Le radici quantistiche della Fisica classica: da dove arriva il principio di minima azione?

Probabilmente avrai sentito parlare delle proprietà degli oggetti quantistici, in particolare della doppia natura ondulatoria-corpuscolare delle particelle. Avrai anche sentito da qualche parte che il mondo macroscopico è solo un’approssimazione di quello quantistico, ma forse non ti è mai stato detto in che senso.

Anche il mondo macroscopico è misterioso!

La fisica macroscopica è dominata dal misteriosissimo principio dell’azione stazionaria, il cui enunciato è:

La traiettoria seguita da un corpo è tale da estremizzare il prodotto fra la differenza di energia cinetica e potenziale e il tempo impiegato a percorrere la traiettoria.

Una traiettoria che unisce i punti A e B per un corpo in caduta libera. La suddividiamo in varie porzioni e per ciascuna calcoliamo la differenza tra energia cinetica T e potenziale U, moltiplicando poi per il tempo impiegato ∆t.

In soldoni: una massa in caduta libera (e quindi sottoposta al potenziale gravitazionale) segue, come sappiamo, una traiettoria rettilinea dall’alto verso il basso.

Fin qui nulla di speciale, non può mica fare le piroette per aria un grave, giusto? Sì, però perché? Andiamo a vedere cosa ha di speciale questa traiettoria.

Se per ogni porzione piccolissima di questa traiettoria calcoliamo la differenza tra energia cinetica ed energia potenziale del grave, e poi moltiplichiamo tale differenza per il tempo impiegato a percorrere tale porzione, e poi sommiamo tutti i risultati delle singole porzioni, otteniamo un certo numero che chiamiamo “S”.

Tieni bene a mente questo numerino “S” dato che è molto speciale, calcolabile per qualsiasi traiettoria e sistema fisico. In sostanza è un’indicazione di quanto eccesso di energia cinetica rispetto all’energia potenziale abbiamo avuto nella traiettoria, e per quanto tempo lo abbiamo avuto.


Se ora immaginiamo di avere poteri soprannaturali per modificare la traiettoria del grave in qualsiasi modo preferiamo, e rifacciamo lo stesso calcolo, scopriamo che è letteralmente impossibile ottenere un valore più basso di quello ottenuto prima, che era “S”. La traiettoria naturale del grave è tale da rendere minimo il numero “S”.

Tradotto: puoi immaginare di far compiere al grave qualche piroetta in aria, prima di farlo cadere dal punto più alto al punto più basso, e il numerino ”S” che provi a calcolare risulterà sempre maggiore di quello ottenuto con la traiettoria rettilinea naturale.
Se invece fai compiere al corpo traiettorie molto vicine a quella naturale, il numero ”S” si discosterà pochissimo da quello originale, cioè ∆S=0.

I punti A e B possono essere uniti da tante traiettorie immaginarie. Il principio dell’azione stazionaria ci dice che la traiettoria effettivamente seguita in natura è quella che estremizza il numero “S”.

I fisici calcolano in questo modo le traiettorie dei corpi nella meccanica classica, cercando cioè quella che minimizza il numero “S”.

Il mistero:


Il motivo per cui ciò debba essere così è letteralmente un mistero: perché la natura fa seguire delle traiettorie che estremizzano o minimizzano quella quantità, e scarta tutte le altre traiettorie?


In che modo il principio più importante della fisica teorica ci è suggerito dalle leggi quantistiche?

La soluzione:

Procediamo per piccoli step. Forse avrai già visto da qualche parte questa immagine, riguardo il comportamento degli oggetti quantistici

Se pratichiamo due fori su una parete S2 e vi facciamo passare un fascio di oggetti quantistici, le loro posizioni di arrivo sullo schermo F si dispongono a strisce, con un pattern ben determinato di interferenza. Se la natura di tali oggetti fosse solo corpuscolare ci aspetteremmo invece, come suggeritoci dall’intuito, solo due strisce, in corrispondenza dei fori.

Questa figura di interferenza è dovuta al fatto che gli oggetti quantistici si comportano come onde, e le onde hanno un modo molto speciale di interagire con l’ambiente: in corrispondenza dei due fori vengono a crearsi due nuove versioni dell’onda incidente, che finiscono poi per interferire tra loro: dove l’interferenza è costruttiva sullo schermo F, osserviamo un massimo (striscia chiara), mentre dove l’interferenza è distruttiva osserviamo un minimo (striscia scura).

