La Dolce Vita tra i Calcoli Sbagliati – Cronache di Fisica Teorica

Cambio posizione per l’ennesima volta. La scalinata davanti al Palazzo Ducale di Genova non è uno dei posti più comodi per mettersi a scrivere calcoli sul tablet. La speranza è che la scomodità della situazione stimoli il cervello a produrre più di quanto farebbe a casa.

È il mio primo tentativo nel mondo della ricerca in Fisica Teorica, e davvero sento di non poter sbagliare. In qualche modo sono convinto che un ricercatore alle prime armi abbia a disposizione un solo tentativo, altrimenti è tacciato di incompetenza. Qualcosa tipo “se non ottieni risultati, almeno salvati la reputazione e non commettere errori”.

Tra le questioni da indagare nel mio lavoro ce n’è una che mi sta molto a cuore: una spiegazione teorica del perché elettrone, muone e tau (tre particelle “sorelle” da tutti i punti di vista) abbiano masse così spropositatamente diverse:

Elettrone, muone e tau, assieme al bosone di Higgs.
  • Rapporto massa elettrone/muone m_e/m_\mu\approx 1/200
  • Rapporto massa muone/tau m_\mu/m_\tau\approx 1/17

Questi rapporti non sono in nessun modo giustificati nel Modello Standard. È un puzzle vero e proprio nella fisica delle alte energie: perché particelle così simili in tutto e per tutto devono differire in maniera così marcata nelle loro masse?

Non che stessi provando a fare nulla di nuovo, negli ultimi 40 anni sono state pubblicate molte teorie (non verificate) in grado di spiegarlo, il punto è che il lavoro di ricerca prevedeva la risoluzione di questo puzzle in un contesto più ampio, una nuova simmetria della Natura proposta di recente: la simmetria modulare. Tale simmetria aiuterebbe a fare previsioni sulle particelle più elusive che conosciamo: i neutrini.

La simmetria modulare funziona molto bene, ma non è facile incastrarci in maniera naturale quei rapporti di massa. Questo era parte della scommessa del nostro lavoro di ricerca. Nulla di sconvolgente, ma un possibile (interessante) avanzamento in un’area molto misteriosa.

Il Sole picchia forte su quella scalinata, e man mano che si sposta nel cielo traccia un’ombra che io sono costretto a seguire per vedere meglio i miei calcoli. Nella mente riecheggiano le parole del mio supervisore, sentito poco prima in una informalissima chiamata Teams al telefono:

Quei pesi modulari possono avere un ruolo nella spiegazione dei rapporti di massa, qualcosa che non è stato ancora provato…

I “pesi modulari” sono speciali coefficienti con cui scriviamo le teorie di simmetria modulare, e sono collegati in qualche modo agli accoppiamenti delle particelle con il campo di Higgs (il quale dà massa alle particelle, come sai). Detto in maniera spiccia: un peso diverso corrisponde a un accoppiamento più o meno forte con il campo di Higgs, per via di interazioni che avvengono a energie altissime con altri campi ad oggi sconosciuti.

Il mio obbiettivo è quello di spiegare con lo stesso modello sia i rapporti di massa di queste tre particelle, sia alcuni parametri fondamentali nelle oscillazioni dei neutrini. La maggior parte dei modelli “modulari” in letteratura riesce a fare solo la seconda cosa.

Provo quindi tutte le combinazioni possibili di pesi da assegnare. Dai! Elettrone, muone e tau, da qualche parte dovrete pur distinguervi l’uno dall’altro. Nessuna strada mi convince, forse perché cerco di essere più ortodosso possibile: non sia mai che proponga una mia idea originale col rischio di metterci la faccia e fallire quella che io penso sia la mia unica chance.

Tra un calcolo e l’altro, le ore scorrono a una velocità impressionante: un soleggiato (ma freddo) pomeriggio autunnale inizia a volgere al termine.

