Il neutrino sterile: la particella “fantasma” che arrovella i fisici da decenni

I neutrini sono a tutti gli effetti le particelle che abbiamo capito meno in tutto il Modello Standard.

In sintesi, le difficoltà sorgono dal fatto che queste particelle interagiscono con una sola delle interazioni fondamentali (senza contare la gravità), e questa è sfortunatamente l‘interazione debole. Alle tipiche energie dei nostri esperimenti questa interazione è fortemente soppressa (ecco perché si chiama “debole”), per cui è molto difficile produrre o far interagire dei neutrini:

In media, un neutrino interagisce una sola volta dopo aver percorso 100 miliardi di volte un diametro terrestre.

Nonostante ciò, i neutrini sono stati scoperti sperimentalmente e vengono studiati con cura dagli anni ’50, questo perché sono state impiegate sorgenti che ne emettono grandi quantità: in questo modo si contrasta la scarsa probabilità di interazione con l’enorme numero di “proiettili”. È la stessa filosofia di comprare un centinaio di “gratta e vinci” per aumentare le chances di pescarne almeno uno vincente.

Cosa non capiamo dei neutrini?

Per poter dire che “capiamo” tutto di una particella dobbiamo essere in grado di affermare quali siano i suoi numeri quantici, e di solito ci si concentra su questi tre:

  • Carica elettrica
  • Spin
  • Massa

Dei neutrini conosciamo con precisione solo i primi due: sono elettricamente neutri (infatti non interagiscono con la forza elettromagnetica) ed hanno spin 1/2, mentre sorprendentemente non sappiamo ancora con precisione il valore della loro massa. Sappiamo solo che non può essere più grande di un numero molto piccolo, per via delle evidenze sperimentali.

Ciò che stupisce è che rispetto alle altre particelle hanno una massa stupidamente minuscola, così piccola che è difficile da misurare: gli esperimenti ci consentono solo di porre dei limiti superiori sempre più piccoli. Per dare un’idea, l’elettrone ha una massa di mezzo milione di elettronvolt, mentre si stima che quella dei neutrini sia inferiore a un solo elettronvolt. Se l’elettrone è considerato la particella carica più leggera del Modello Standard, i neutrini sono davvero dei pesi piuma.

È di fondamentale importanza riuscire a determinare la massa di una particella. Nel Modello Standard la massa è spesso l’unico numero quantico che permette di distinguere tra due particelle che hanno gli altri numeri quantici uguali.

Ad esempio il muone e l’elettrone sono due particelle elementari con la stessa carica elettrica e lo stesso spin, ma il muone è circa 200 volte più pesante dell’elettrone ed è proprio ciò che ci permette di distinguerli nella maggior parte dei casi. Allo stesso modo il tau è la terza “sorella” di muone ed elettrone, in quanto ha stessa carica e stesso spin, ma massa pari a circa 18 volte quella del muone.
Queste tre particelle furono raggruppate in un trio chiamato “leptoni carichi”.

Elettrone, Muone e Tau: le tre particelle “sorelle” del Modello Standard costituiscono la famiglia dei leptoni carichi.

Per spiegare i risultati sperimentali degli anni ’30 e ’50, si associò a ciascun leptone carico (elettrone, muone e tau) un neutrino di tipo corrispondente. Infatti si dimostrò che in ciascun processo di interazione debole di un leptone carico compariva sempre un neutrino, di conseguenza:

  • All’elettrone venne associato un neutrino-elettronico: \nu_e
  • Al muone venne associato un neutrino-muonico: \nu_\mu
  • Al tau venne associato un neutrino-tau: \nu_\tau

Quindi anche i neutrini sono considerati dei leptoni, solo che hanno carica elettrica nulla. Assieme ai leptoni carichi costituiscono i 6 leptoni del Modello Standard.

La cosa importante da capire è che siamo in grado di distinguere un neutrino \nu_e da un neutrino \nu_\mu o da un neutrino \nu_\tau: basta guardare qual è il leptone carico coinvolto nelle interazioni (rare) di questi neutrini!

Il modo in cui siamo in grado di dire quale dei tre neutrini stiamo considerando: basta guardare i leptoni carichi che escono fuori dalle interazioni del neutrino con la materia.

In questo senso si parla di conservazione del sapore leptonico: un neutrino di sapore “muonico” è sempre associato, in un’interazione debole, a un muone. Se c’era un sapore elettronico all’inizio, dovrà esserci un sapore leptonico anche alla fine.

Le oscillazioni di sapore

Alla fine del secolo scorso si scoprì che i neutrini sono in grado di cambiare sapore leptonico durante il loro viaggio tra due punti dello spazio, e fu proprio questo fatto ad evidenziare che i neutrini dovevano avere una massa: senza una massa non è possibile questa oscillazione tra sapori!

L’oscillazione rompe la conservazione del sapore leptonico!

Ad esempio da un processo debole che coinvolge un elettrone (rivelabile) sappiamo che sbucherà fuori un \nu_e, il quale, dopo una certa distanza, si tramuterà in un \nu_\mu, il quale interagirà facendo comparire un muone, che sarà a sua volta rivelabile e ci permetterà di dire che questa oscillazione è effettivamente avvenuta!

Per spiegare questo effetto vengono introdotti gli “stati di massa” dei neutrini, chiamati \nu_1,\nu_2,\nu_3 a cui vengono associate le masse m_1,m_2,m_3. Ciascun stato di massa “contiene” al suo interno i tre sapori dei neutrini \nu_e,\nu_\mu,\nu_\tau in proporzioni che possono essere studiate sperimentalmente.
Graficamente abbiamo quindi tre neutrini ciascuno contenente al suo interno il mixing di sapori:

Gli autostati di massa dei neutrini con al loro interno i mixing dei sapori.
Celeste: \nu_e, Marroncino: \nu_\mu, Grigio: \nu_\tau.

