La Dolce Vita tra i Calcoli Sbagliati – Cronache di Fisica Teorica

Cambio posizione per l’ennesima volta. La scalinata davanti al Palazzo Ducale di Genova non è uno dei posti più comodi per mettersi a scrivere calcoli sul tablet. La speranza è che la scomodità della situazione stimoli il cervello a produrre più di quanto farebbe a casa.

È il mio primo tentativo nel mondo della ricerca in Fisica Teorica, e davvero sento di non poter sbagliare. In qualche modo sono convinto che un ricercatore alle prime armi abbia a disposizione un solo tentativo, altrimenti è tacciato di incompetenza. Qualcosa tipo “se non ottieni risultati, almeno salvati la reputazione e non commettere errori”.

Tra le questioni da indagare nel mio lavoro ce n’è una che mi sta molto a cuore: una spiegazione teorica del perché elettrone, muone e tau (tre particelle “sorelle” da tutti i punti di vista) abbiano masse così spropositatamente diverse:

Elettrone, muone e tau, assieme al bosone di Higgs.
  • Rapporto massa elettrone/muone m_e/m_\mu\approx 1/200
  • Rapporto massa muone/tau m_\mu/m_\tau\approx 1/17

Questi rapporti non sono in nessun modo giustificati nel Modello Standard. È un puzzle vero e proprio nella fisica delle alte energie: perché particelle così simili in tutto e per tutto devono differire in maniera così marcata nelle loro masse?

Non che stessi provando a fare nulla di nuovo, negli ultimi 40 anni sono state pubblicate molte teorie (non verificate) in grado di spiegarlo, il punto è che il lavoro di ricerca prevedeva la risoluzione di questo puzzle in un contesto più ampio, una nuova simmetria della Natura proposta di recente: la simmetria modulare. Tale simmetria aiuterebbe a fare previsioni sulle particelle più elusive che conosciamo: i neutrini.

La simmetria modulare funziona molto bene, ma non è facile incastrarci in maniera naturale quei rapporti di massa. Questo era parte della scommessa del nostro lavoro di ricerca. Nulla di sconvolgente, ma un possibile (interessante) avanzamento in un’area molto misteriosa.

Il Sole picchia forte su quella scalinata, e man mano che si sposta nel cielo traccia un’ombra che io sono costretto a seguire per vedere meglio i miei calcoli. Nella mente riecheggiano le parole del mio supervisore, sentito poco prima in una informalissima chiamata Teams al telefono:

Quei pesi modulari possono avere un ruolo nella spiegazione dei rapporti di massa, qualcosa che non è stato ancora provato…

I “pesi modulari” sono speciali coefficienti con cui scriviamo le teorie di simmetria modulare, e sono collegati in qualche modo agli accoppiamenti delle particelle con il campo di Higgs (il quale dà massa alle particelle, come sai). Detto in maniera spiccia: un peso diverso corrisponde a un accoppiamento più o meno forte con il campo di Higgs, per via di interazioni che avvengono a energie altissime con altri campi ad oggi sconosciuti.

Il mio obbiettivo è quello di spiegare con lo stesso modello sia i rapporti di massa di queste tre particelle, sia alcuni parametri fondamentali nelle oscillazioni dei neutrini. La maggior parte dei modelli “modulari” in letteratura riesce a fare solo la seconda cosa.

Provo quindi tutte le combinazioni possibili di pesi da assegnare. Dai! Elettrone, muone e tau, da qualche parte dovrete pur distinguervi l’uno dall’altro. Nessuna strada mi convince, forse perché cerco di essere più ortodosso possibile: non sia mai che proponga una mia idea originale col rischio di metterci la faccia e fallire quella che io penso sia la mia unica chance.

Tra un calcolo e l’altro, le ore scorrono a una velocità impressionante: un soleggiato (ma freddo) pomeriggio autunnale inizia a volgere al termine.

Sono sempre stato uno studente più “visivo” che “logico” quando si tratta di conti, cerco anzitutto analogie e somiglianze tra i simboli. Spesso funziona, e se funzionasse pure stavolta?

Mi intestardisco su un’idea: e se dessi dei pesi diversi a queste tre particelle? Provo varie possibilità, decisamente alla cieca.

Verso il tramonto, inizio a notare un pattern nei miei calcoli. Un’assegnazione di pesi modulari pare riprodurre la gerarchia di masse correttamente. La mia testardaggine con quei calcoli pare premiarmi. Ho tentato un approccio un po’ meno ortodosso, ma sì sai forse che quasi quasi è anche…originale?