Sono sempre stato uno studente più “visivo” che “logico” quando si tratta di conti, cerco anzitutto analogie e somiglianze tra i simboli. Spesso funziona, e se funzionasse pure stavolta?

Mi intestardisco su un’idea: e se dessi dei pesi diversi a queste tre particelle? Provo varie possibilità, decisamente alla cieca.

Verso il tramonto, inizio a notare un pattern nei miei calcoli. Un’assegnazione di pesi modulari pare riprodurre la gerarchia di masse correttamente. La mia testardaggine con quei calcoli pare premiarmi. Ho tentato un approccio un po’ meno ortodosso, ma sì sai forse che quasi quasi è anche…originale?

Il cuore salta un battito. Che bella la verginità del ricercatore alle prime armi: basta così poco.

Rialzandomi da quella scalinata, mi accorgo di aver perso sensibilità alle gambe dopo averle pressate per almeno 4 ore sul marmo fresco. Mentre sto perdendo l’equilibrio penso: l’mportante è non far cadere il tablet, no quello è troppo importante. Ovviamente per quello che ci sta scritto dentro.

Sono così paranoico che decido subito di mandare al mio supervisore una mail con le paginate che ho scritto. Paginate illeggibili, dunque inutili per chiunque non fosse me, ma dovevo in qualche modo salvarle. Potevo sempre essere rapito o finire in un tombino nella via di casa…e quelle pagine non avrebbero mai visto la luce del giorno.

Il tempo di allontanarmi dal Palazzo ed arriva una telefonata su Teams, è lui.

Nel momento in cui finisco la chiamata mi ritrovo quasi dall’altra parte della città. Nell’euforia ho percorso tutto viale XX settembre. Sono convinto di essermi giocato la mia unica carta da fisico teorico, e che forse è quella vincente.

Ricordo bene quella sensazione mistica: mi sentivo davvero in comunicazione con le leggi della Natura, la stessa sensazione che mi ha sempre attratto alla Fisica. Le parole entusiaste del mio supervisore mi hanno folgorato.

Quella chiamata su Teams ha però esaurito le ultime energie vitali del mio telefono. Un’ottima occasione per riflettere su quanto fatto, in solitudine, per riprendersi dallo shock.

Camminando, l’euforia lascia il posto a una strana sensazione di sollievo: penso “fiùu, per fortuna me la sono giocata bene questa carta, ora posso essere preso sul serio“. Subentra anche una certa ansia da prestazione: ora che ho mosso bene il primo passo, ci si aspetta che azzecchi pure il prossimo? E così via, senza fine? Quasi toglie un po’ di sapore a quella che penso essere la vita del ricercatore.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Quella notte non riesco a prendere sonno, vorrei sia subito mattina per ritornare a lavorare, e magari scrivere in bella copia quei risultati preliminari.

Ma, come a volte mi capita (specialmente dopo aver dato un esame scritto) la notte è portatrice di lucidità divina. Inizio ad avere dei sospetti su quello che ho fatto, così mi alzo e mi presento in salotto, illuminato al chiaro di Luna, tablet in una mano e computer nell’altra. Mi rileggo un po’ di articoli su questa nuova teoria, in cerca di eventuali punti deboli nel mio ragionamento.

L’orgoglio scaturito dalla giornata mi impedisce di avere grossi dubbi, ma ho anche fiducia nella mia attività cerebrale in regime di dormiveglia: se ho accumulato qualche sospetto ho il dovere di controllare.

La città inizia a risvegliarsi, e assieme a lei il cinguettio degli uccellini del parco vicino. Fa un suono ben più forte il tonfo del mio cuore mentre realizzo che ho trascurato alcuni vincoli fondamentali nelle equazioni del modello.

Il modello che ho trovato non è corretto perché alcuni vincoli di simmetria non sono rispettati.

Tutto distrutto, tutto in malora, per via di un dettaglio.