Questo mixing avviene nel senso quanto-meccanico di sovrapposizione di stati: ciascuno stato di massa è una sovrapposizione delle funzioni d’onda dei sapori leptonici e,\mu,\tau.

Ad esempio dalla figura leggiamo che sperimentalmente è stato verificato che lo stato \nu_1 contiene per la maggior parte il sapore elettronico \nu_e (indicato in blu), mentre il sapore tau \nu_\tau è presente solo in minima parte.

Essendo tutto ciò un effetto quanto-meccanico, a ogni oscillazione tra sapori è associata una certa probabilità che sarà tanto più elevata quanto più grande è il mixing tra sapori negli stati di massa. Questa probabilità è verificabile sperimentalmente: basta chiedersi “se nel punto di partenza ho N neutrini di tipo \nu_e, quanti neutrini di tipo \nu_\mu mi ritroverò a una certa distanza dal punto di partenza?”

Ad esempio la probabilità che un neutrino \nu_e si trasformi in un neutrino \nu_\mu è data dalla seguente formula:

Vengono chiamate “oscillazioni” perché la probabilità dipende da un seno al quadrato, il quale rappresenta graficamente un’oscillazione nelle variabili L,E,\Delta m^2.

in cui \theta è un parametro del Modello Standard che è stato misurato sperimentalmente (e definisce il grado di mixing dei due sapori in questo caso). D’altra parte \Delta m^2=m_2^2-m_1^2 riguarda la differenza tra i quadrati delle masse di \nu_2 e \nu_1, mentre L è la distanza a cui hanno viaggiato i neutrini prima di essere rivelati, ed E è la loro energia.
Nota bene che se questi neutrini avessero la stessa massa, e cioè \Delta m^2=0, non si potrebbero avere oscillazioni (la probabilità sarebbe nulla perché il seno di zero fa zero).

Ad esempio è molto più probabile che un \nu_e si trasformi in un \nu_\mu quando l’argomento del seno è vicino al punto in cui il seno ha un massimo, e cioè in prossimità di 90^{\circ} (o in radianti pi/2), e cioè quando

Da questa formula è possibile capire a che valore del rapporto L/E si è più sensibili per rivelare un’oscillazione da \nu_e in \nu_\mu. Si può quindi ottenere una stima di \Delta m^2.

Studiando l’andamento dell’oscillazione con L/E si può quindi ricavare \Delta m^2 proprio da questa formula.

La differenza tra le masse dei neutrini \nu_2 e \nu_1 è minuscola, ma comunque calcolabile dai dati sperimentali. Allo stesso modo è stata calcolata la differenza tra le masse quadre di \nu_3 e \nu_2, e da ciò si può ricavare la differenza tra le masse quadre di \nu_3 e \nu_1.
Conosciamo solo queste \Delta m^2, ma non i valori singoli di m_3,m_2,m_1, che frustrazione, eh?

Misurando il numero di eventi di neutrini di un certo sapore ad alcuni valori del rapporto L/E si possono ricavare i valori sperimentali di \theta e \Delta m^2. Questo è proprio ciò che si fa da qualche decina di anni: la teoria delle oscillazioni è verificata con un alto grado di accuratezza, tranne per qualche anomalia…

Le anomalie delle oscillazioni

Immagina di stare conducendo un esperimento in cui produci dei neutrini \nu_\mu, li fai viaggiare per una certa distanza L e ti aspetti che si trasformino in neutrini \nu_e con una probabilità data dalla formula vista sopra: P_{\nu_e\to\nu_\mu}=\sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right), solo che con sorpresa ti ritrovi a rivelare più neutrini \nu_e di quelli che ti aspettavi, un eccesso rispetto alla previsione teorica.

Questo è proprio quello che capitò nell’esperimento LSND degli anni ’90 (immagine di copertina): comparvero più neutrini \nu_e di quelli previsti dal modello delle oscillazioni a tre stati di massa \nu_1,\nu_2,\nu_3.

Questo fenomeno fu spiegato con l’introduzione di un quarto stato di massa \nu_4, avente massa m_4 apparentemente molto più grande di m_1,m_2,m_3.

Questo \nu_4 permetteva l’oscillazione di \nu_\mu in \nu_e a un ritmo più elevato, dato dalla formula modificata:

Stavolta \Delta m^2_{41}=m_4^2-m_1^2, e non più \Delta m^2=m_2^2-m_1^2.

in cui si trovò che, appunto, \Delta m_{41}^2\gg \Delta m_{21}^2: il quarto stato di massa doveva avere una massa molto più elevata degli altri tre stati di neutrini.

Ricorda però che ad ogni stato \nu_1,\nu_2,\nu_3 avevamo associato un certo mixing di sapori \nu_e,\nu_\mu,\nu_\tau, quindi aggiungendo un \nu_4 dobbiamo aggiungere anche un nuovo sapore \nu_s. Questo è necessario per far quadrare i conti della teoria dei mixing.

Il Modello Standard però proibisce (con misure sperimentalmente verificate) un numero di sapori di neutrini superiore a tre! Cioè possono esistere solo i sapori “canonici”: \nu_e,\nu_\mu,\nu_\tau.

Il nuovo sapore \nu_s associato alla comparsa di \nu_4 dovrà allora essere completamente sconnesso dal Modello Standard, e cioè dovrà essere sterile rispetto a tutte le interazioni fondamentali. Questo suo essere sterile proibisce una rivelazione diretta del neutrino, e i suoi effetti compaiono solo come eccessi di oscillazioni, come nell’esperimento LSND.