Il cuore salta un battito. Che bella la verginità del ricercatore alle prime armi: basta così poco.

Rialzandomi da quella scalinata, mi accorgo di aver perso sensibilità alle gambe dopo averle pressate per almeno 4 ore sul marmo fresco. Mentre sto perdendo l’equilibrio penso: l’mportante è non far cadere il tablet, no quello è troppo importante. Ovviamente per quello che ci sta scritto dentro.

Sono così paranoico che decido subito di mandare al mio supervisore una mail con le paginate che ho scritto. Paginate illeggibili, dunque inutili per chiunque non fosse me, ma dovevo in qualche modo salvarle. Potevo sempre essere rapito o finire in un tombino nella via di casa…e quelle pagine non avrebbero mai visto la luce del giorno.

Il tempo di allontanarmi dal Palazzo ed arriva una telefonata su Teams, è lui.

Nel momento in cui finisco la chiamata mi ritrovo quasi dall’altra parte della città. Nell’euforia ho percorso tutto viale XX settembre. Sono convinto di essermi giocato la mia unica carta da fisico teorico, e che forse è quella vincente.

Ricordo bene quella sensazione mistica: mi sentivo davvero in comunicazione con le leggi della Natura, la stessa sensazione che mi ha sempre attratto alla Fisica. Le parole entusiaste del mio supervisore mi hanno folgorato.

Quella chiamata su Teams ha però esaurito le ultime energie vitali del mio telefono. Un’ottima occasione per riflettere su quanto fatto, in solitudine, per riprendersi dallo shock.

Camminando, l’euforia lascia il posto a una strana sensazione di sollievo: penso “fiùu, per fortuna me la sono giocata bene questa carta, ora posso essere preso sul serio“. Subentra anche una certa ansia da prestazione: ora che ho mosso bene il primo passo, ci si aspetta che azzecchi pure il prossimo? E così via, senza fine? Quasi toglie un po’ di sapore a quella che penso essere la vita del ricercatore.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Quella notte non riesco a prendere sonno, vorrei sia subito mattina per ritornare a lavorare, e magari scrivere in bella copia quei risultati preliminari.

Ma, come a volte mi capita (specialmente dopo aver dato un esame scritto) la notte è portatrice di lucidità divina. Inizio ad avere dei sospetti su quello che ho fatto, così mi alzo e mi presento in salotto, illuminato al chiaro di Luna, tablet in una mano e computer nell’altra. Mi rileggo un po’ di articoli su questa nuova teoria, in cerca di eventuali punti deboli nel mio ragionamento.

L’orgoglio scaturito dalla giornata mi impedisce di avere grossi dubbi, ma ho anche fiducia nella mia attività cerebrale in regime di dormiveglia: se ho accumulato qualche sospetto ho il dovere di controllare.

La città inizia a risvegliarsi, e assieme a lei il cinguettio degli uccellini del parco vicino. Fa un suono ben più forte il tonfo del mio cuore mentre realizzo che ho trascurato alcuni vincoli fondamentali nelle equazioni del modello.

Il modello che ho trovato non è corretto perché alcuni vincoli di simmetria non sono rispettati.

Tutto distrutto, tutto in malora, per via di un dettaglio.

Con mia enorme sorpresa, il tonfo non è però doloroso, somiglia più a quella sensazione che hai dopo essere sceso dalle montagne russe. Lo spavento è intenso, ma la voglia di rifarlo lo è ancora più.

In pochissimi secondi ho il vero lampo della giornata: non sono deluso, sono estasiato. Tutto ha molto più sapore, e arriva il vero sollievo.

La dolce illusione di aver trovato qualcosa di nuovo è molto più gustosa del risultato in sé. In quelle chiamate su Teams non ero entusiasta solo per l’elettrone, il muone e il tau, ma anche per la possibilità di conversare con un altro ricercatore su questioni difficili di cui nessuno sa la risposta certa.

Quella notte, in quell’istante, realizzo di essere orgoglioso di me.

Il tentare e ritentare, senza l’obbligo di dover trovare tutto al primo colpo, questa è la Ricerca. Il ricercatore può (e deve) sbagliare tanto, perché ha poi il dovere di informare gli altri su quali strade non funzionano.

Chiaramente il mio era un approccio infantile. Ma quanto spesso pensiamo di doverci giocare la carriera in un colpo solo? Quante volte rigettiamo il fallimento! Quante volte sentiamo di dover dimostrare qualcosa per darci un po’ di tregua e accettarci?
Eppure, quante altre volte la ricerca del successo è ben più saporita del successo stesso?

