Fermi: quel 21enne che contribuì alla Relatività Generale

Uno degli scopi principali di Internet dovrebbe essere quello di dare la possibilità di condividere per aiutarsi a vicenda negli studi. In questo senso trovo appagante quando riesco a trovare un articolo di un altro studente che sta studiando un particolare argomento tecnico e ha voglia di condividere il risultato con gli altri, per aiutarli nella stessa ricerca. Ho tratto beneficio da questo tipo di pratiche, quindi mi sento di condividere a mia volta.

Una delle questioni che mi hanno lasciato insoddisfatto quando ho studiato Relatività Generale era la scarsa enfasi posta dai corsi e dai libri di testo introduttivi nei confronti delle coordinate di un osservatore in caduta libera.

Nella meccanica classica è spesso cruciale porsi nei panni di un osservatore che interagisce con l’universo intorno a sé, per capire come questi descrive i fenomeni intorno a lui, e le interpretazioni fisiche che ne dà.

Se ad esempio una particella in movimento si trova nella stessa regione di spazio di un’altra carica elettrica, è di nostro interesse capire quale sia il campo “visto” dalla particella, immedesimandoci in lei con un opportuno cambio di coordinate. Ciò ci permette di interpretare alcune proprietà del suo moto che altrimenti ci sarebbe apparso meno intuitivo.

Il principio di equivalenza

La Relatività Generale si fonda sul principio che un osservatore in caduta libera in un campo gravitazionale rappresenta un sistema localmente inerziale. Cioè nei pressi della sua traiettoria, dal suo punto di vista, lo spaziotempo è quello della relatività ristretta: piatto.

Questo principio permette di derivare la struttura matematica delle equazioni di Einstein per lo spaziotempo attorno a una distribuzione di massa o di energia qualunque. Tuttavia nella maggior parte delle trattazioni introduttive, il ruolo del principio di equivalenza finisce qui.

Ad esempio la soluzione che descrive lo spaziotempo attorno a un buco nero di Schwarzschild viene fornita nelle coordinate di un osservatore che si trova ad infinita distanza dal buco nero, e difficilmente viene affrontato il problema, (ben più interessante dal mio punto di vista), di come appaia lo spaziotempo attorno a un buco nero dal punto di vista di un osservatore che ci stia cascando dentro.

Questo è un gran peccato perché una delle curiosità più interessanti riguarda proprio ciò che percepirebbe un malcapitato nei pressi dell’orizzonte degli eventi!

La cosa curiosa è che nemmeno Einstein, il padre del principio di equivalenza e della relatività, si preoccupò di cercare quale fosse la trasformazione di coordinate per un osservatore in caduta libera (o meglio, si accontentò della prima approssimazione più semplice, e cioè lo spaziotempo piatto di un osservatore inerziale). Ma questo non ci dice nulla sullo spaziotempo poco più distante dalla traiettoria dell’osservatore, dove inizierebbero a manifestarsi gli effetti della curvatura!

Il giovanissimo Fermi

Sorprendentemente ci pensò l’allora 21enne Enrico Fermi, il quale scrisse quelle che oggi sono note come “coordinate di Fermi”. Il suo lavoro fu pubblicato nel 1922 con il nome “Sopra i fenomeni che avvengono in vicinanza di una linea oraria” e fu pionieristico.

Le coordinate di Fermi descrivono lo spaziotempo nelle vicinanze di un osservatore in caduta libera, e possono essere applicate per provare a soddisfare la curiosità di cosa succeda davvero nell’orizzonte degli eventi di un buco nero molto semplice, non rotante ed eterno: un buco nero di Schwarzschild.

Sfortunatamente queste coordinate sono poco trattate nei corsi introduttivi, e la letteratura è poco accessibile. Da questa insoddisfazione ho deciso di fare un po’ di ricerca a proposito e come risultato ho scritto un piccolo compendio con il fine di rendere questo argomento più accessibile a uno studente del primo anno di un corso magistrale.

Il file in PDF può essere scaricato qui sotto:

Naturalmente lascia a bocca aperta la maturità con la quale l’allora 21enne Enrico Fermi, geniale nella matematica, affrontò la questione. Ciò fu immediatamente riconosciuto dai fisici matematici italiani (come Levi Civita).

Oggi le coordinate di Fermi rappresentano uno strumento molto utile, e sono usate nella ricerca più avanzata nelle computazioni teoriche della relatività generale.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

La caduta libera in un buco nero di Schwarzschild in coordinate di Fermi

Cosa percepisce un astronauta in caduta libera oltre l’orizzonte degli eventi?
Vengono utilizzate le coordinate normali di Fermi per descrivere lo spaziotempo in una piccola regione che circonda la traiettoria di un corpo in caduta libera verso un buco nero di Schwarzschild.