Gli ultimi anni della vita di Einstein furono decisamente poco memorabili (scientificamente parlando). Il più grande fisico del XX secolo fu un po’ vittima dei suoi enormi successi giovanili, i quali lo condussero verso un isolamento intellettuale sempre più marcato.

Uno dei motivi di questo isolamento era che Einstein rigettava la formulazione convenzionale della meccanica quantistica, che secondo lui era una teoria incompleta, esteticamente “sgraziata” e complicata.
Purtroppo il 99% della ricerca in fisica fondamentale dagli anni 20′ in poi si basava invece proprio sulla meccanica quantistica, quindi Einstein aveva ben pochi alleati su questo fronte.
Un altro motivo era dovuto a una sua ossessione: aveva il sogno di unificare due forze fondamentali, gravità ed elettromagnetismo. Queste due forze erano descritte da quelle che allora erano due teorie classiche di campo molto mature (classiche nel senso che non erano “quantizzate”. La quantizzazione dell’elettromagnetismo fu accuratamente ignorata da Einstein…)
Questa sua ossessione si fondava sul credere che la Natura avesse in serbo una teoria “elegante”, scritta con una matematica “bellissima” che lui era intenzionato a scoprire.
Effettivamente le teorie classiche di gravità ed elettromagnetismo erano due teorie, per certi versi, abbastanza simili (almeno nei temi).
Infatti la Relatività Generale di Einstein e l’Elettrodinamica classica possono essere entrambe costruite richiedendo che le loro equazioni rimangano invariate dopo che si eseguono certi tipi di trasformazioni sui loro campi fondamentali.
La ridondanza elettromagnetica
Il potenziale elettromagnetico quadri-dimensionale con cui viene formulata l’elettrodinamica (che chiamiamo ) presenta al suo interno un eccesso di informazioni. Che significa? Significa che per formulare l’elettromagnetismo è sufficiente un numero inferiore di parametri teorici rispetto a quelli forniti dalla formulazione 4-dimensionale della teoria (che con successo concilia l’elettromagnetismo di Maxwell con la relatività speciale).

Questo eccesso di informazioni si traduce nella seguente affermazione: il potenziale quadri-dimensionale può essere “traslato” nello spazio-tempo di una certa quantità, e la conseguenza è che l’elettromagnetismo rimane invariato.
Le equazioni non cambiano, la Fisica è la stessa.
Il motivo di ciò fu spiegato dalla teoria quantistica dei campi: quello che succede è che il fotone (la particella mediatrice dell’interazione elettromagnetica) ha massa nulla, e questo fa tutta la differenza del mondo in relatività speciale, perché può quindi muoversi alla velocità della luce (non è un grande sorpresa per te che la luce si muova alla velocità della luce).
I parametri che partecipano alla Fisica dell’elettromagnetismo si chiamano “stati di polarizzazione” (avrai sentito parlare degli occhiali polarizzati, ecco quel “polarizzato” si riferisce alla volontà di sfruttare le polarizzazioni della luce a proprio piacimento). La polarizzazione è per convenzione la direzione di oscillazione della campo elettrico di un’onda elettromagnetica (chiamata comunemente “luce”).
Dal punto di vista teorico, gli stati di polarizzazione possono essere studiati mettendoci nel sistema di riferimento in cui la particella mediatrice è ferma. Questi stati di polarizzazione hanno a che fare con la seguente domanda: che succede se ruoto il campo della particella nel suo sistema di riposo?
Il modo in cui il campo risponde alle rotazioni ci dà un’indicazione sui suoi stati di polarizzazione.
La quantità di moto di un oggetto fermo è nulla (per definizione di oggetto fermo), quindi se ruotiamo i nostri assi cartesiani la quantità di moto rimane la stessa (cioè nulla). Che furbata, eh? Beh questa libertà di ruotare le tre dimensioni si traduce in tre possibili stati di polarizzazione della particella.



