Semplificando…la forza che lega i Quark con gli Anti-Quark

Si sa: più si cerca di semplificare la fisica, più è probabile incappare in incomprensioni e confusione. È quello che nello slang degli economisti si chiama “trade off” : il nostro trade off è che acquisiamo intuizione, ma sacrifichiamo la precisione.
Nella fisica delle particelle la teoria dei Quark (QCD) è la teoria più complessa mai concepita, ma anche una delle più testate sperimentalmente. Divulgare questa teoria è sempre una grande sfida perché è una bestia difficile da addomesticare e si rischia sempre di risultare imprecisi o completamente in errore.

Le interazioni tra i tre quark all’interno di un neutrone.
[Qashqaiilove, Wikimedia Commons]
La realtà è che c'è ben poco di intuitivo nella QCD. Tuttavia ci sono delle circostanze in cui possiamo connettere alcuni concetti con dei fatti di cui abbiamo già familiarità e intuizione nella meccanica classica. 

I Quark sono (per quanto ne sappiamo oggi) i costituenti più fondamentali della materia, conferendo una struttura ben precisa agli elementi del nucleo come protoni e neutroni (i quali sono composti ciascuno da tre quark).
Nonostante ciò è molto difficile intuire che protoni e neutroni siano composti da Quark! Infatti se ne osservano gli effetti solo a distanze sub-nucleari (o equivalentemente, ad energie sufficientemente elevate). Questa conversione tra energia e distanza è molto utile per capirsi nei discorsi che si fanno in questo campo di ricerca: dipende dal principio di indeterminazione moltiplicato per la velocità della luce:

    \[\Delta R \underbrace{\Delta p c}_{\Delta E}\sim \hbar c\]

il quale fornisce un ottimo modo per convertire da distanze \Delta R ad energia E=pc per particelle molto energetiche. La costante fondamentale \hbar c ha un valore preciso, ed è il fattore di conversione tra distanza ed energia. Invertendo la formula

    \[\Delta R\sim \frac{\hbar c}{\Delta E}\]

ne deduciamo che grandi energie corrispondono a piccole distanze, e viceversa. Tieni a mente questa informazione perchè sarà cruciale nel discorso che andremo a fare.

Tra le quattro forze fondamentali (clicca qui per un breve riassunto), i Quark interagiscono tramite l’interazione forte. Il nome non lascia spazio all’immaginazione: a parità di distanza tra due particelle ad esempio la distanza subnucleare, l’interazione forte è 100 volte più intensa di quella elettromagnetica (che a sua volta è molto più intensa della forza debole e della debolissima forza gravitazionale) il che la rende la forza più intensa in Natura.

Così come i fotoni sono i mediatori dell’interazione elettromagnetica, i gluoni (anch’essi senza massa), sono i mediatori dell’interazione forte. Tuttavia i gluoni sono delle bestioline piuttosto difficili rispetto ai fotoni.

Cominciamo dalle similitudini: avendo massa nulla, anche i gluoni si muovono alla velocità della luce.
Così come i fotoni interagiscono solo tra corpi carichi elettricamente, i gluoni interagiscono solo con particelle dotate di una speciale carica: la carica di colore. Al contrario della carica elettrica, la carica di colore è molto meno intuitiva e quantificabile, e rappresenta le “coordinate” di uno spazio astratto che caratterizza lo stato quantistico di un quark.

Se vuoi, questa carica di colore è un’estensione multidimensionale dei due stati di spin (in questo articolo viene discusso il primo esempio di isospin nucleare nella teoria di Heisenberg). Anche se non è detto che questa cosa ti sia d’aiuto, dato che neanche lo spin è intuitivo! (Vedi questo articolo per approfondire).

I fotoni interagiscono molto poco con gli altri fotoni: se fatti scontrare tra loro hanno una grande probabilità di “passarsi attraverso”. Solo a determinate scale di energia più elevate l’interazione fotone-fotone diventa non più trascurabile. Questo fatto favorisce la validità del principio di sovrapposizione delle onde elettromagnetiche, tanto caro all’ingegneria.

I gluoni, d’altra parte, interagiscono con gli altri gluoni anche a scale di energia più basse, accoppiandosi nei modi più disparati possibili. La teoria dell’interazione forte quindi non rispetta il principio di sovrapposizione: c’è ben poco di lineare e semplice nei campi gluonici.

