modi possibili di arrivare a destinazione.
Concorderai con me che se pratichiamo migliaia e migliaia di fori, è come se stessimo facendo scomparire la parete, ed infatti è proprio qui che sorge l’intuizione di Richard Feynman:

Un oggetto quantistico può propagarsi da S ad O seguendo tutte le traiettorie immaginabili, cioè ciascuna traiettoria, nessuna esclusa, contribuisce alla probabilità che l’oggetto possa essere osservato in O.

Una particella quantistica può arrivare in O seguendo qualsiasi traiettoria immaginabile. Naturalmente certe traiettorie sono semplicemente più probabili di altre, in base al valore del numero ”S”, che assume un ruolo importante anche nella teoria quantistica.

Questa è una proprietà speciale del comportamento ondulatorio degli oggetti quantistici, ma in che modo si ripercuote sul mondo degli oggetti macroscopici?

Il punto cruciale è l’interferenza distruttiva: nel limite macroscopico in cui la scala di energia quantistica diventa molto piccola, sopravvivono solo quelle traiettorie che fanno variare poco il numerino “S” che abbiamo definito in precedenza, dato che l’interferenza distruttiva è tanto maggiore quanto più varia “S”.

Siccome la traiettoria naturale (macroscopica) coincide con il limite estremo del valore di ”S”, abbiamo che ”S” varia molto poco in corrispondenza di traiettorie vicine a quella naturale, che quindi sopravvivono nell’interferenza.
Le altre traiettorie hanno semplicemente una probabilità minuscola di compiersi in natura, per questioni essenzialmente probabilistiche-ondulatorie.

Da qualche parte nel tempo, presente o futuro, potrai osservare un sasso che, nell’atto di cadere da un punto più alto a un punto più basso, compie una traiettoria circolare, poi fa zig zag avanti e indietro, ed infine cade nel punto più basso.

Non hai mai visto una cosa simile accadere? Ti credo bene!
La probabilità che segua questa traiettoria al posto di quella naturale è, quantisticamente parlando, così minuscola che non basterebbe l’età dell’universo per osservarla.



PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile a tutti e insegnare le tecniche matematiche necessarie a una sua comprensione. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

L’equazione più importante della fisica: perché tutto è un oscillatore armonico?

Spesso tra colleghi fisici ci si scherza sopra: “tutto, ma proprio tutto è un oscillatore armonico!”.
In realtà questa non è proprio un’esagerazione: in un certo senso, sotto alcune approssimazioni, tantissimi sistemi fisici hanno lo stesso comportamento di un oscillatore armonico.

Alcuni esempi:

  • Il pendolo oscilla
  • Le corde di una chitarra oscillano
  • Un liquido in un tubo a U oscilla
  • I pianeti seguono una traiettoria che riferita a una certa coordinata è un’oscillazione
  • La corrente elettrica in un circuito di una radio oscilla
  • Gli atomi oscillano
  • Gli elettroni sono delle oscillazioni di un certo campo fermionico

Cos’è un oscillatore armonico?

Tutti siamo familiari con il moto di una massa collegata a una molla: se tendiamo la molla e la lasciamo andare, la massa inizierà ad oscillare perché richiamata dalla forza elastica. Questa oscillazione è detta armonica perché è un’oscillazione perfetta, cioè segue l’isocronismo: il tempo che impiega la massa a fare avanti e indietro è indipendente da quanto è stata tesa la molla all’inizio. Questa proprietà permette di risolvere con estrema semplicità il moto di un sistema fisico.


L’equazione di un oscillatore armonico è la seguente

Questa è un’equazione differenziale che desidera essere risolta da una particolare funzione x(t) che rappresenta la traiettoria della massa nel tempo. Se non sai cos’è un’equazione differenziale, non preoccuparti, non è questo il punto del discorso.
Ti basta sapere che la soluzione x(t) è proprio un’oscillazione, cioè una funzione seno o coseno, avente una frequenza ω.

La traiettoria oscillante x(t) in funzione del tempo t.

La grande notizia è questa: sotto certe approssimazioni, la maggior parte dei sistemi fisici sono ben descritti da un’oscillazione!

Perché all’universo piace l’oscillatore armonico?