Il nuovo mixing dei neutrini usando un quarto stato di massa \nu_4 e un nuovo sapore sterile (indicato in rosa). Notare come \nu_4 contenga il nuovo sapore per la maggior parte, mentre una componente sterile è presente in quantità molto piccole negli altri stati \nu_1,\nu_2,\nu_3.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Se già i neutrini di sapore tradizionale erano difficili da rivelare, il neutrino sterile è quindi una vera e propria particella fantasma. Non ne vediamo l’effetto diretto, ma solo quello indiretto sulle oscillazioni tra gli altri sapori “attivi” \nu_e,\nu_\mu,\nu_\tau.
Tuttavia anche questi “eccessi” nelle oscillazioni sono abbastanza misteriosi, ad oggi non è detto che il neutrino sterile esista per forza.

Ci sono parecchie discordanze sulle anomalie rivelate da LSND, dato che gli esperimenti successivi non sono riusciti a confermarle, ma nemmeno a smentirle! Anche al Gran Sasso (esperimento GALLEX) furono misurate delle anomalie nelle oscillazioni, e ad oggi pure queste anomalie restano senza conferma da altri esperimenti, nonostante siano però difficili da smentire.

La scoperta del neutrino sterile segnerebbe il primo passo verso il superamento definitivo del Modello Standard

Questo perché essendo sterile non potrebbe accoppiarsi nemmeno con il campo di Higgs per sviluppare la massa dello stato m_4, dunque servirebbe un nuovo meccanismo che implicherebbe l’utilizzo di teorie oltre il Modello Standard.

Per mettere la parola definitiva sul neutrino sterile sono previsti esperimenti sempre più sensibili, ma al contempo sempre più difficili da costruire, con tecnologie all’avanguardia ancora da inventare.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Il neutrino: la particella che non dovremmo conoscere

Tutte le particelle note del nostro universo sono state da noi classificate con alcune proprietà che a nostro giudizio sono le più interessanti: la carica elettrica, la massa e lo spin.
Per studiare queste proprietà è di vitale importanza osservare il comportamento delle particelle nelle interazioni con il mondo, in particolare ci si concentra su:

  • Come interagiscono con un campo elettromagnetico: questo al fine di stimare la loro carica elettrica e la loro massa.
  • Come interagiscono con le altre particelle di un materiale noto: questo al fine di capire il particolare meccanismo di forza a cui la particella è sensibile.

Per il neutrone, elettrone, protone e tante altre particelle, questi metodi ci hanno permesso di avere delle stime molto accurate sulla loro carica elettrica, massa e spin.
Ad esempio neutrone e protone hanno quasi la stessa massa, ma il primo è neutro elettricamente: quindi il neutrone non è sensibile alla forza elettromagnetica, percepisce solo la forza forte e la forza debole (per una rapida infarinatura sulle interazioni fondamentali consulta un articolo recente cliccando qui). Il protone invece è sensibile a tutte le forze fondamentali della natura. L’elettrone non è sensibile alla forza forte, ma lo è alla forza elettromagnetica e debole. Il modo che abbiamo per scoprirlo è utilizzando i due metodi esposti sopra.

Il modo in cui studiamo le interazioni: un proiettile di particelle viene mandato contro un bersaglio. Dopo aver interagito con il bersaglio, le particelle vengono rivelate con un rivelatore. Grazie a calcoli teorici, si può capire che tipo di interazione hanno fatto le particelle nel materiale, ad esempio in base all’angolo di uscita.

Tra tutta la zoologia di particelle, il neutrino è senza dubbio la più seccante.

Immagina se dovessimo studiare le proprietà di una particella che risponde molto male ai nostri metodi di indagine. Una bella gatta da pelare! Una particella parecchio seccante è proprio il neutrino: il primo metodo è inefficace in quanto il neutrino è neutro, mentre il secondo metodo è frustrante in quanto il neutrino interagisce pochissimo con la materia che lo circonda:

In media, un neutrino interagisce una sola volta dopo aver percorso 100 miliardi di volte un diametro terrestre.

In sintesi: il neutrino si comporta come un fantasma in grado di attraversare i muri: non c’è peggior comportamento che una particella possa avere, se il fine è quello di studiare come interagisce!

“Siamo sicuri che questo neutrino esista? Come fanno i fisici a studiare una cosa che non si lascia studiare e poi affermare che esiste con certezza?"

Questo è l’aspetto più frustrante: non possiamo fare a meno del neutrino: per una giustificazione storica dell’esistenza del neutrino clicca su questo articolo. I neutrini sono stati scoperti sperimentalmente e vengono studiati con cura dagli anni ’50, questo perché sono state impiegate sorgenti che emettono grandi quantità di neutrini: in questo modo si contrasta la scarsa probabilità di interazione con l’enorme numero di proiettili. È la stessa filosofia di comprare un centinaio di “gratta e vinci” per aumentare le chances di pescarne almeno uno vincente.

I neutrini interagiscono così poco perché sono sensibili (per quanto ne sappiamo oggi) a un solo tipo di interazione che sfortunatamente è la più debole di tutte (alle energie tipiche degli sperimenti), non per niente si chiama “forza debole“.
Ora devi sapere che dal punto di vista della relatività speciale (leggi qui e qui) ogni particella di spin 1/2 può partecipare alle interazioni in due configurazioni possibili: con il proprio spin orientato come la quantità di moto, o con lo spin orientato in direzione opposta. Il primo modo si dice destrorso, il secondo modo si dice sinistrorso.
Non esiste nessun motivo teorico per cui la configurazione destrorsa debba essere favorita rispetto alla sinistrorsa, eppure per qualche mistero l’interazione debole accoppia le particelle solo nella loro configurazione sinistrorsa (questo fatto si chiama “violazione della simmetria di parità spaziale”).

Il mistero della massa

Siccome i neutrini interagiscono solo con l’interazione debole, essi hanno di fatto un’unica configurazione che possiamo studiare sperimentalmente: quella sinistrorsa. Questo fa sorgere un dubbio dato che, come spiegato brevemente qui, una particella massiva avente lo stesso spin del neutrino dovrebbe invece manifestarsi con entrambe le configurazioni, per questione di relatività.
Se i neutrini si manifestano solo con una delle due configurazioni, potrebbero non avere massa?