Il problema con il fotone è che avendo massa nulla si muove alla velocità della luce e quindi per via della relatività speciale non c’è modo di mettersi in un sistema di riferimento in cui il fotone è fermo: per ogni osservatore la velocità della luce è la stessa! Non riusciremo mai ad andare abbastanza veloci da vedere un fotone fermo! Il valore della velocità della luce non dipende in alcun modo dalla velocità di chi la misura.
Il meglio che possiamo fare è puntare il nostro asse cartesiano nella direzione di propagazione del fotone e studiare le rotazioni dei suoi stati attorno a questo asse. Le rotazioni attorno a un asse avvengono in un piano, il quale, essendo bidimensionale, è rappresentato da due parametri invece che tre. Quindi il fotone è specificato da solo due possibili stati di polarizzazione: solo due stati su tre partecipano alla Fisica dell’elettromagnetismo.
Che ce ne facciamo del terzo parametro che non utilizziamo? Ecco cosa intendevo con “eccesso di informazioni”. In soldoni, quella libertà viene tradotta dicendo che se aggiungiamo (o sottraiamo) al potenziale elettromagnetico una certa quantità arbitraria (la derivata di una funzione che chiamiamo ), le leggi della Fisica non cambiano. A scopo illustrativo questa è la trasformazione di cui parlo:


Dalla richiesta che la fisica non cambi se al potenziale elettromagnetico aggiungiamo quella funzione arbitraria
, discende la struttura matematica (con tanto di conseguenze fisiche) dell’elettromagnetismo.
Questo concetto è molto elegante: dalla richiesta che ci sia una certa ridondanza nella descrizione dei campi della teoria, discendono le equazioni che descrivono la realtà fisica.
So che risulta astratto da capire, ma tra tutte le forme possibili che possono assumere le leggi della fisica, richiedere che rimangano invariate dopo una trasformazione dei “blocchetti” di cui sono composte vincola parecchio il numero di forme possibili in cui possono presentarsi, assieme alle conseguenze fisiche che predicono. È in questo senso che diciamo “da questa richiesta derivano le leggi della Fisica” .
Questa eleganza stregò (e continua a stregare) i fisici teorici dell’epoca. Einstein fu tra i più colpiti.
Lo colpì soprattutto il fatto che la sua teoria della Relatività Generale (la migliore teoria che abbiamo ancora oggi sulla gravità classica) si basava su un principio molto simile.
Le leggi della gravità di Einstein discendono dalla richiesta che le leggi stesse rimangano invariate se si esegue una trasformazione di coordinate. In sostanza, la Fisica non deve dipendere da che tipo di “unità di misura” stai usando, o non deve dipendere dal fatto che il tuo laboratorio risulti ruotato in una certa direzione rispetto al centro della galassia (per esempio).
A grandi distanze dalla sorgente del campo gravitazionale, che chiamiamo , la trasformazione di coordinate del campo (la quale viene indicata con il simbolo
) ha la seguente forma:

Magari non sarai familiare con la notazione degli indici spazio-temporali , ma il punto della faccenda è notare la somiglianza (chiudendo un occhio) con la trasformazione del potenziale elettromagnetico:

Secondo Einstein, questa somiglianza era una chiara indicazione che doveva esistere una teoria più fondamentale in grado di racchiudere gravità ed elettromagnetismo in un unico, elegantissimo linguaggio matematico.
Risulta interessante il fatto che non fu lui ad arrivare per primo ad un possibile tentativo di unificazione. La teoria di Kaluza-Klein nacque praticamente subito dopo la Relatività Generale, ed Einstein ne rimase estasiato.
Il primo tentativo di unificazione
La Kaluza-Klein si basava sul postulato che allo spaziotempo (già 4-dimensionale) dovesse essere aggiunta un’ulteriore dimensione, portando il totale a cinque. Questa dimensione sarebbe tuttavia troppo piccola per potere avere riscontri sperimentali, e la sua utlilità consiste unicamente nel fatto che in questo modo è possibile unificare gravità ed elettromagnetismo in un’unica elegante equazione di partenza.

Tutti noi per disegnare un punto su un foglio ruotiamo leggermente la punta della penna per tracciare dei piccoli cerchi concentrici attorno a un punto fisso. Secondo la teoria Kaluza-Klein la quinta dimensione si nasconde nel bordo di ogni cerchio che circonda ciascun punto dello spaziotempo. Questi cerchi hanno un raggio piccolissimo, molto più piccolo di qualsiasi scala subnucleare, questo è il motivo per cui non si osservano effetti fisici di tutto ciò.
Sfortunatamente la teoria della quinta dimensione ha serie difficoltà teorico-fenomenologiche: ad esempio ignora completamente l’esistenza delle altre interazioni fondamentali come la forza debole, della quale oggi sappiamo che a una certa scala di energia si unisce alla forza elettromagnetica per formare l’interazione elettrodebole.
Chiaramente Kaluza e Klein, avendo formulato la teoria nei primi anni ’20 , conoscevano solo la gravità e l’elettromagnetismo, per cui a detta loro (e anche di Einstein) la teoria era molto promettente.
Furono proprio le scoperte delle altre due forze fondamentali (quelle nucleari debole e forte) a far cadere nel dimenticatoio la Kaluza-Klein per qualche decennio. La teoria quantistica dei campi produceva risultati a un ritmo elevatissimo, spazzando via come un’onda tutte le teorie classiche di campo.
Einstein, che si assicurava di non utilizzare le teorie quantistiche di campo nei suoi lavori, lavorò alla Kaluza-Klein fino agli inizi degli anni ’40. Il suo obbiettivo era di ottenere, dalle soluzioni delle equazioni di campo della teoria a cinque dimensioni, dei campi che descrivevano delle particelle cariche in grado di interagire elettromagneticamente e gravitazionalmente.
Il suo obbiettivo era anche quello di derivare in qualche modo anche la meccanica quantistica a partire dalla sua teoria classica (non quantizzata). Tutto questo era sempre in linea con il suo intuito che la teoria quantistica non fosse completa, e che dovesse derivare da qualcosa di classico e molto più profondo.
Una volta introdotta l’ipotesi ondulatoria di De Broglie, il fisico Klein (uno degli ideatori della Kaluza-Klein) era stato in grado di spiegare anche la discretizzazione della carica elettrica delle particelle, proprio grazie alla quinta dimensione. Einstein evitò con cura di utilizzare l’ipotesi di De Broglie, e non menzionò mai il risultato di Klein. Insomma, se non si era capito, Einstein non apprezzava la teoria quantistica.
In ogni caso, Einstein concluse che la teoria di Kaluza-Klein non era in grado di spiegare un fatto empirico importantissimo: la gravità è estremamente più debole dell’elettromagnetismo. Questo spinse Einstein ad abbandonare per sempre la teoria dopo il 1941.

Continuò quindi a lavorare, assieme a pochissimi altri, a teorie matematiche molto astratte e con pochi risvolti empirici. L’obbiettivo era sempre quello di unificare elettromagnetismo e gravità.
Non che fosse in torto nel perseguire questa sua ricerca, dato che l’obbiettivo delle teorie di grande unificazione che studiamo oggi è proprio quello di conciliare gravità e teorie quantistiche di campo (quindi non solo gravità ed elettromagnetismo, ma gravità e le altre tre interazioni fondamentali. Per una breve esposizione delle quattro interazioni, rimando al mio articolo).
Tuttavia fu proprio il suo ostentato rifiuto delle teorie quantistiche di campo a isolarlo sempre di più dal panorama scientifico internazionale. Anche se avesse fatto in tempo ad assistere alla sua nascita, Einstein non avrebbe mai approvato il nostro Modello Standard: in tale modello lavoriamo con teorie quantistiche basate solo sulla relatività speciale, ignorando completamente la gravità e lasciandola da parte in un settore chiamato “Relatività Generale”.
Invece secondo lui la gravità doveva avere un ruolo di primaria importanza negli sforzi dei fisici teorici:
Cosa sarebbe la Fisica senza la gravitazione?
Albert Einstein
Lavorò alla grande unificazione fino all’ultimo dei suoi giorni, facendo fede sulla sua convinzione (appartenente a un pensiero illuminista oggi superato) che una singola mente umana è in grado di scoprire ogni mistero dell’universo.
Sono comunque sicuro che a lui piacesse parecchio ciò che faceva, e non poteva esserci una fine più lieta per il più grande fisico del secolo scorso: morire “smarrito nella matematica”.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