Con mia enorme sorpresa, il tonfo non è però doloroso, somiglia più a quella sensazione che hai dopo essere sceso dalle montagne russe. Lo spavento è intenso, ma la voglia di rifarlo lo è ancora più.

In pochissimi secondi ho il vero lampo della giornata: non sono deluso, sono estasiato. Tutto ha molto più sapore, e arriva il vero sollievo.

La dolce illusione di aver trovato qualcosa di nuovo è molto più gustosa del risultato in sé. In quelle chiamate su Teams non ero entusiasta solo per l’elettrone, il muone e il tau, ma anche per la possibilità di conversare con un altro ricercatore su questioni difficili di cui nessuno sa la risposta certa.

Quella notte, in quell’istante, realizzo di essere orgoglioso di me.

Il tentare e ritentare, senza l’obbligo di dover trovare tutto al primo colpo, questa è la Ricerca. Il ricercatore può (e deve) sbagliare tanto, perché ha poi il dovere di informare gli altri su quali strade non funzionano.

Chiaramente il mio era un approccio infantile. Ma quanto spesso pensiamo di doverci giocare la carriera in un colpo solo? Quante volte rigettiamo il fallimento! Quante volte sentiamo di dover dimostrare qualcosa per darci un po’ di tregua e accettarci?
Eppure, quante altre volte la ricerca del successo è ben più saporita del successo stesso?

In quell’attimo, ho capito davvero perché mi interessa la strada della ricerca.


Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

La genesi dell’equazione di Dirac

L’equazione d’onda relativistica dell’elettrone rappresenta uno dei trionfi più importanti della scienza del XX secolo.

Nota come “equazione di Dirac”, dal nome del suo scopritore Paul Dirac, essa costituisce la base di tutta la Chimica e di quasi tutta la Fisica moderna.

Trovo molto interessante provare a riavvolgere il filo del pensiero di Dirac, immedesimandoci in lui quando in una fredda serata a Cambridge nel 1928 arrivò a scrivere la sua equazione dopo essere stato tanto tempo seduto a fissare il caminetto (o così dice la leggenda).

Innegabilmente l’equazione di Dirac vanta una certa eleganza estetica, ed è per questo motivo bersaglio di una sempre crescente mercatizzazione (non è raro trovarsela stampata sulle tazze o sulle magliette).
Trovo anche io difficile resistere al suo fascino e decido quindi di raffigurarla qui in bella vista, prima di iniziare l’articolo:

L’equazione di Dirac descrive una particella libera (relativistica) di spin 1/2.
Piccolo suggerimento: prima di procedere può essere utile dare un'occhiata a due articoli più introduttivi come questo e questo. Se non ne hai voglia ora, li citerò comunque nel prosieguo, inserendoli nei punti chiave in caso tu voglia approfondire.

Schrödinger: le particelle libere come onde piane

Nel 1926 Schrödinger aveva illustrato al mondo che le particelle quantistiche potevano essere descritte da funzioni d’onda la cui forma funzionale era fissata dalla soluzione dell’equazione

In questa equazione ψ è la funzione d’onda che vogliamo trovare, e H rappresenta l’interazione tra particella e il mondo circostante. Questa interazione, agendo su ψ nel membro di destra, produce una variazione nel tempo della ψ stessa, come evidenziato nel membro di sinistra col simbolo di variazione nel tempo ∂/∂t lasciato agire su ψ.
Per una particella libera (cioè senza interazioni con il mondo circostante, o con interazioni così deboli da poter essere trascurate rispetto all’energia cinetica della particella), l’equazione di Schrödinger ha una soluzione semplicissima: un’onda piana

Se non sei familiare con quella forma curiosa per l’energia cinetica ti basti sapere che partendo da 1/2 m v2, questa può essere riscritta in una forma più conveniente sostituendo la quantità di moto p=mv.

In che senso “più conveniente”? In meccanica quantistica si usano gli operatori, che sono oggetti matematici che trasformano le funzioni d’onda in un certo modo. Non tutte le quantità a cui siamo abituati classicamente sono dei buoni operatori. La quantità di moto è un operatore che sappiamo maneggiare bene nei calcoli, al contrario della velocità che è mal definita.