I fisici quantistici interpretano il comportamento ondulatorio dicendo “Ok, alla particella è associata una certa ampiezza di probabilità (l’ampiezza dell’onda), e l’ampiezza totale di probabilità di trovare la particella su F deve essere data dalla somma delle ampiezze dei due fori”. La probabilità si trova poi facendo il quadrato dell’ampiezza totale, per cui la probabilità di arrivo in F è

Il quadrato della somma è diverso dalla somma di quadrati. Il termine misto è responsabile dell’interferenza.

Che succede se pratichiamo tre fori invece che due? Indovinato, dobbiamo sommare anche la terza ampiezza e fare il quadrato della somma delle tre. Se invece usiamo quattro fori? La stessa cosa. Ormai dovrebbe essere chiaro.
E se volessimo essere malefici e usare due pareti invece che una sola?

La probabilità di arrivare in O si ottiene facendo il quadrato della somma delle ampiezze B1,B2,B3, ma la probabilità che la particella arrivi in B1,B2 o B3 è data anch’essa dal quadrato della somma delle probabilità di A1,A2,A3. Si può ripetere il ragionamento ricorsivamente aggiungendo altre pareti.

Il fascio di oggetti quantistici parte dalla sorgente S e deve attraversare ora ben due pareti: si “propaga” in maniera probabilistica da ciascun foro A1,A2,A3 verso ciascuno dei fori B1,B2,B3,B4, dai quali, nuovamente, si propagherà per essere raccolto dallo schermo nel punto O con una certa probabilità che dipende da tutte le combinazioni possibili delle probabilità precedenti.

Che succede se al posto di praticare solo tre o quattro fori, usiamo una parete con centinaia, migliaia di fori? Esattamente la stessa cosa: la particella arriverà in O con una probabilità data dalla combinazione di tutte le ampiezze e i modi possibili di arrivare a destinazione.
Concorderai con me che se pratichiamo migliaia e migliaia di fori, è come se stessimo facendo scomparire la parete, ed infatti è proprio qui che sorge l’intuizione di Richard Feynman:

Un oggetto quantistico può propagarsi da S ad O seguendo tutte le traiettorie immaginabili, cioè ciascuna traiettoria, nessuna esclusa, contribuisce alla probabilità che l’oggetto possa essere osservato in O.

Una particella quantistica può arrivare in O seguendo qualsiasi traiettoria immaginabile. Naturalmente certe traiettorie sono semplicemente più probabili di altre, in base al valore del numero ”S”, che assume un ruolo importante anche nella teoria quantistica.

Questa è una proprietà speciale del comportamento ondulatorio degli oggetti quantistici, ma in che modo si ripercuote sul mondo degli oggetti macroscopici?

Il punto cruciale è l’interferenza distruttiva: nel limite macroscopico in cui la scala di energia quantistica diventa molto piccola, sopravvivono solo quelle traiettorie che fanno variare poco il numerino “S” che abbiamo definito in precedenza, dato che l’interferenza distruttiva è tanto maggiore quanto più varia “S”.

Siccome la traiettoria naturale (macroscopica) coincide con il limite estremo del valore di ”S”, abbiamo che ”S” varia molto poco in corrispondenza di traiettorie vicine a quella naturale, che quindi sopravvivono nell’interferenza.
Le altre traiettorie hanno semplicemente una probabilità minuscola di compiersi in natura, per questioni essenzialmente probabilistiche-ondulatorie.

Da qualche parte nel tempo, presente o futuro, potrai osservare un sasso che, nell’atto di cadere da un punto più alto a un punto più basso, compie una traiettoria circolare, poi fa zig zag avanti e indietro, ed infine cade nel punto più basso.

Non hai mai visto una cosa simile accadere? Ti credo bene!
La probabilità che segua questa traiettoria al posto di quella naturale è, quantisticamente parlando, così minuscola che non basterebbe l’età dell’universo per osservarla.



PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile a tutti e insegnare le tecniche matematiche necessarie a una sua comprensione. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.