Questo sospetto andava a braccetto con i dati sperimentali sulla massa del neutrino: dagli esperimenti sul decadimento beta nucleare (spiegato brevemente qui) si osservava che la massa doveva essere piccolissima, almeno un milione di volte più piccola anche di quella dell’elettrone. Se poggio e buca fa pari, i neutrini dovevano allora avere massa esattamente uguale a zero!

Invece i neutrini si sono rivelati ancora una volta una spina nel fianco, perché nel 1998 furono osservate le oscillazioni dei neutrini.
Devi sapere infatti che di neutrini ne esistono ben tre specie (sono chiamati sapori leptonici): “e, μ, τ”. Siccome si pensava che i neutrini non avessero massa, questi sapori erano ben distinti l’uno dall’altro. Nelle oscillazioni accade proprio il contrario: un neutrino può cambiare sapore con una certa probabilità, e la grande notizia è che ciò può avvenire solo se la massa del neutrino è diversa da zero!

Un neutrino può cambiare sapore con una certa probabilità dovuta alla sovrapposizione quantistica degli stati.

D’accordo, i neutrini hanno massa, ma per via degli esperimenti sul decadimento beta nucleare sappiamo che questa massa deve essere piccolissima, e dunque molto difficile da misurare (in un mondo di particelle molto più massive è difficile misurare una massa piccola). Gli esperimenti sulle oscillazioni dei neutrini evidenziano che una massa c’è, ma non ci dicono quanto vale. A dire il vero ci dicono solo quanto vale la differenza tra i quadrati delle masse. Infatti la notizia interessante è che le masse dei tre neutrini non sono identiche, anche se la differenza dei quadrati è comunque un numero molto piccolo.

Cosa potremmo desiderare di più? Siamo di fronte a particelle neutre, che interagiscono in un solo modo e pure molto debolmente, di cui non sappiamo precisamente nemmeno la massa. Inoltre queste non sono particelle rare: si stima che in ogni centimetro cubo della nostra vita ci siano almeno 300 neutrini! Sono la seconda particella più abbondante nell’universo dopo il fotone!

Il vero motivo per cui i neutrini sono frustranti

Tutte queste difficoltà della Fisica dei neutrini non sarebbero così tragiche se questi fossero particelle noiose e poco importanti. Il problema è che è vero il contrario: i neutrini prendono parte ad alcuni dei processi più importanti della storia dell’universo, dalle teorie cosmologiche fino al meccanismo di funzionamento delle Stelle, e nel fare ciò mettono a nudo la nostra ignoranza residua sul Modello Standard attuale.

Perché la forza debole viola la simmetria di parità? Perché i neutrini sono così leggeri rispetto alle altre particelle elementari? Perché i neutrini sono le uniche particelle elementari neutre? I neutrini possono coincidere con la propria antiparticella? E se sì, i neutrini possono spiegare la iniziale asimmetria tra materia e antimateria negli istanti dopo il Big Bang?

È un po’ come se queste particelle celassero la chiave per aprire le porte a una nuova teoria oltre il Modello Standard, e per via di ciò, ci fosse “reso” molto difficile lavorare con loro. In un certo senso è quasi come se l’universo cercasse di ostacolare il nostro percorso, quasi come se non dovessimo proprio sapere dell’esistenza di queste particelle, le più eccitanti della Fisica moderna.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Perché è stato necessario teorizzare il bosone di Higgs? Demistificando la rottura di simmetria

Sono passati quasi 10 anni, e il bosone di Higgs rimane ancora l’ultima grande scoperta del CERN.
Per molti ciò ha chiuso un capitolo della fisica delle particelle, in quanto l’Higgs rappresentava l’ultimo pezzo del puzzle del Modello Standard, la teoria che ad oggi descrive tutto il mondo subatomico.

Il Modello Standard con tutte le particelle e i bosoni mediatori

Tuttavia rimane ancora un po’ di “misticismo” attorno al ruolo teorico giocato da questa particella, che è stata impropriamente soprannominata “la particella di Dio” in più occasioni. Il suo ruolo dovrebbe essere quello di “dare massa” alle particelle del Modello Standard, ma in che senso ciò avviene? E perché serve proprio il campo di Higgs per dare massa a un qualcosa che la massa (nel nostro immaginario) ce l’ha già di per sé?

Il campo di Higgs (da cui nasce il suo bosone come fluttuazione quantistica) non descrive un’interazione fondamentale, e non ha radici teoriche nei princìpi primi.
Ma allora, perché non potevamo fare a meno di teorizzarlo?

In realtà il campo di Higgs è uno strumento teorico che permette il funzionamento di un meccanismo ben preciso. La rivelazione sperimentale del bosone ha solo confermato che il meccanismo è stato azzeccato appieno.

Al contrario delle interazioni fondamentali, il campo di Higgs non è venuto a cercarci, siamo stati noi a invocarlo per poi verificarne l’esistenza

Vediamo quali sono i punti concettuali che hanno fatto sorgere l’esigenza del meccanismo di Higgs.

L’elettrodinamica e le simmetrie: squadra che vince non si cambia

Tra le quattro forze fondamentali, la prima che fu spiegata con una teoria quantistica di campo fu l’elettromagnetismo. Come spiegato in un precedente articolo, si scoprì negli anni ’30 che il modo più semplice per descrivere l’interazione elettromagnetica tra le particelle era quello di richiedere che la teoria fosse simmetrica sotto una particolare trasformazione che chiamiamo “θ“.
Il campo elettromagnetico è noto, nel gergo tecnico, come campo di gauge. I campi di gauge trasformano in una maniera particolare sotto la “θ“, in modo da far sì che le equazioni del moto (e quindi la Fisica del sistema) rimangano invariate.
D’altro canto, gli oggetti che compongono la teoria quantistica delle particelle (cioè i campi) non lasciano invariata la Fisica del sistema una volta che li trasformiamo sotto la “θ“. La trasformazione produce purtroppo dei pezzetti in più, e la teoria non è quindi invariante. Un modo per cancellare i pezzetti in più è quello di accoppiare il campo di gauge con il campo della particella.