L’energia relativistica, un passo oltre Schrödinger

Nel 1905 Einstein rivoluzionò la meccanica newtoniana con la teoria della Relatività Ristretta. Una delle conseguenze fu la correzione all’energia totale di una particella libera. La forma newtoniana prevedeva, come abbiamo visto, E= p2/2m. In realtà questa non è altro che l’approssimazione della versione einsteiniana una volta che consideriamo velocità molto più basse di quelle della luce, in cui si ha:

In queste formule “m” è la massa della particella, “p” la quantità di moto e “c” la velocità della luce.
A basse velocità otteniamo di nuovo la formula newtoniana per l’energia.

Le energie di legame atomiche sono solitamente così piccole da far sì che le particelle si muovano a velocità molto più basse di quella della luce. L’equazione di Schrödinger era stata creata proprio per descrivere i processi atomici, quindi all’inizio nessuno si preoccupò che non fosse relativistica, c’erano problemi ben più importanti da risolvere.
Se invece si indaga sulla scala subatomica si scopre che bisogna tenere conto delle correzioni relativistiche, proprio perché stavolta aumenta l’energia in gioco.
La strategia più naturale per rendere relativistica l’equazione di Schrödinger è quella di sostituire la vecchia forma di H con la formulazione relativistica:

La forma relativistica dell’equazione di Schrödinger.

Il problema è che, come anticipato prima, in meccanica quantistica la quantità di moto è un operatore, ed è problematico definire la radice quadrata di un operatore. Come superiamo questo ostacolo?

La Klein-Gordon e i suoi problemi

L’approccio proposto da Klein e Gordon per eliminare la radice fu quello di calcolare la variazione temporale di entrambi i membri dell’equazione relativistica, applicando ∂/∂t a sinistra e a destra

In questo conto è fondamentale sapere che l’unità immaginaria “i” è definita in modo che i2=-1

A sinistra abbiamo quindi una doppia derivazione rispetto al tempo, mentre a destra (siccome H è costante nel tempo) otteniamo ψ/∂t, alla quale possiamo sostituire l’equazione di Schrödinger stessa. Con questo piccolo trucco otteniamo che la radice quadrata sparisce.
Ora per semplificare i conti che seguiranno scegliamo di lavorare con delle unità in cui ħ=c=1 e facciamo un cambio di variabili, l’equazione di sopra diventa l’equazione di Klein-Gordon:

L’equazione di Klein-Gordon scritta in una forma più simpatica all’occhio.

L’equazione di Klein-Gordon fu il primo tentativo di relativizzare l’equazione di Schrödinger. La soluzione di questa equazione è ancora un’onda piana per una particella di massa m, solo che a differenza di prima la forma dell’equazione è immediatamente covariante sotto trasformazioni di Lorentz, in quanto P2 e m2 sono degli scalari di Lorentz: in sostanza il principio di relatività è automaticamente soddisfatto (mentre non lo era nell’equazione di Schrödinger).

Dove sta la fregatura?

L’aver mandato via la radice quadrata ha sollevato un problema irritante: l’evoluzione temporale nell’equazione di Schrödinger era espressa da un termine di primo grado ψ/∂t, mentre ora nella Klein-Gordon è espressa da un termine di secondo grado (∂2ψ/∂t2), e ciò fa sì che la densità di probabilità possa ora assumere valori non solo positivi, ma anche negativi o nulli.

Infatti i moduli quadri delle funzioni d’onda (che per la regola di Born rappresentano le densità di probabilità) possono essere calcolati tramite una particolare “ricetta” che dipende in una maniera molto precisa dal tipo di equazione dinamica da cui si parte. Si dà il caso che la “ricetta” ereditata dall’equazione di Klein-Gordon sia difettosa rispetto a quella dell’equazione di Schrödinger.
Ciò fa perdere di significato fisico tutta la struttura matematica della nostra teoria, una bella gatta da pelare!