Analogie e differenze tra interazione elettromagnetica e interazione forte.
Entrambi i mediatori hanno massa nulla e si muovono quindi alla velocità della luce.

Le stranezze della forza forte non finiscono qui. Come specificato nell’immagine precedente, l’interazione elettromagnetica ha un range infinito: due cariche elettriche non smettono mai di sentire l’una la presenza dell’altra, indipendentemente dalla distanza che le separa! È l’intensità quella che varia e diminuisce con l’aumentare della separazione.
Succede lo stesso con la gravità (in tal caso la carica elettrica viene sostituita dalla massa). Il potenziale gravitazionale di una massa m posta a distanza r da una sorgente gravitazionale fissa e di massa M è proporzionale a:

    \[V_{\text{gravità}}\propto -\frac{mM}{r}\]

Il grafico della funzione ha il seguente aspetto:

Analogamente, il potenziale elettrostatico di Coulomb percepito da una carica elettrica q nel campo di una carica Q è

    \[V_{\text{e.m.}}\propto -\frac{qQ}{r}\]

Queste funzioni di r ci dicono la stessa cosa: l’interazione diminuisce all’aumentare della distanza. Dal punto di vista della fisica teorica è equivalente a dire che le interazioni diventano via via più deboli al diminuire della scala di energia, e per energie alte (cioè piccole distanze) diventano sempre più intense. Con “scala di energia” intendiamo il contenuto energetico che dobbiamo fornire al nostro esperimento per far scontrare le particelle nel nostro acceleratore.

Tutto ciò è abbastanza intuitivo: se si gioca con i poli dei geomag ci si rende presto conto che è molto difficile resistere all’attrazione di due poli opposti una volta che li si avvicina abbastanza, mentre è molto difficile avvicinare due poli uguali (in particolare più li si avvicina e più diventa difficile). Il magnetismo, naturalmente, fa parte dell’interazione elettromagnetica e si comporta proprio come ci aspettiamo.

L’interazione forte percepita dai quark è molto più controintuitiva: più i Quark sono vicini tra loro e più “si ignorano”, cioè comunicano molto meno, ovvero l’interazione è meno intensa (tutto il contrario delle interazioni a cui siamo abituati!). A questo fatto è stato dato il nome di libertà asintotica: alle alte energie i Quark si comportano come se fossero liberi. D’altra parte se allontaniamo i Quark (quindi abbassiamo la scala di energia) questi interagiscono molto di più tra loro: è la schiavitù infrarossa.

Sulla libertà asintotica Parisi è stato vicinissmo a vincere il Nobel già quando aveva 25 anni. Gli mancava solo intuire che il numero quantico giusto per descrivere l’interazione era la “carica di colore”.

Le peculiarità dei Quark

Ad oggi conosciamo 6 Quark fondamentali (cioè che non derivano da stati legati con altri Quark) a cui sono stati assegnati dei nomi precisi e di cui si conosce la massa, dal più leggero al più pesante.

I Quark up e down costituiscono la struttura interna di protoni e neutroni (nucleoni), tuttavia le loro masse contribuiscono solo a una piccola parte della massa dei nucleoni. La maggior parte della massa deriva invece dalle intricatissime interazioni e scambi energetici tra i Quark stessi, i quali comunicano incessantemente tramite gluoni.

Un’illustrazione molto schematica di quello che succede all’interno di un protone. Gli oggetti “a forma di molla” rappresentano le interazioni di scambio di gluoni.

Detto in maniera molto semplificata e fiabesca, è come se la carica di colore dei Quark accendesse la scintilla che fa scoccare un “incendio energetico” nel campo gluonico che li circonda. Questo incendio “brucia incessantemente” con un’energia E che dà luogo alla maggior parte della massa del protone tramite la celebre E=mc^2.

È sfruttando questo inferno energetico che siamo stati in grado di creare i Quark più pesanti del up e down, facendo scontrare protoni ad altissime energie che hanno rilasciato come prodotto i Quark più pesanti come il top (l’ultimo ad essere stato scoperto, nel 1995 al Fermilab di Chicago).

Dal punto di vista teorico, le complicate interazioni tra i Quark sono una conseguenza della natura relativistica delle teorie quantistiche di campo. Uno può aspettarsi che la descrizione di queste forze diventi leggermente più semplice se usciamo dal regime relativistico (cioè se consideriamo particelle abbastanza pesanti che si muovono a velocità molto più basse di quella della luce).