La cosa stupefacente è che questo accoppiamento è perfettamente sufficiente per descrivere tutti i fenomeni di interazione tra le particelle con la teoria. Il mediatore dell’interazione diventa proprio il campo di gauge.

Abbiamo ottenuto un’interazione a partire da una questione che apparentemente non c’entrava proprio nulla, e cioè la richiesta di simmetria sotto una certa trasformazione.

Il meccanismo con cui otteniamo le interazioni in teoria quantistica dei campi

Il campo mediatore tra le particelle per una teoria di campo che conservi la carica elettrica (la quantità conservata sotto la trasformazione “θ“) è proprio il campo elettromagnetico, il cui bosone (cioè le oscillazioni del campo) è noto come fotone.

Questa tecnica di accoppiamento con un campo di gauge funzionò così bene che oggi l’elettrodinamica quantistica è ritenuta essere la teoria scientifica meglio testata di sempre.

Nel momento in cui si presentò il problema di descrivere le altre due interazioni subatomiche, cioè l’interazione debole e l’interazione nucleare forte, si decise di seguire un vecchio motto: squadra che vince non si cambia. Si cercò quindi di scrivere una teoria di campo per le interazioni a partire da princìpi di simmetria e introducendo altri campi di gauge.

L’interazione debole e il problema della massa

Per garantire la simmetria della teoria, il campo di gauge deve godere di una caratteristica fondamentale: i suoi quanti di eccitazione (cioè i suoi bosoni), devono avere massa nulla. Se il campo di gauge ha massa, non si può garantire la simmetria della teoria quantistica con la tecnica esposta sopra. Fortunatamente questa condizione è soddisfatta dal fotone, il quale ha notoriamente massa nulla.
Ma non è detto che saremo sempre così fortunati.

C’è infatti una differenza sostanziale tra interazione elettromagnetica e interazioni deboli: la prima è a raggio di azione infinito, mentre le seconde sono confinate alle dimensioni nucleari. Come spiegato in un precedente articolo, ciò significa che i bosoni mediatori delle interazioni deboli devono essere massivi, al contrario del fotone elettromagnetico, che non ha massa. Quindi se dovessimo introdurre dei campi di gauge per costruire una teoria dell’interazione usando la tecnica della simmetria, questi dovrebbero essere massivi, ma allora dovremmo sacrificare la simmetria, e quindi anche le quantità conservate che da essa derivano.

Si arrivò a un punto in cui si ritenne che il principio di simmetria di gauge fosse indispensabile per descrivere le interazioni fondamentali, quindi le teorie del Modello Standard vennero scritte usando campi di gauge senza massa, così come le particelle coinvolte.
Che cosa da pazzi, sacrificare la massa pur di avere la simmetria!

Il colpo di genio fu quello di immaginare che i bosoni di gauge, così come le particelle, acquisissero massa spontaneamente, con un particolare meccanismo alle basse energie

L’approccio è simile a quello che si usa quando si studia il moto di una particella massiva avente energia relativistica “E” data da:

“p” è la quantità di moto della particella, “m” è la sua massa.

Una particella senza massa ha energia data da “E=pc” (le particelle senza massa possono trasportare quantità di moto, come dimostrato dalle vele solari che sfruttano la pressione di radiazione). Tuttavia anche una particella massiva con grande quantità di moto può essere pensata in prima approssimazione come una particella a massa nulla

La massa può essere trascurata dentro la radice, se la quantità di moto è molto più grande di lei.

L’intenzione era quindi quella di teorizzare le interazioni fondamentali usando particelle senza massa ad alte energie, in modo da garantire la simmetria di gauge. Alle basse energie le masse sarebbero dovute emergere naturalmente, senza appiccicarcele manualmente, perché tale intervento romperebbe la simmetria di gauge accuratamente costruita. Serviva un particolare escamotage teorico affinché questo funzionasse.

Si decise di lasciare che la simmetria si rompesse da sola, spontaneamente, usando un escamotage teorico

Lungo e corto raggio: un’analogia per la rottura di simmetria

Per capire il meccanismo della rottura spontanea di simmetria a livello intuitivo, facciamo un’analogia con un sistema fisico più intuitivo, caratterizzato da una grossa simmetria.
Consideriamo il reticolo di un ferromagnete: ogni molecola del reticolo può essere pensata, per convenienza di ragionamento, come una bussola il cui “ago magnetico” punta, in una configurazione di minima energia, nello stesso verso del campo magnetico locale. Ciò succede se supponiamo che ogni ago magnetico sia a sua volta una sorgente di magnetismo e che riesca a interagire con gli aghi magnetici vicini al suo sito.
L’allineamento è contrastato dall’agitazione termica:

  • Ad alte temperature l’orientamento degli aghi magnetici è casuale, perché l’agitazione termica è ben più forte delle interazioni locali. In media troveremo tanti aghi allineati in un verso, quanti ne troveremo allineati in verso opposto, il risultato netto è una magnetizzazione nulla.
  • A basse temperature la configurazione di minima energia è quella in cui tutti gli aghi sono allineati nello stesso verso e il materiale acquista una magnetizzazione media diversa da zero.

Quale delle due situazioni ha maggiore simmetria geometrica? Si tenderebbe a pensare che sia la seconda, dato che siamo abituati a pensare la simmetria come un “grado di ordine” delle cose. Per lo stesso motivo potremmo sostenere che l’acqua sia più simmetrica quando si solidifica in ghiaccio, rispetto alla sua fase liquida.
In realtà la simmetria va pensata come segue:

“Io eseguo una trasformazione mentre tu chiudi gli occhi, quando li riapri possono succedere due cose: se vedi che il sistema è uguale a prima, allora la trasformazione era una simmetria del sistema, se invece vedi che il sistema è cambiato, quella trasformazione non era una simmetria.”