Non c'era via di uscita? È questo il prezzo da pagare per aver cercato di introdurre la relatività nella meccanica quantistica?

L’illuminazione di Dirac

Per dei motivi che oggi non sono più rilevanti, Dirac era fortemente preoccupato dal problema della densità di probabilità nella Klein-Gordon. Per questa ragione si ossessionò al punto da forzare la matematica stessa: voleva abbassare l’ordine delle derivate temporali dal secondo grado al primo grado a tutti i costi, pur mantenendo un’equazione relativisticamente permessa. Nella sua mente la forma prediletta doveva essere, per ragioni relativistiche e di “eleganza”

In cui γ0 è un termine per ora indeterminato. Questa equazione doveva comunque essere collegata alla Klein-Gordon in qualche modo, perché questa garantisce l’invarianza relativistica. L’illuminazione arrivò quando fu colto il seguente parallelismo con la differenza algebrica dei quadrati a2-b2

dove le γμ sono degli oggetti per ora ignoti, e la notazione va intesa nel modo seguente:

j=1,2,3 indica le tre direzioni cartesiane x,y,z. Quindi x1=x , x2=y , x3=z. γP è quindi solo un modo rapido di scrivere quella somma di termini, comprendenti tutte le direzioni spaziali cartesiane.

Affinché valga l’uguaglianza con la Klein-Gordon tramite la differenza dei quadrati le misteriose γμ devono soddisfare

in cui ημν è la metrica dello spazio-tempo della relatività ristretta. Infatti per avere uguaglianza deve essere

e questa condizione può essere soddisfatta solo se vale la relazione scritta sopra, che lega la metrica ημν con gli oggetti γμ.

La richiesta di un’equazione con derivata temporale al primo ordine ha quindi generato due possibili equazioni relativistiche:

le quali descrivono particelle aventi energia di segno “opposto” (per saperne di più sulla questione dell’antimateria e l’equazione di Dirac clicca qui).

L’uguaglianza del loro prodotto con la Klein-Gordon impone poi che gli oggetti γμ debbano essere delle matrici quattro-dimensionali con delle ben determinate regole di composizione legate alla metrica dello spaziotempo. Non solo, la forma matematica di queste equazioni impone che la funzione d’onda ψ trasformi in una maniera ben precisa sotto trasformazioni di Lorentz.

Fu la prima volta nella storia della Fisica in cui una richiesta di struttura visiva della matematica portò a scoprire un’intera classe di nuovi oggetti matematici.

Tornando alla notazione con le derivate scritte in una forma più elegante:

otteniamo la forma dell’equazione di Dirac che si stampa sulle magliette:

È cruciale il fatto che ora possiamo interpretarla proprio come una sorta di decomposizione della Klein-Gordon per far sì di ottenere solo derivate di primo grado nel tempo. Nonostante ciò, è in realtà è più proficuo (dal punto di vista teorico) interpretare questa equazione come l’equazione del moto di una teoria di campo costruita per le particelle che trasformano come una rappresentazione di spin 1/2 sotto trasformazioni di Lorentz (se vuoi saperne di più sul perché classifichiamo le particelle come rappresentazioni di spin clicca qui).


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg


Approccio classico alla teoria magnetica della materia

A seguire il documento in formato pdf–> Approccio classico alla teoria magnetica della materia

Entro i limiti concettuali della meccanica classica, è proposta la trattazione dei fenomeni di diamagnetismo e di paramagnetismo a livello atomico-molecolare, servendosi della precessione di Larmor e della legge di induzione nel caso del diamagnetismo, e di una distribuzione di probabilità di Boltzmann nel caso del paramagnetismo, arrivando a derivare in entrambi i casi le suscettività magnetiche in termini microscopici, fino alle leggi di Curie per il magnetismo.

Matteo Parriciatu