In quell’attimo, ho capito davvero perché mi interessa la strada della ricerca.


Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

L’intrigante “carattere discriminatorio” del bosone di Higgs

Immagina di reincarnarti in una particella elementare in un istante tra i 10^{-36} e i 10^{-12} secondi dopo il Big Bang.

L’universo ha un aspetto molto diverso da quello odierno, c’è tantissima confusione, un viavai di interazioni, come un vociare assordante.
La sensazione che provi è molto singolare, sei capace di individuare solo il momento in cui “appari” e il momento in cui “scompari”, ma nemmeno riesci a distinguere l’uno o dall’altro. Il problema è che ti muovi alla velocità della luce dato che, come tutte le altre particelle dell’universo, non hai massa. Per questo la tua percezione del tempo è assolutamente insensata, in accordo con le leggi della Relatività Ristretta.

In qualche modo sembra che il momento in cui appari e scompari dall’esistenza sia sempre accompagnato dalla presenza di una particella praticamente identica a te, o almeno questo è ciò che ti ricordi.

Ora i tempi sono cambiati (cambia tutto piuttosto in fretta quando passi da 10^{-36} a 10^{-12} secondi dopo il Big Bang). Ti accorgi che gli eventi iniziano ad avere una forma, tra un inizio e una fine c’è anche un presente.


Sei stata “rallentata” da qualcosa, e inizi a sentire il peso dello scorrere del tempo: non ti muovi più esattamente alla velocità della luce. Tra tutto quel vociare non riesci a prendere coscienza di cosa sia successo, pare che nessuno si sia accorto troppo del cambiamento, eppure inizi a riconoscere che le altre particelle non si comportano tutte come te, alcune sembrano interagire con le altre in un modo molto diverso dal tuo.

Ti viene in mente che questo possa essere connesso con l’esistenza di almeno due interazioni fondamentali diverse.

Inizi a raccogliere qualche indizio: ogni volta che scompari dall’esistenza è sempre coinvolta almeno un’altra particella. Dopo qualche tempo sei capace di individuare che esistono altre due particelle (che chiami signor “Mu” e signor “Tau”) che fanno le stesse cose che fai tu, e anche qualche particella identica a te e che per qualche motivo fa sempre il contrario di quello che fai tu.

Il signor Ni rappresenta il neutrino elettronico.

Non appena il vociare primordiale inizia a calmarsi, inizi a distinguere uno strano ronzio nelle tue orecchie “particellari”. Somiglia giusto a un timido bisbiglio, ed inizi a capire di star rallentando sempre di più la tua corsa frenetica tra un’esistenza e un’altra, forse per via di qualcosa che genera anche questo strano bisbigliare?

Decidi di chiedere informazioni a una delle particelle simili a te. C’è una particella in particolare che abbastanza spesso decide di scambiare qualche parola con te, solo che hai difficoltà a capirla perché è leggermente più frenetica. L’hai soprannominata affettuosamente “Ni”. Di solito “Ni” sembra non avere molto tempo da perdere dietro a domande sciocche come la tua, quindi decidi di chiedere al tuo vicino, il signor Mu.

L’elettrone sente molto più debolmente le interazioni con l’Higgs, al contrario delle sue cugine \mu e \tau.

Il signor Mu sembra leggermente meno frenetico, e si comporta esattamente come te: avete delle personalità così identiche che quasi vi disgustate reciprocamente, quindi di solito circolate un po’ lontano l’uno dall’altra. Tuttavia hai bisogno di informazioni, e ti prometti di parlargli non appena vi scontrerete di nuovo.

Il signor Mu ammette di essere sorpreso che tu ci abbia messo così tanto ad accorgerti del ronzio, lui lo percepisce 200 volte più forte di te.
Sa anche darti qualche informazione in più, perché di recente ha parlato con il signor Tau, il quale percepisce lo stesso ronzio quasi 20 volte più forte di lui.

Per il signor Tau non si tratta di un ronzio, ma di alcune interessantissime comunicazioni da parte del signor “H” , le quali lo invogliano a rallentare la sua corsa frenetica tra un punto e l’altro della sua esistenza, pur di ascoltare con maggiore attenzione ciò che il signor H ha da dirgli.
Non fai in tempo a fare altre domande che il signor Mu svanisce improvvisamente, lasciando il posto ad altre particelle, tra le quali riconosci il tuo amico Ni accompagnato dalla tua copia sputata.