Il moto delle particelle agitate termicamente è molto più simmetrico, perché possiamo eseguire qualsiasi rotazione geometrica e il sistema rimarrà uguale a se stesso (nel nostro esempio continueranno a esserci tanti aghi magnetici allineati in qualsiasi direzione, con un risultato netto nullo). Le molecole sono così tante e in una disposizione così caotica che non avremmo modo di accorgerci di qualsiasi rotazione attorno a qualsiasi asse.

A sinistra un dipinto caotico di Marc Quinn, a destra lo stesso dipinto ruotato di 180 gradi. Difficile notare la differenza, eh?

Se ora abbassiamo la temperatura il sistema si “irrigidisce” e perde molta simmetria, gli aghi magnetici si dispongono in una situazione di energia minima allineandosi tutti, e ora una rotazione manda il sistema in se stesso solo se la eseguiamo attorno all’asse di magnetizzazione.

Il sistema ha ridotto spontaneamente la simmetria iniziale una volta scelto lo stato energetico più basso!

La simmetria non viene però semplicemente rotta e dispersa, ma viene tradotta in una certa libertà: l’allineamento degli aghi può comunque avvenire in qualsiasi direzione dello spazio in maniera casuale. Il sistema può scegliere di allinearsi lungo tantissime direzioni diverse, tuttavia una volta scelta un’orientazione si stabilizza solo in quella e in nessun’ altra. La simmetria è rotta dalla particolare scelta dell’orientamento, ma tale scelta è comunque casuale per via della simmetria globale iniziale.

In figura sono mostrati due stati di minima energia tra i quali il sistema può scegliere. Questi due stati sono differenziati da una rotazione simultanea di tutti gli aghi magnetici, ma il livello energetico è lo stesso

Non costa energia trasformare uno stato di minima energia in un altro alla stessa energia

Nel gergo della fisica teorica, se una certa interazione non costa energia, può essere descritta da un quanto di vibrazione senza massa.
Che succede se invece di ruotarli tutti assieme, ruotiamo un solo aghetto magnetico rispetto agli altri? Questo ci costerà energia! Invece nello stato di massima energia questa azione non sarebbe costata così tanta energia, per via dell’agitazione termica. Ora è come se l’interazione fosse descritta da un modo di vibrazione massivo.
Il motivo è che costa più fatica portare in cima a una collina una massa più grande rispetto a una massa più piccola. Se la massa più piccola diventa nulla, costerà nessuna fatica muoverla nel campo gravitazionale.

I modi di vibrazione che erano senza massa ad alta energia, diventano massivi a bassa energia.

L’accoppiamento con il campo di Higgs

La grossa simmetria di gauge del Modello Standard alle alte energie è composta da tre simmetrie principali, che vengono indicate con dei nomi simpatici a cui non devi badare troppo:

La simmetria di gauge del Modello Standard

Alle alte energie le interazioni deboli sono un tutt’uno con le interazioni elettromagnetiche, e in totale l’interazione elettrodebole risultante è descritta da quattro campi di gauge senza massa.
Tuttavia le interazioni deboli devono prevedere dei bosoni di gauge massivi, per fare previsioni sperimentali accurate.
Per salvare le simmetrie di gauge e al contempo avere dei bosoni di gauge massivi, i fisici teorici decisero di introdurre un’interazione ad hoc con un campo chiamato “campo di Higgs”, caratterizzato da un potenziale a forma di cappello messicano:

Il potenziale del campo di Higgs. Sulla cima del cappello l’energia è maggiore che sulla valle. Tutti i punti della valle sono alla stessa energia,.

Possiamo immaginarlo di nuovo come una collina: ciascuna particella sulla sommità preferirà rotolare verso il basso e stabilizzarsi in una situazione di minima energia. Il campo di Higgs può assumere spontaneamente una valore di minimo in ogni punto della valle nel cappello messicano.
Siccome nella teoria quantistica dei campi i valori medi sono un’indicazione del numero di particelle in un determinato stato, possiamo dire che la sommità del cappello rappresenta uno stato poco popolato con valore medio nullo del campo di Higgs, mentre la valle è uno stato densamente popolato con valore medio diverso da zero per il campo di Higgs. Popolato da chi? Da bosoni di Higgs, cioè i quanti di eccitazione del campo. Questo è analogo alla magnetizzazione degli aghi magnetici, che aveva valore medio nullo alle alte energie, mentre alle basse energie acquisisce un valore medio diverso da zero.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Se ora accoppiamo il campo di Higgs con i campi del Modello Standard, cioè sia i campi di gauge che i campi delle particelle, abbiamo una rottura spontanea di simmetria alle basse energie.
L’accoppiamento va scelto saggiamente, perché vogliamo far acquisire massa solo ai bosoni dell’interazione debole. Per far ciò possiamo costruire il campo di Higgs in modo che trasformi come un oggetto appartenente allo spazio di simmetria SU(2), che è la simmetria caratteristica dell’interazione debole.

La simmetria iniziale di gauge da cui siamo partiti viene ora utilizzata per scegliere una posizione qualsiasi sul cappello messicano. Infatti ricordiamo: una trasformazione dei campi di gauge non cambia la fisica, e questa libertà può essere utilizzata per scegliere una determinata configurazione in cui l’universo andrà a sostare.
Ciò è analogo al modo in cui gli aghi magnetici erano liberi (per via della simmetria iniziale) di scegliere un’orientazione privilegiata a basse temperature, ed una volta scelta, si stabilivano lì.