A noi piace tanto semplificare, quindi questo è quello che faremo! Consideriamo alcuni Quark più ciccioni, ad esempio il bottom e il charm: un sistema molto semplice da studiare in QCD è lo stato legato di quarkonio, il quale è uno stato legato tra Quark e antiQuark. Stiamo quindi parlando, nel nostro caso, dei seguenti sistemi:

  • Charmonium: stato legato di Charm e anti-Charm
  • Bottomonium: stato legato di Bottom e anti-Bottom
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Per completezza ricordiamo che un anti-Quark è la anti-particella del Quark corrispondente: ha uguale massa e numeri quantici tutti invertiti, cioè carica elettrica, carica di colore, spin etc. invertiti.

Siccome questi due Quark sono abbastanza massivi, si muvono a velocità più basse rispetto a tutti gli altri, quindi è possibile una trattazione non-relativistica in cui possiamo ignorare i discorsi di Einstein. Stiamo parlando di un’approssimazione.

Questi stati legati sono stati osservati sperimentalmente, dunque i discorsi matematici che seguono, seppur non rigorosissimi dal punto di vista teorico, sono empiricamente verificati.

Il potenziale di Quarkonio

Se r è la distanza che separa Quark e anti-Quark, l’energia potenziale di interazione è data dall’espressione (in cui a e b sono delle costanti di cui non devi preoccuparti)

    \[V_\text{quarkonio}= -\frac{a}{r}+br\]

ed ha il seguente grafico:

A piccole distanze l’interazione si comporta in modo del tutto simile a quella gravitazionale ed elettromagnetica: va giù come 1/r. Non farti però ingannare! A distanze piccolissime (cioè energie elevatissime) questo potenziale non è più una buona approssimazione di quello che sta succedendo, perché entrano in gioco gli effetti relativistici della forza forte, e la conseguenza è la libertà asintotica: invece di continuare ad aumentare infinitamente, ad altissime energie l’interazione forte inizia a indebolirsi sempre più, fino a che i Quark si ignorano del tutto.

[Nota bene: quando diciamo “piccole” o “grandi” distanze ci stiamo riferendo a qualcosa di grande o piccolo rispetto alle dimensioni subnucleari!]

D’altra parte, a grandi distanze il potenziale aumenta invece che diminuire (contrariamente a quanto succede nell’interazione gravitazionale ed elettromagnetica). Il fattore che domina questa peculiarità è parametrizzato dal termine b\,r dove b è una costante e r è la distanza. Questo termine ingloba tutto ciò che ci è difficile conoscere del regime di “schiavitù infrarossa”, regime che può essere studiato solo tramite ingegnose simulazioni al computer (campo di studi noto come QCD su reticolo).

Per capire di che tipo di forza si tratta dal punto di vista della meccanica classica, consideriamo un potentiale molto simile: quello di una molla! Se allunghiamo o accorciamo una molla di una distanza r, il potenziale ha la seguente forma:

    \[V_{\text{molla}}=\frac{1}{2}kr^2\]

dove k è la costante elastica. Confrontiamo ora la forma dei due potenziali nel regime di schiavitù infrarossa (cioè a distanze molto grandi in modo che il termine 1/r risulti trascurabile):

Un tipico eleastico.

Stiamo cioè confrontando una retta con una parabola: entro una certa distanza l’interazione di Quarkonio è più intensa di quella che si avrebbe se fosse puramente elastica, mentre superata una certa soglia, l’interazione elastica diventa più elevata. Quindi lo stato legato di Quarkonio a basse energie ha un’intensità che somiglia un po’ a qualcosa che richiama l’interazione elastica tra due corpi. Tuttavia, a differenza della molla, dal punto di vista classico la forza F=ma non dipende dalla distanza, mentre nella molla vi dipende come F=-kx.

D’accordo, magari la molla non è un’approssimazione ottimale, ma è comunque un buon punto di partenza. In realtà è possibile dimostrare che l’andamento della forza di Quarkonio è molto più simile a quella caratteristica degli elastici! Se prendi un elastico per capelli e lo allunghi di una distanza L, l’energia potentiale di richiamo che stai accumulando risulta proporzionale alla distanza L, esattamente come l’energia potenziale del Quarkonio a grandi distanze!


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).