Le forze decidono in che modo devono muoversi i corpi.
Il motivo per cui la traiettoria della massa collegata alla molla obbedisce all’equazione differenziale dell’oscillatore armonico va ricercato nella natura dell’interazione tra la molla e la massa: la forza elastica.

In fisica tutte le interazioni possono essere descritte da un oggetto matematico fondamentale: il potenziale di interazione. Questo potenziale descrive le forze tra gli oggetti ed è specificato dall’interazione di cui si sta parlando, (ad esempio quella gravitazionale o elettromagnetica), per cui può dipendere dalle loro distanze reciproche, dalle loro masse, o dalle loro cariche elettriche.

Per non mettere troppa carne sul fuoco consideriamo una sola dimensione spaziale x e supponiamo che l’interazione dipenda solo dalla distanza x dall’origine x=0.

Matematicamente il potenziale di interazione sarà quindi una funzione di x, che indichiamo per convenzione con U(x).

Alcuni potenziali di interazione in una sola dimensione. Solo il potenziale più a sinistra produce delle traiettorie di oscillazione armonica.

Il potenziale di un oscillatore armonico è una parabola

Il potenziale di un oscillatore armonico

Come mai ciò?
Immagina una biglia sul fondo di una scodella: se si prova a spostare la biglia verso le pareti della scodella, la biglia tornerà indietro verso il fondo e inizierà a oscillare da una parete all’altra fino a quando l’attrito non avrà consumato tutta l’energia potenziale iniziale.

La biglia vuole tornare nel fondo della scodella perché era una posizione di equilibrio stabile, ma non può più semplicemente fermarsi in quel punto dato che ha abbastanza energia cinetica da risalire nuovamente sulla parete in direzione opposta (abbiamo perturbato il suo equilibrio stabile).
Allo stesso modo una molla vuole portare il più possibile vicino a sé la massa (per raggiungere il punto di equilibrio), ma se lasciamo andare la massa da una certa posizione iniziale, essa avrà un’energia cinetica abbastanza elevata da non fermarsi nel punto di equilibrio della molla, per cui lo oltrepasserà e proseguirà fino a quando non sentirà l’interazione elastica richiamarla nuovamente, stavolta in direzione opposta.

Il punto è che il potenziale armonico è lo stesso sia per x>0 che per x<0:
la parabola è simmetrica nei due bracci

ciò consente alla molla di richiamare la massa con una simmetria direzionale perfetta: da questo nasce l’oscillazione. Tutte le interazioni che presuppongono l’esistenza di un potenziale a forma di parabola producono delle oscillazioni armoniche dei corpi.

La metamorfosi: come si diventa armonici?

La chiave che accomuna tutti i sistemi che possono essere trattati come oscillatori armonici è che debba esistere un punto di equilibrio stabile attorno a cui oscillare. Se fissiamo tale punto di equilibrio nell’origine x=0 allora grazie ai teoremi di analisi matematica abbiamo che il potenziale può essere sviluppato come un polinomio attorno a questo punto

dove teoricamente la somma continua fino all’infinito.
Il punto fondamentale è che possiamo approssimare, cioè possiamo studiare il sistema così vicino al punto di equilibrio da poter trascurare i termini polinomiali di grado superiore (in soldoni, il numero 0.01 al cubo è più piccolo di 0.01 al quadrato, e così via). Ad esempio possiamo fermarci al polinomio di grado due.

Non lasciarti distrarre dai parametri costanti F, sappi solo che dipendono dal punto attorno cui stiamo sviluppando il potenziale. In particolare nel punto di equilibrio si ha

infatti tale parametro rappresenta la forza sentita dal corpo, e per definizione di punto di equilibrio, la forza in quel punto è nulla. Quindi si annulla il primo ordine del polinomio, e se trascuriamo il terzo ordine, ci rimane proprio una parabola.

Quindi l’interazione diventa del tutto analoga a quella elastica per piccole distanze attorno alla posizione di equilibrio. Il potenziale armonico è uno dei pochissimi casi in cui sappiamo risolvere perfettamente le equazioni, per cui non solo all’universo piace oscillare, ma anche ai fisici piace descrivere interazioni molto complicate, approssimandole, quando possibile, con quelle di un oscillatore.



PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica e che ruota attorno all’equazione dell’oscillatore armonico. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.