L’accoppiamento tra i campi di gauge e il campo di Higgs fa sì che ora non tutte le direzioni di movimento sul cappello messicano siano gratuite: se volessimo risalire lungo la collina ci costerebbe un po’ di energia. Questo costo in energia viene interpretato come un modo di vibrazione massivo. I bosoni delle interazioni deboli, tramite un particolare formalismo matematico, si mischiano tra di loro per via di una particolare scelta della configurazione nello spazio della simmetria iniziale ed acquisiscono massa. Con un altro speciale tipo di accoppiamento acquisiscono massa anche le particelle del Modello Standard!

Siccome la “rottura” di simmetria avviene spontaneamente alle basse energie, abbiamo salvato la simmetria iniziale alle alte energie e le teorie di campo hanno una forma elegante e sperimentalmente solida.

Una visualizzazione pittorica del campo di Higgs e delle particelle frenate da questo “fluido universale”.

In un certo senso il campo di Higgs può essere pensato come un fluido che permea l’universo, e in questo fluido le particelle senza massa (che si muoverebbero alla velocità della luce) vengono “frenate” dal campo di Higgs come se ci fosse un certo attrito, che è il risultato dell’accoppiamento.
Il risultato è che le particelle non si muovono più alla velocità della luce, perciò hanno una massa ben precisa, predetta dal meccanismo di Higgs.

Il risultato del mixing dei campi di gauge dopo la rottura di simmetria corrisponde a tre bosoni di gauge massivi e uno senza massa.
I tre bosoni massivi corrispondono ai mediatori dell’interazione debole alle basse energie, mentre il bosone senza massa corrisponde a quello dell’elettromagnetismo, cioè il fotone.

La verifica sperimentale della massa del bosone di Higgs ha permesso di verificare con grande precisione tutte le previsioni sulle masse dei bosoni dell’interazione debole e sulle masse delle particelle del Modello Standard (con poche eccezioni come i neutrini, che rimangono ancora oggi un grande mistero).

Che mondo imperfetto sarebbe se ogni simmetria fosse perfetta!

B.G. Wybourne

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Come la particella di Majorana potrebbe rivoluzionare la Fisica

Perché il neutrino?

Le particelle più famose sono notoriamente:

ProtoneElettroneNeutrone
Carica elettrica: +1 -1 0
La carica è data in unità della carica elementare dell’elettrone.

le quali erano le uniche particelle note al tempo in cui si studiavano i primi meccanismi nucleari (agli inizi degli anni 30′). Furono proprio i primi esperimenti sui nuclei a suggerire l’esistenza di una nuova, inedita particella elementare.

Il decadimento beta dei nuclei
Negli esperimenti si notava che alcuni nuclei erano in grado di emettere spontaneamente degli elettroni, con il nucleo che di conseguenza finiva per trasformarsi in quello dell’elemento successivo nella tavola periodica.

 
“Aspetta rallenta un attimo, quindi gli elettroni stanno dentro al nucleo e poi vengono rilasciati? Non torna mica con il modellino dell'atomo che s'è fatto a scuola!"


No: gli elettroni non possono “vivere” dentro i nuclei, perché sono troppo leggeri. I nuclei sono abitati da protoni e neutroni. Quindi questa emissione doveva essere spiegata in un altro modo. La teoria proposta era questa:
Dentro al nucleo un neutrone può trasformarsi in un protone (ciò spiega l’aumento del numero atomico nucleare) al prezzo di produrre anche un elettrone (al fine di lasciare inalterata la carica elettrica originale).
La reazione dovrebbe quindi essere

Un neutrone nucleare si trasforma in un protone più un elettrone

Il protone rimane confinato nel nucleo, mentre l’elettrone riesce a sfuggire con una certa energia ben definita dal punto di vista teorico.

Sperimentalmente invece l’energia dell’elettrone era tutt’altro che ben definita, ma distribuita in un certo intervallo.

Questo poteva voler dire due cose: o l’energia totale non si conserva, o l’energia dell’elettrone viene un po’ distribuita anche in quella di una terza particella invisibile emessa nel decadimento

Nessuno vuole mai sacrificare il principio di conservazione dell’energia, ma allo stesso tempo negli esperimenti non si vedeva nessuna “terza particella”, quindi che alternative avevano i fisici?
Inoltre siccome il processo deve conservare la carica elettrica totale, partendo da un neutrone (che è neutro come dice il nome) e arrivando a un protone più un elettrone (la cui carica totale è nulla), l’aggiunta di una terza particella senza intaccare la carica totale sarebbe possibile solo se tale particella fosse neutra.


In sintesi la “terza particella” deve soddisfare questo identikit:

  • Deve essere neutra
  • Deve interagire poco con le altre particelle (il motivo per cui non la vediamo sperimentalmente)
  • Deve essere molto leggera (per spiegare i dati sperimentali).

Enrico Fermi propose il nome “neutrino” per ovvie ragioni (ma non perché è “figlio del neutrone”: sono particelle davvero molto diverse, non farti ingannare dal nome). La reazione completa è quindi

La reazione corretta con l’aggiunta del neutrino

Il problema della massa del neutrino

I dati sperimentali lasciavano presagire che il neutrino dovesse avere una massa piccolissima, e che dovesse essere strutturalmente analogo all’elettrone, ma con carica nulla.

Siccome le particelle vengono catalogate in base a come trasformano sotto le simmetrie, il neutrino trovò subito la sua perfetta catalogazione nel ruolo di “particella di spin 1/2 con massa molto piccola” .

Le particelle di spin 1/2 sono descrivibili con due blocchetti matematici fondamentali:

I campi L e i campi R

Non soffermarti sui loro nomi per ora, sappi solo che si riferiscono al modo in cui entrambi trasformano sotto la simmetria di Lorentz (per saperne di più leggi questo).

Solitamente le particelle di spin 1/2 come gli elettroni possono essere pensate come la composizione di questi due blocchetti L e R perché partecipano sia ai tipi di interazione L sia ai tipi di interazione R.