Rimani un po’ perplesso/a dalla spiegazione del signor Mu. Pensavi fosse abbastanza scontato che te, Mu e Tau foste particelle molto simili. Perché mai il signor H si ostina a non volerti parlare a voce più alta? Perché senti a malapena un ronzio in confronto alle interessanti disquisizioni percepite da Mu e Tau?


Perché Mu e Tau svaniscono all’improvviso dopo così poco tempo, e tu sembri restare sempre la stessa, noiosa particella?

Il tempo passa e l’universo diventa più silenzioso. Ti ritrovi sempre più vicina ad altre particelle identiche a te, e inizi a condurre un’esistenza sempre più monotona, assuefatta dalle delicate parole di un interessante signore che qualcuno chiama “Nucleo”, il quale ti invita a stargli vicino.

François Englert e Peter Higgs, premi Nobel per la Fisica 2013, tra gli inventori del meccanismo che dà la massa alle particelle del Modello Standard tramite il campo di Higgs.

Impari che anche le altre particelle identiche a te non riescono a sentire nulla più di un ronzio da parte del signor H, e quindi capisci di appartenere a un’intera famiglia di particelle che sono un po’ “discriminate“.

Questo è uno degli aspetti più intriganti del Modello Standard: il modello non spiega perché il campo di Higgs interagisce più intensamente con alcune particelle e molto, molto più debolmente con altre.

In principio l’elettrone (la particella in cui ti sei reincarnato/a), il muone il tau sono creati praticamente uguali, sono tre cugini con uguale carica elettrica, spin e altri numeri quantici di interazione. Sono distinte giusto da un “cognome” di famiglia, appunto: “e”, “\mu” e “\tau“.

Elettrone, Muone e Tau: le tre particelle “cugine” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Dopo la rottura di simmetria elettrodebole (per la quale rimando al mio articolo), elettrone muone e tau acquistano una massa per via dell’interazione con il campo di Higgs.
Come funziona? L’interazione si scrive in un modo molto simile a questo (le “interazioni” del Modello Standard sono la scorciatoia per dire che due campi appaiono moltiplicati tra loro nelle equazioni del modello, o moltiplicati per un mediatore comune ad entrambi):

Maggiore è la y (chiamata costante di Yukawa), maggiore è la massa acquistata dalla particella per via del campo di Higgs.
Le masse delle particelle elementari del Modello Standard. L’altezza dei parallelepipedi rappresenta la loro massa.

Il tau interagisce molto con l’Higgs, quindi la sua massa è molto più elevata di quella di muone ed elettrone. L’elettrone è quello che prende meno massa. Quanta meno? Tanta. Circa 0.3 millesimi di quella del tau, e 5 millesimi di quella del muone.

La storia non finisce qui: la particella elementare più massiva (il quark top) ha una massa che è quasi 100 volte quella del tau. Perché tutto questo “classismo” da parte del campo di Higgs? Perché sembra comunicare di più con alcune particelle e molto meno con altre?

La faccenda diventa quasi tragicomica nel caso dei neutrini (il famoso amico “Ni” della tua esperienza post-Big Bang). Si stima che la massa di un neutrino sia a sua volta quasi dieci miliardesimi di quella dell’elettrone. Questo aspetto ha suscitato uno scalpore tale da suggerire che il meccanismo di generazione della massa dei neutrini sia leggermente diverso da quello delle particelle “standard”. In particolare, il neutrino acquista massa grazie a processi sempre mediati dall’Higgs, ma che ricevono contributi da particelle non ancora osservate, che dovevano esistere da qualche parte nei primi istanti dopo il Big Bang.

Come possiamo accettare una tale differenza di trattamento? Come è possibile non restare intrigati dal carattere discriminatorio del campo di Higgs? Perché anche tra particelle praticamente del tutto simili come elettrone, muone e tau alle alte energie, c’è tutta questa discriminazione?

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questa è una parte dei compiti della fisica teorica di questo secolo. Non penserai mica che dopo la scoperta del bosone di Higgs nel 2012 siano finiti i suoi misteri? Assolutamente no, anzi si sono moltiplicati. Il bosone di Higgs (simbolo del trionfo intellettuale della fisica teorica del secolo scorso, e del trionfo sperimentale e tecnologico del secolo corrente) è un punto di partenza, non un punto di arrivo.

Il problema della gerarchia delle masse dei leptoni carichi e dei quark rimane ad oggi un mistero per il quale sono state presentate diverse soluzioni teoriche che dovranno superare i test sperimentali del prossimo secolo.
Chi vivrà, vedrà.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in Simmetrie di Sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).