Ora un fatto importante:

Per costruire una particella di spin 1/2 massiva occorrono entrambe le componenti L e R

D’altra parte i neutrini, in tutti i processi noti, interagivano solo con la componente L. Questa fu una conferma del fatto che il neutrino dovesse avere una massa esattamente uguale a zero: infatti siccome interagisce solo con la parte L, e siccome non è possibile descrivere una particella massiva con solo la parte L senza una parte R (si otterrebbe una teoria che viola il principio di relatività), allora il neutrino poteva benissimo essere descritto con un unico blocchetto L e avere massa nulla.

Due piccioni con una fava: Ettore Majorana

Ogni particella ha la sua antiparticella (di uguale massa e con carica opposta): l’elettrone ha il positrone, il protone ha l’anti-protone e il neutrone ha l’anti-neutrone.

Le anti-particelle sono ciò che si ottiene quando si mischia la teoria quantistica con la teoria della relatività, per cui sono un qualcosa di abbastanza fondamentale.
Per questo motivo anche il neutrino doveva avere un’antiparticella: l’anti-neutrino. Se il neutrino interagisce solo tramite un campo L, l’anti-neutrino interagisce solo tramite un campo R. Tutto torna matematicamente.

“Non me la bevo mica questa! Una particella di uguale massa e carica opposta si chiama anti-particella...ma il neutrone non ha carica, come si fa a distinguerlo dall'antineutrone?"

Il neutrone ha una struttura interna composta da quark: è possibile distinguerlo dall’anti-neutrone con alcuni esperimenti ben congegnati. Però hai sollevato un dubbio interessante che potrebbe riguardare il neutrino:

Chi ci dice che neutrino e antineutrino non siano in realtà la stessa particella? Dopotutto sono neutri…

e dopotutto non hanno una struttura interna di quark (essendo fatti della stessa pasta degli elettroni).

Purtroppo c’è un problema: se sono la stessa particella, come mai interagiscono in modo diverso? Il neutrino interagisce solo come blocchetto L e l’anti-neutrino solo come R. Una bella gatta da pelare.

Poi arrivò il genio di Majorana e prese due piccioni con una fava:

È possibile costruire una teoria che rispetti il principio di relatività a partire da un blocchetto L e un blocchetto R, ma con quest’ultimo costruito a partire da un blocchetto L tramite il meccanismo della coniugazione di carica. Un neutrino può quindi essere descritto da

campo L + C ( campo L)

con “C” si intende il meccanismo della coniugazione di carica

questa costruzione impone che neutrino e anti-neutrino sono la stessa particella: quello che in precedenza era visto come anti-neutrino era in realtà la componente R costruita con “C(L)”.

La cosa più sorprendente dell’intuizione di Majorana era però un’altra: s’era detto poco fa che si possono costruire particelle di spin 1/2 massive solo se hanno entrambe le componenti L e R: ebbene ora il neutrino di Majorana le ha entrambe, quindi è possibile dargli una massa ed ottenere allo stesso tempo una teoria che rispetti il principio di relatività!

Il neutrino di Majorana ha una massa

Per anni il lavoro di Majorana fu trascurato perché la comunità scientifica era invece fermamente convinta che i neutrini dovessero avere massa nulla, e per distinguerli dai neutrini di Majorana, furono chiamati neutrini di Weyl del modello standard. In questo modello il neutrino e l’anti-neutrino sono particelle distinte.

Ettore Majorana 1906 – 1938 (morte presunta)

Inoltre i neutrini di Weyl permettevano matematicamente la conservazione di un certo “numero leptonico” (un numero quantico derivante da una simmetria accidentale, cioè non giustificata teoricamente), il quale era un concetto molto caro ai fisici dell’epoca.
Il neutrino di Majorana avrebbe invece distrutto la simmetria del numero leptonico, per via della sua struttura matematica (campo L più campo C(L)). Un prezzo alto da pagare.

Lo scacco matto: i neutrini hanno massa!

La svolta arrivò con la scoperta del meccanismo di oscillazione dei neutrini. La cosa più importante che devi sapere di questo meccanismo è che letteralmente non potrebbe avvenire se i neutrini avessero massa nulla:

L’oscillazione dei neutrini IMPLICA che i neutrini hanno massa!

Tale fatto era prettamente sperimentale e si traduce nella questione seguente: la massa c’è, ma di che massa si tratta?

Massa di Dirac o massa di Majorana?

  • Una massa di Dirac cioè un neutrino composto da campi L e R che però interagisce solo con L;
    e l’anti-neutrino (distinto dal neutrino) composto anche lui da L e R, ma che interagisce solo con R.
    Le componenti R e L di neutrino e anti-neutrino rispettivamente sarebbero sterili (non partecipano alle interazioni).
  • Una massa di Majorana cioè il neutrino e l’anti-neutrino sono la stessa particella.

La massa di Dirac manterrebbe conservato il numero leptonico, mentre la massa di Majorana no. La massa di Dirac implica l’esistenza di componenti sterili del neutrino (che non partecipano alle interazioni), un fatto abbastanza misterioso. La massa di Majorana non ha bisogno di misteriose componenti sterili.

Conseguenze: la fine di una simmetria

Come possiamo sapere se la massa dei neutrini è di Dirac o di Majorana? Basta cercare un processo di neutrini che comporti la violazione del numero leptonico. Un processo di questo tipo è noto come “doppio decadimento beta senza neutrini” ed è molto raro, cioé molto difficile da rilevare sperimentalmente (vedi esperimento CUORE).

Se si dovesse osservare tale processo si dimostrerebbe una volta per tutte che i neutrini sono particelle di Majorana (a quasi un secolo dalla sua prematura scomparsa) e si aprirebbero nuovi orizzonti oltre il Modello Standard delle particelle: ad esempio la violazione del numero leptonico potrebbe dare nuova linfa ai modelli cosmologici che cercano di spiegare perché ci sia più materia che anti-materia nel nostro universo!


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg