Propongo una personalissima riflessione che, in quanto tale, va presa con le pinze ed è aperta alla discussione. La riflessione riguarda il sistema odierno dell’editoria scientifica.
L’articolo originale del 1905.
Nel 1905 (118 anni fa) veniva pubblicato “Sull’elettrodinamica dei corpi in movimento“, articolo con cui Einstein ha iniziato una vera e propria rivoluzione non solo nella fisica, ma anche nella cultura generale.
La rivista da cui venne pubblicato era una delle più prestigiose nel panorama tedesco ed europeo: la “Annalen der Physik“, e tra gli editori c’era nientemeno che il celebre Max Planck.
Fu proprio Planck uno dei primi garanti della qualità del lavoro di Einstein sulla relatività. Nello stesso anno Planck aveva accettato di pubblicare un altro lavoro di Einstein, quello sull’effetto fotoelettrico, nonostante per lui l’idea dei “quanti di luce” fosse un po’ indigesta [1]. Invece l’articolo sulla relatività fu presentato nel giugno 1905 e pubblicato il settembre successivo, e già in novembre Planck espresse pubblicamente il suo apprezzamento [2].
Oggi questa scala temporale di eventi sarebbe altamente improbabile, dobbiamo infatti ricordare che Einstein all’epoca lavorava in un ufficio brevetti e faceva il fisico solo “part-time”, ovvero non aveva nessun prestigio accademico che gli garantisse pubblicazione immediata. Solo la grande qualità del suo lavoro e la lungimiranza degli editori potevano fare la differenza.
Perché questo discorso sia così importante lo si capisce bene dal fatto che uno degli aspetti fondamentali del metodo scientifico è proprio la riproducibilità dei risultati, la quale passa per un’attenta revisione del lavoro di un ricercatore da parte di un altro collega dello stesso campo. Questa revisione è nota come “revisione tra pari”, in inglese “peer review“.
Possiamo “fidarci” della Scienza e dei suoi costrutti proprio grazie a questo processo di revisione: non importa chi tu sia, se hai detto una evidente castroneria io devo rigettare il tuo risultato. Spesso questo sistema funziona molto bene, e viene garantita una buona scrematura dei lavori in modo tale che rimangano solo le idee migliori.
A volte funziona un po’ meno bene: la revisione può risultare un po’ troppo soggettiva, può dipendere dalla luna storta di chi la fa, o semplicemente può capitare che la rivista tratti temi con una filosofia diversa da quelli perseguiti nell’articolo.
Per fare un esempio, l’articolo-capolavoro di Enrico Fermi “Tentativo di una teoria sull’emissione dei raggi beta” fu rifiutato da Nature nel 1934 perché secondo i gusti dell’editore conteneva troppe speculazioni.
All’epoca però non era inusuale che tanti articoli passassero con una revisione minima, se non assente. Che poi sopravvivessero o meno il test del tempo lo avrebbero detto gli altri colleghi negli anni, nei dibattiti alle conferenze ad esempio. In ogni modo, la revisione tra pari era comunque presente ed importantissima. Avveniva però spesso grazie all’influenza di una illustre personalità (l’editore) che si incaricava di decidere se fosse interessante pubblicare o meno. Una “de facto” peer review, senza troppa scrupolosità.
La rivista in un certo senso rappresentava anche quello che potrebbe essere definito “archivio delle proposte”, ruolo che oggi è ricoperto da siti come Arxiv, PubMed etc., i quali sono dei database in cui vengono caricate le versioni “bozze” (chiamati preprint) degli articoli da proporre alle riviste. Oggi, per via dell’enorme volume di articoli proposti dalle accademie [3] il processo di peer review diventa più che mai fondamentale per garantire la corretta scrematura.
Funziona così: l’editore della rivista incarica uno (o più) revisori di studiare l’articolo, affidando a loro la decisione (in sua vece) se pubblicare o meno il lavoro.
Se il livello è, come nei campi della Fisica, altissimo di per sé, la scrematura diventa ancora più spietata. La rivista non può pubblicare tutti i lavori (indipendentemente dalla qualità dei lavori), dovrà quindi inevitabilmente rigettare anche qualche ottimo articolo. Il motivo? Possono essercene diversi, alcuni ragionevoli, altri un po’ meno:
l’articolo non è conforme agli interessi della rivista;
l’articolo ha un contenuto simile a uno già pubblicato, con piccole variazioni non degne di pubblicazione;
l’articolo non è conforme alle credenze di chi fa la revisione (l’ho sentito dire!);
l’articolo va in una direzione sconosciuta a cui nessuno è interessato (i fondi vanno in altre direzioni);
l’articolo è troppo speculativo, troppo filosofico, o in generale contiene troppe supposizioni personali.
La lista potrebbe andare avanti, figure inserite male, tabelle non chiare, chi più ne ha ne metta: quanti più motivi possibili pur di non pubblicare il 100% degli articoli che arrivano in revisione. Non importa chi tu sia, il tuo articolo può comunque essere rigettato a volte per motivi che sfuggono il tuo controllo.
Questa circostanza è una naturale conseguenza dell’incredibile volume di articoli prodotti ogni mese, non è una cosa né giusta né sbagliata, va accettata in virtù del metodo scientifico. Di sicuro la scrematura riesce spesso ad eliminare gli articoli davvero terribili.
Tuttavia viene da riflettere: la scrematura sopracitata rischierebbe forse di eliminare anche gli articoli più rivoluzionari?
Questa opinione è condivisa da Lorraine Daston in una sua intervista [4].
Analizziamo l’articolo di Einstein “Sull’elettrodinamica dei corpi in movimento“:
Quello evidenziato in giallo è un eccezionale esempio di chiarezza espositiva ed attenzione pedagogica nei confronti del lettore. Secondo la Daston un revisore per una rivista prestigiosa di oggi smetterebbe di leggere già da qui. Lo stile di Einstein era notoriamente un po’ verboso, speculativo, filosofico. A posteriori è la ciliegina sulla torta di un capolavoro scientifico, ma oggi potrebbe essere potenzialmente oggetto di “taglia quella parte o non te lo pubblicheranno mai”.
Inoltre salta subito all’occhio un altro fatto: l’articolo di Einstein non ha bibliografia. Albert non cita nessuno. Un peccato veniale che oggi potrebbe portare all’esclusione dell’articolo (o, più ragionevolmente, a un marcato sollecito di aggiungerla).
In nessun modo questa riflessione vuole intaccare la illuminante produzione scientifica di Einstein, ma credo che possa stimolare una discussione sui potenziali lati negativi della professionalizzazione della scienza. L’edificazione di questi sistemi editoriali è una risposta all’ingente numero di preprint (a sua volta dovuto alla ignobile politica del “publish or perish“), dunque la domanda è: dobbiamo in qualche modo ripensare tutta questa infrastruttura?
Bibliografia
[1] Seelig Carl, Albert Einstein: A documentary biography, Translated to English by Mervyn Savil [2] Hoffmann Banesh and Dukas, Helen, Albert Einstein Creator & Rebel, 1973, New York: A Plume Book, pp. 83-84. [3] Bornmann, L., Haunschild, R. & Mutz, R. Growth rates of modern science. Humanit Soc Sci Commun8, 224 (2021). [4] Loncar Samuel, Does Science Need History? A conversation with Lorraine Daston, Meanings of Science Project MRB Interviews 2022.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.
È membro della Società Italiana di Fisica.
È autore del libro “L’apprendista teorico” (2021).
Insomma, questa timeline poteva far pensare che stessimo avanzando a passo spedito verso una comprensione delle interazioni nucleari (oggi note come interazioni forti). Perciò è facile comprendere l’esclamazione iconica del fisico Isidor Rabi quando si concluse che la nuova particella scoperta da Carl Anderson e Seth Neddermeyer nel 1936 (che oggi sappiamo essere il muone) non partecipava alle interazioni nucleari forti, cioè non era il pione teorizzato da Yukawa, ma era anzi un “cugino più ciccione” dell’elettrone:
E questa…chi l’ha ordinata?
I.I. Rabi (premio Nobel 1944)
Chi ha ordinato un cugino più ciccione dell’elettrone? In gergo da fisici significa: questa particella non ci aiuta ad avanzare le nostre comprensioni del nucleo dato che non sente l’interazione forte, quindi a che pro la sua esistenza? Che cosa ce ne facciamo di un elettrone più massiccio? E inoltre, perché è tipo 200 volte più massiccio dell’elettrone, ma ha uguale carica elettrica e spin?
La massa del muone è circa 200 volte quella dell’elettrone, ma hanno stesso spin e carica elettrica.
È vero, è vero, la scienza non si occupa dei “perché”, ma cerca di sfruttare ogni scoperta al fine di migliorare la condizione sociale e culturale dell’umanità.
In questo senso, la scoperta del muone ha avuto una grande importanza non solo per la fisica delle particelle, ma anche per una delle prime verifiche della celebre dilatazione temporale prevista dalla Relatività Ristretta. In questa verifica c’è un pezzo di Italia: il fisico veneziano Bruno Rossi.
L’ innovazione di Bruno Rossi
Nell’anno della scoperta del muone, Bruno Rossi insegnava fisica sperimentale a Padova, ed era già un nome affermato nel campo della fisica dei raggi cosmici. Questi ultimi venivano osservati da un paio di decenni e consistevano in particelle cariche ionizzanti che si formavano nell’atmosfera, a causa (come si scoprì) dell’impatto tra gli atomi atmosferici e particelle altamente energetiche (principalmente protoni) provenienti dalle profondità del cosmo. Fu proprio da queste collisioni che venne scoperto il muone.
Un giovane Bruno Rossi (sinistra) con Enrico Fermi, al primo congresso internazionale di fisica nucleare di Roma.
Rossi era riservato, mite e profondamente artistico (era un grande ammiratore di Dante Alighieri), ed era descritto dai suoi colleghi come una personalità “complessa, un po’ da poeta e un po’ da scienziato”. Gli fu sottratto il posto da insegnante nel 1938 per via delle leggi razziali italiane, e fu quindi costretto ad emigrare. Dopo un soggiorno a Manchester, si trasferì definitivamente negli Stati Uniti su invito dell’università di Chicago per la partecipazione a un simposio proprio sul muone, la nuova particella.
Rossi aveva grande manualità nella costruzione di circuiti in grado di rivelare il passaggio di queste particelle, tant’è che alcune sue invenzioni sono poi diventate lo standard nel campo della fisica dei rivelatori. Dopo il simposio di Chicago, si occupò di dimostrare che il muone è una particella instabile, e riuscì a inferire che il suo tempo medio di decadimento doveva essere di circa 2 microsecondi. Questa fu la prima dimostrazione sperimentale del decadimento di una particella sub-nucleare.
È molto probabile che, mentre stai leggendo, alcuni muoni derivanti dai raggi cosmici ti stiano attraversando dall’alto verso il basso.
La dilatazione dei tempi
Il punto fondamentale è che questo tempo medio di decadimento del muone è riferito rispetto al sistema di riposo della particella.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
Il ragionamento è questo: le particelle non amano stare ferme, questi muoni sono prodotti in collisioni nell’alta atmosfera, dopodiché si dirigono a grande velocità verso il suolo terrestre. Se ci mettiamo in un sistema di riferimento solidale a un muone (cioè ci muoviamo nella sua stessa direzione e con la sua stessa velocità in modo che, rispetto a noi, risulti fermo), e cronometriamo dal momento in cui è prodotto al momento in cui decade, il tempo che passerà ammonta a circa 2 microsecondi, come è possibile calcolare con la teoria di Fermi dell’interazione debole.
La velocità dei muoni è una frazione apprezzabile della velocità della luce, per cui diventa apprezzabile la natura interconnessa tra spazio e tempo prevista dalla relatività speciale di Einstein. Prendiamo due eventi temporali che accadono nello stesso punto dello spazio, la distanza temporale la chiamiamo . Gli stessi eventi temporali, visti ora da qualcuno che si muove a velocità rispetto a prima, sono invece distanziati temporalmente di una quantità relazionata a secondo la celebre formula:
dove è la velocità della luce. Vediamo che per il denominatore approccia zero, e dunque cresce molto: si ha una dilatazione dei tempi dal punto di vista dell’osservatore che vede i due eventi verificarsi in punti diversi dello spazio (per via del suo moto relativo). Questo è il contenuto teorico della relatività ristretta: a basse velocità rispetto alla velocità della luce, si ha approssimativamente che , cioè il tempo ha la stessa durata per tutti, come siamo abituati nella nostra quotidianità.
Sinistra: grazie alla dilatazione dei tempi, siamo in grado di rivelare i muoni. Destra: se non ci fosse la dilatazione dei tempi, i muoni decadrebbero dopo 600 metri.
L’ esperimento di Rossi e Hall
Nel caso dei muoni, gli eventi “creazione” e “decadimento” del muone avvengono nello stesso punto dello spazio dal punto di vista del muone (secondo il muone, siamo noi a muoverci mentre lui è fermo nel suo sistema di riferimento). Se non esistesse la relatività speciale e il tempo di decadimento del muone fosse quello a riposo, li vedremmo decadere dopo aver percorso solo circa 600-700 metri.
Dato che i muoni vengono prodotti dalle collisioni dei raggi cosmici con l’atmosfera a circa 15 km di altezza rispetto al livello del mare, ciò significherebbe che non saremmo in grado di rivelarli neanche nelle cime montuose più alte del pianeta: decadrebbero ben prima!
Grazie ai suoi apparecchi sperimentali, nel 1940 Rossi riuscì a verificare la seguente relazione tra distanza percorsa dei muoni e la loro energia :
è la massa del muone, è il suo tempo di decadimento a riposo, pari a circa 2 microsecondi.
la quale discende direttamente dalle formule della relatività ristretta. Bastava quindi verificare che il rapporto tra distanza percorsa ed energia dei muoni doveva essere una costante pari a . Rossi e Hall eseguirono l’esperimento sia a Echo Lake (3240 metri) che a Denver (1616 metri) in Colorado, e la verifica ebbe successo!
I muoni riuscivano a raggiungere altitudini così basse grazie alla dilatazione temporale: rispetto a noi, il loro tempo di decadimento è più lungo, dunque percorrono una distanza maggiore prima di decadere.
Quindi, 35 anni dopo la sua formulazione, nel 1940 la Relatività Ristretta superò uno dei primissimi test di validità, e tale test riguardava proprio uno degli aspetti più controversi: la dilatazione temporale. Ciò non sarebbe stato possibile senza l’ausilio dei raggi cosmici (che mettono a disposizione una quantità generosa di particelle con cui far “giocare” i fisici) e l’expertise di Rossi e gli altri fisici delle astroparticelle dell’epoca.
La precisione con cui Rossi e i suoi collaboratori riuscirono ad estrarre i parametri dei muoni è lodevole, nonostante fossero esperimenti condotti agli albori dell’elettronica dei rivelatori. Oggi un rivelatore di muoni può essere costruito anche a casa, ad un costo non troppo distante dai 100€, come illustrato qui: http://cosmicwatch.lns.mit.edu/detector#cosmicwatch.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).
Gli ultimi anni della vita di Einstein furono decisamente poco memorabili (scientificamente parlando). Il più grande fisico del XX secolo fu un po’ vittima dei suoi enormi successi giovanili, i quali lo condussero verso un isolamento intellettuale sempre più marcato.
Einstein sognava di unificare gravità ed elettromagnetismo in un unica, elegante “teoria del tutto”. Ovviamente nella sua epoca non si conoscevano ancora le forze nucleari debole e forte.
Uno dei motivi di questo isolamento era che Einstein rigettava la formulazione convenzionale della meccanica quantistica, che secondo lui era una teoria incompleta, esteticamente “sgraziata” e complicata. Purtroppo il 99% della ricerca in fisica fondamentale dagli anni 20′ in poi si basava invece proprio sulla meccanica quantistica, quindi Einstein aveva ben pochi alleati su questo fronte.
Un altro motivo era dovuto a una sua ossessione: aveva il sogno di unificare due forze fondamentali, gravità ed elettromagnetismo. Queste due forze erano descritte da quelle che allora erano due teorie classiche di campo molto mature (classiche nel senso che non erano “quantizzate”. La quantizzazione dell’elettromagnetismo fu accuratamente ignorata da Einstein…)
Questa sua ossessione si fondava sul credere che la Natura avesse in serbo una teoria “elegante”, scritta con una matematica “bellissima” che lui era intenzionato a scoprire.
Effettivamente le teorie classiche di gravità ed elettromagnetismo erano due teorie, per certi versi, abbastanza simili (almeno nei temi).
Infatti la Relatività Generale di Einstein e l’Elettrodinamica classica possono essere entrambe costruite richiedendo che le loro equazioni rimangano invariate dopo che si eseguono certi tipi di trasformazioni sui loro campi fondamentali.
La ridondanza elettromagnetica
Il potenziale elettromagnetico quadri-dimensionale con cui viene formulata l’elettrodinamica (che chiamiamo ) presenta al suo interno un eccesso di informazioni. Che significa? Significa che per formulare l’elettromagnetismo è sufficiente un numero inferiore di parametri teorici rispetto a quelli forniti dalla formulazione 4-dimensionale della teoria (che con successo concilia l’elettromagnetismo di Maxwell con la relatività speciale).
Da un certo potenziale elettromagnetico sono ottenibili, tramite una specifica trasformazione, una serie di altri potenziali elettromagnetici che tuttavia lasciano invariate le leggi di Maxwellscritte con il potenziale originale. Le conclusioni fisiche sono le stesse.
Questo eccesso di informazioni si traduce nella seguente affermazione: il potenziale quadri-dimensionale può essere “traslato” nello spazio-tempo di una certa quantità, e la conseguenza è che l’elettromagnetismo rimane invariato.
Le equazioni non cambiano, la Fisica è la stessa.
Il motivo di ciò fu spiegato dalla teoria quantistica dei campi: quello che succede è che il fotone (la particella mediatrice dell’interazione elettromagnetica) ha massa nulla, e questo fa tutta la differenza del mondo in relatività speciale, perché può quindi muoversi alla velocità della luce (non è un grande sorpresa per te che la luce si muova alla velocità della luce).
I parametri che partecipano alla Fisica dell’elettromagnetismo si chiamano “stati di polarizzazione” (avrai sentito parlare degli occhiali polarizzati, ecco quel “polarizzato” si riferisce alla volontà di sfruttare le polarizzazioni della luce a proprio piacimento). La polarizzazione è per convenzione la direzione di oscillazione della campo elettrico di un’onda elettromagnetica (chiamata comunemente “luce”).
Dal punto di vista teorico, gli stati di polarizzazione possono essere studiati mettendoci nel sistema di riferimento in cui la particella mediatrice è ferma. Questi stati di polarizzazione hanno a che fare con la seguente domanda: che succede se ruoto il campo della particella nel suo sistema di riposo? Il modo in cui il campo risponde alle rotazioni ci dà un’indicazione sui suoi stati di polarizzazione.
La quantità di moto di un oggetto fermo è nulla (per definizione di oggetto fermo), quindi se ruotiamo i nostri assi cartesiani la quantità di moto rimane la stessa (cioè nulla). Che furbata, eh? Beh questa libertà di ruotare le tre dimensioni si traduce in tre possibili stati di polarizzazione della particella.
Una rotazione attorno ad un asse è specificata da due componenti su un piano. In figura stiamo ruotando attorno all’asse . Immagina che l’asse sia la direzione di propagazione del fotone.
Il problema con il fotone è che avendo massa nulla si muove alla velocità della luce e quindi per via della relatività speciale non c’è modo di mettersi in un sistema di riferimento in cui il fotone è fermo: per ogni osservatore la velocità della luce è la stessa! Non riusciremo mai ad andare abbastanza veloci da vedere un fotone fermo! Il valore della velocità della luce non dipende in alcun modo dalla velocità di chi la misura.
Il meglio che possiamo fare è puntare il nostro asse cartesiano nella direzione di propagazione del fotone e studiare le rotazioni dei suoi stati attorno a questo asse. Le rotazioni attorno a un asse avvengono in un piano, il quale, essendo bidimensionale, è rappresentato da due parametri invece che tre. Quindi il fotone è specificato da solo due possibili stati di polarizzazione: solo due stati su tre partecipano alla Fisica dell’elettromagnetismo.
Che ce ne facciamo del terzo parametro che non utilizziamo? Ecco cosa intendevo con “eccesso di informazioni”. In soldoni, quella libertà viene tradotta dicendo che se aggiungiamo (o sottraiamo) al potenziale elettromagnetico una certa quantità arbitraria (la derivata di una funzione che chiamiamo ), le leggi della Fisica non cambiano. A scopo illustrativo questa è la trasformazione di cui parlo:
Il potenziale viene trasformato sottraendolo alla derivata di una funzione . In gergo si parla di “trasformazioni di gauge”.
Dalla richiesta che la fisica non cambi se al potenziale elettromagnetico aggiungiamo quella funzione arbitraria , discende la struttura matematica (con tanto di conseguenze fisiche) dell’elettromagnetismo.
Questo concetto è molto elegante: dalla richiesta che ci sia una certa ridondanza nella descrizione dei campi della teoria, discendono le equazioni che descrivono la realtà fisica.
So che risulta astratto da capire, ma tra tutte le forme possibili che possono assumere le leggi della fisica, richiedere che rimangano invariate dopo una trasformazione dei “blocchetti” di cui sono composte vincola parecchio il numero di forme possibili in cui possono presentarsi, assieme alle conseguenze fisiche che predicono. È in questo senso che diciamo “da questa richiesta derivano le leggi della Fisica” .
Questa eleganza stregò (e continua a stregare) i fisici teorici dell’epoca. Einstein fu tra i più colpiti. Lo colpì soprattutto il fatto che la sua teoria della Relatività Generale (la migliore teoria che abbiamo ancora oggi sulla gravità classica) si basava su un principio molto simile.
Le leggi della gravità di Einstein discendono dalla richiesta che le leggi stesse rimangano invariate se si esegue una trasformazione di coordinate. In sostanza, la Fisica non deve dipendere da che tipo di “unità di misura” stai usando, o non deve dipendere dal fatto che il tuo laboratorio risulti ruotato in una certa direzione rispetto al centro della galassia (per esempio).
A grandi distanze dalla sorgente del campo gravitazionale, che chiamiamo , la trasformazione di coordinate del campo (la quale viene indicata con il simbolo ) ha la seguente forma:
Magari non sarai familiare con la notazione degli indici spazio-temporali , ma il punto della faccenda è notare la somiglianza (chiudendo un occhio) con la trasformazione del potenziale elettromagnetico:
Elettrodinamica (sopra) e gravità (sotto) a confronto. Entrambe queste trasformazioni hanno la proprietà di lasciare invariate le leggi della Fisica.
Secondo Einstein, questa somiglianza era una chiara indicazione che doveva esistere una teoria più fondamentale in grado di racchiudere gravità ed elettromagnetismo in un unico, elegantissimo linguaggio matematico.
Risulta interessante il fatto che non fu lui ad arrivare per primo ad un possibile tentativo di unificazione. La teoria di Kaluza-Klein nacque praticamente subito dopo la Relatività Generale, ed Einstein ne rimase estasiato.
Il primo tentativo di unificazione
La Kaluza-Klein si basava sul postulato che allo spaziotempo (già 4-dimensionale) dovesse essere aggiunta un’ulteriore dimensione, portando il totale a cinque. Questa dimensione sarebbe tuttavia troppo piccola per potere avere riscontri sperimentali, e la sua utlilità consiste unicamente nel fatto che in questo modo è possibile unificare gravità ed elettromagnetismo in un’unica elegante equazione di partenza.
La quinta dimensione nella teoria di Kaluza-Klein.
Tutti noi per disegnare un punto su un foglio ruotiamo leggermente la punta della penna per tracciare dei piccoli cerchi concentrici attorno a un punto fisso. Secondo la teoria Kaluza-Klein la quinta dimensione si nasconde nel bordo di ogni cerchio che circonda ciascun punto dello spaziotempo. Questi cerchi hanno un raggio piccolissimo, molto più piccolo di qualsiasi scala subnucleare, questo è il motivo per cui non si osservano effetti fisici di tutto ciò.
Sfortunatamente la teoria della quinta dimensione ha serie difficoltà teorico-fenomenologiche: ad esempio ignora completamente l’esistenza delle altre interazioni fondamentali come la forza debole, della quale oggi sappiamo che a una certa scala di energia si unisce alla forza elettromagnetica per formare l’interazione elettrodebole. Chiaramente Kaluza e Klein, avendo formulato la teoria nei primi anni ’20 , conoscevano solo la gravità e l’elettromagnetismo, per cui a detta loro (e anche di Einstein) la teoria era molto promettente.
Furono proprio le scoperte delle altre due forze fondamentali (quelle nucleari debole e forte) a far cadere nel dimenticatoio la Kaluza-Klein per qualche decennio. La teoria quantistica dei campi produceva risultati a un ritmo elevatissimo, spazzando via come un’onda tutte le teorie classiche di campo.
Einstein, che si assicurava di non utilizzare le teorie quantistiche di campo nei suoi lavori, lavorò alla Kaluza-Klein fino agli inizi degli anni ’40. Il suo obbiettivo era di ottenere, dalle soluzioni delle equazioni di campo della teoria a cinque dimensioni, dei campi che descrivevano delle particelle cariche in grado di interagire elettromagneticamente e gravitazionalmente.
Il suo obbiettivo era anche quello di derivare in qualche modo anche la meccanica quantistica a partire dalla sua teoria classica (non quantizzata). Tutto questo era sempre in linea con il suo intuito che la teoria quantistica non fosse completa, e che dovesse derivare da qualcosa di classico e molto più profondo.
Una volta introdotta l’ipotesi ondulatoria di De Broglie, il fisico Klein (uno degli ideatori della Kaluza-Klein) era stato in grado di spiegare anche la discretizzazione della carica elettrica delle particelle, proprio grazie alla quinta dimensione. Einstein evitò con cura di utilizzare l’ipotesi di De Broglie, e non menzionò mai il risultato di Klein. Insomma, se non si era capito, Einstein non apprezzava la teoria quantistica.
In ogni caso, Einstein concluse che la teoria di Kaluza-Klein non era in grado di spiegare un fatto empirico importantissimo: la gravità è estremamente più debole dell’elettromagnetismo. Questo spinse Einstein ad abbandonare per sempre la teoria dopo il 1941.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
Continuò quindi a lavorare, assieme a pochissimi altri, a teorie matematiche molto astratte e con pochi risvolti empirici. L’obbiettivo era sempre quello di unificare elettromagnetismo e gravità.
Non che fosse in torto nel perseguire questa sua ricerca, dato che l’obbiettivo delle teorie di grande unificazione che studiamo oggi è proprio quello di conciliare gravità e teorie quantistiche di campo (quindi non solo gravità ed elettromagnetismo, ma gravità e le altre tre interazioni fondamentali. Per una breve esposizione delle quattro interazioni, rimando al mio articolo).
Tuttavia fu proprio il suo ostentato rifiuto delle teorie quantistiche di campo a isolarlo sempre di più dal panorama scientifico internazionale. Anche se avesse fatto in tempo ad assistere alla sua nascita, Einstein non avrebbe mai approvato il nostro Modello Standard: in tale modello lavoriamo con teorie quantistiche basate solo sulla relatività speciale, ignorando completamente la gravità e lasciandola da parte in un settore chiamato “Relatività Generale”. Invece secondo lui la gravità doveva avere un ruolo di primaria importanza negli sforzi dei fisici teorici:
Cosa sarebbe la Fisica senza la gravitazione?
Albert Einstein
Lavorò alla grande unificazione fino all’ultimo dei suoi giorni, facendo fede sulla sua convinzione (appartenente a un pensiero illuminista oggi superato) che una singola mente umana è in grado di scoprire ogni mistero dell’universo.
Sono comunque sicuro che a lui piacesse parecchio ciò che faceva, e non poteva esserci una fine più lieta per il più grande fisico del secolo scorso: morire “smarrito nella matematica”.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale. È autore del libro “L’apprendista teorico” (2021).
Sono trascorsi quasi 117 anni da quando l’umanità ha capito che la nostra realtà è meglio descritta utilizzando una struttura concettuale che lega indissolubilmente spazio e tempo: lo spaziotempo. Siamo cioè passati da una concezione tridimensionale della nostra realtà a una concezione quadridimensionale.
Infatti, anche se non sappiamo ancora cosa siano oggettivamente spazio e tempo e quindi ne possiamo avere solo un’interpretazione che ci aiuta comunque a fare previsioni molto precise sulla realtà, sappiamo per certo che non sono due entità distinte: spazio e tempo sono malleabili, e dal punto di vista di osservatori diversi possono anche mischiarsi tra loro.
Ritengo che oggi questo argomento debba essere divulgato con la stessa semplicità e chiarezza con cui nelle scuole divulghiamo tanti altri fatti scientifici. Infatti dopo quasi 117 anni non possiamo più catalogare la Relatività Ristretta come “fisica moderna”, proprio allo stesso modo in cui Einstein nel 1905 non si riferiva alla meccanica lagrangiana del 1790 con il nome di “fisica moderna”.
Il modo migliore per spiegare la nostra comprensione dello spaziotempo è quello di fare un passo indietro e studiare come la pensavamo qualche secolo fa.
I quattro numeri della nostra realtà
Un oggetto tridimensionale della nostra realtà.
La nostra intuizione sensoriale ci suggerisce che viviamo in uno spazio tridimensionale, infatti gli oggetti hanno una lunghezza, larghezza e altezza. Per descrivere un oggetto a un’altra persona senza fargli vedere una sua fotografia possiamo misurarlo e poi dirle quanto è lungo, largo e alto: tre numeri, niente di più e niente di meno, perché tre sono le dimensioni che percepiamo dello spazio attorno a noi.
Allo stesso modo, quando vogliamo descrivere i fenomeni che accadono intorno a noi dobbiamo essere in grado di dire dove si sono verificati e in che istante di tempo. Per capirsi tutti al volo sul “dove”, sono state inventate le mappe e i sistemi di coordinate che scandiscono lo spazio intorno a noi con dei numeri ben precisi, mentre per essere tutti d’accordo sul “quando” è stato inventato l’orologio, che scandisce con altri numeri ben precisi lo scorrere di una misteriosa entità che chiamiamo “tempo”.
Un evento è per definizione l’unione tra le tre informazioni spaziali sul “dove” e la singola informazione temporale sul “quando”. Quando diciamo “alle 15:06 di ieri si è rotto il vaso nella veranda di nonna” stiamo assegnando all’evento “Rottura del vaso” le coordinate geografiche “veranda di nonna” e la coordinata temporale “ora locale 15:06″. In totale sono quattro numeri: tre spaziali e uno temporale.
In totale un evento è descritto da quattro numeri: per seguire i fenomeni che accadono intorno a noi non possiamo usare meno di quattro numeri o rischieremmo di non farci comprendere dagli altri.
Lo spazio e il tempo prima del XX secolo
In passato i fisici si fecero guidare dall’intuizione e immaginarono spazio e tempo come due entità separate. Questo perché nulla nell’esperienza di tutti i giorni ci farebbe intuire il contrario. Per quei fisici, l’immagine mentale del “tempo” è proprio la stessa che intuiamo dalla vita di tutti i giorni:
La freccia del tempo.
Il tempo è una retta infinita che si estende dall’infinito passato fino all’infinito futuro, ma che ha un’unica orientazione: scorre solo verso il futuro.
Per i fisici del passato esisteva un’unica freccia del tempo universale: ogni evento dell’universo accadeva in un preciso istante di tempo su cui potenzialmente tutti possono concordare.
Vediamo la conseguenza del ragionamento di quei fisici. Supponiamo che una persona si metta d’accordo con un astronauta prima della sua partenza e che sincronizzino i propri telefoni in modo da far partire una suoneria ogni 8 ore per il resto della loro vita. In questo modo quando l’astronauta si troverà su Marte e sentirà la suoneria del proprio telefono, saprà che in quel preciso istante di tempo il suo amico sulla Terra avrà sentito la stessa suoneria. I due amici potranno quindi definire un istante chiamato “presente”, cioè una nozione di “adesso”. Se non vedi nulla di strano in questa conseguenza, è perfettamente comprensibile! Siamo abituati a concepire il tempo in questo modo, cioè come un’entità universale che scorre allo stesso modo per tutti, e i fisici del passato non erano comunque scemi nonostante pensassero ciò!
Il moto di una pallina in una sola dimensione può in principio essere studiato con righello e cronometro.
Spazio e tempo non sarebbero comunque granché utili se non li facessimo “cooperare” per provare a fare delle previsioni sul mondo che ci circonda. Per studiare il moto di una pallina su un tavolo potremmo ad esempio utilizzare un righello per tracciare la sua posizione, e un cronometro per tenere traccia del tempo che passa. Così facendo, finiamo per collezionare un insieme di eventi come “pallina nel punto 2.5 cm all’istante 1.51 s” o “pallina nel punto 4.7 cm all’istante 2.05 s” che messi in successione tra loro costituiscono la traiettoria della pallina.
Usiamo una sola coordinata spaziale per semplicità: il moto si svolge su una sola dimensione spaziale..
Se sei familiare con il concetto di piano cartesiano, possiamo scegliere di rappresentare gli eventi raccolti su di esso, solo che al posto di “y” mettiamo il tempo “t” trascorso. A differenza di un piano geometrico bidimensionale, abbiamo ora davanti un piano spaziotemporale (in gergo “1+1 dimensionale“, cioè una dimensione spaziale, che è la “x”, e una dimensione temporale):
Un diagramma spazio-tempo per il moto di una pallina.
Se collezionassimo tantissimi eventi per il moto della pallina e collegassimo tutti i puntini blu con una linea continua, troveremmo quella che è nota essere la traiettoria della pallina. Se la pallina fosse ferma in ogni istante di tempo, la sua traiettoria nello spazio-tempo sarebbe la seguente
Il grafico spazio-tempo di una pallina ferma nel punto x=2.5 cm.
Questo perché la coordinata “x“, per definizione di “fermo”, non deve cambiare nel tempo. Il tempo scorre in verticale, e la posizione rimane fissa sul punto x=2.5 cm. Un pallina che si muove con velocità costante avrebbe invece il seguente grafico:
A parità di intervallo di tempo passato, la pallina percorre sempre porzioni uguali di spazio: la velocità è allora costante.
Potremmo anche non limitarci al moto dei corpi e usare i diagrammi spaziotempo per raccogliere tutti gli eventi della nostra realtà!
Ad esempio tutti gli eventi dello spazio che avvengono allo stesso istante di tempo si ottengono tracciando la retta parallela all’asse “x”. Questa retta è detta “linea di simultaneità“
Tutti gli eventi spaziali che avvengono all’istante “t=2 s” fanno parte della linea di simultaneità in arancione.
Scorrendo con il dito lungo la retta arancione, il tempo non cambia, è sempre fisso a “t=2 s”, mentre lo spazio cambia. Stiamo esplorando tutti i punti dello spazio che esistono nel medesimo istante di tempo.
Allo stesso modo possiamo raccogliere tutti gli eventi che avvengono nello stesso punto dello spazio tracciando la retta parallela all’asse “t”, come fatto nel caso della pallina ferma.
Il punto importante da capire però è che lo spaziotempo esiste indipendentemente dal nostro diagramma cartesiano. Il diagramma con cui scegliamo di catalogare gli eventi si chiama “sistema di riferimento” ed è totalmente arbitrario. Decido io quando far iniziare il conteggio del cronometro e decido io dov’è il punto di partenza in cui mettere lo zero del righello. Nonostante ciò, il moto della pallina avviene comunque in uno spaziotempo “invisibile”, e le coordinate che uso per descriverlo non sono altro che una mia personale interpretazione con cui posso fare delle previsioni.
L’evento nello spaziotempo esiste anche se non c’è nessun sistema di riferimento che lo descrive. Lo spaziotempo esiste indipendentemente dai sistemi di riferimento.
Proprio per questo motivo, la Fisica prevede che le sue leggi si mantengano vere indipendentemente dalle coordinate di chi le sta utilizzando. Non avrebbe proprio senso se la realtà dipendesse dal tipo di righello o cronometro che uso!
Le trasformazioni di Galileo
Galileo Galilei, l’ideatore del principio di relatività.
In particolare, come studiato da Galileo, le conclusioni degli esperimenti di Fisica devono essere identiche a seconda che siano studiate su un treno che si muove a velocità costante o che stia fermo rispetto alla stazione. Muoversi a velocità esattamente costante è comunque una cosa rara, concorderai sicuramente che capita spesso di sentirsi “tirati” in una direzione o in un’altra in un viaggio in macchina, o in treno quando frena o fa una curva. In quei frangenti il moto non è a velocità costante, ma trascurandoli possiamo dire che il resto del viaggio si svolge in maniera che se oscurassi i finestrini e mascherassi il suono del motore, non saresti in grado di dire se si è fermi o in movimento. Questa è l’idea di Galileo: il principio di relatività.
Se mettiamo tre persone di tre nazionalità diverse davanti a una mela su un tavolo, ciascuna delle tre persone dirà nella propria lingua “la mela è sul tavolo”. Il fatto che la mela stia sul tavolo è un dato di fatto che non può dipendere dalla particolare lingua che si utilizza per descriverlo. Siccome l’obbiettivo degli umani è comunicare tra loro, deve esistere una traduzione da un linguaggio all’altro che mantengaintatto il fatto oggettivo che la mela è sul tavolo.
Allo stesso modo, sistemi di riferimento in moto relativo l’uno con l’altro devono poter concordare sui fenomeni che osservano con le proprie coordinate. Deve quindi esistere una traduzione da un set di coordinate all’altro che mantengaintatto il fatto oggettivo di ciò che si manifesta nello spaziotempo.
Se il moto relativo è a velocità costante, la traduzione linguistica è particolarmente semplice e lascia inalterati tutti i risultati della Fisica: si chiama trasformazione di Galileo.
Dati due osservatori che utilizzano due piani cartesiani diversi con coordinate diverse:
Se “v” è la velocità relativa, possiamo ottenere le coordinate di uno in funzione delle coordinate dell’altro con una trasformazione di Galileo:
Una trasformazione di Galileo.
Ovviamente abbiamo assunto che i due osservatori abbiano sincronizzato i propri orologi in un certo istante di tempo precedente, ecco perché le loro coordinate temporali sono identiche: T=t.
Con questa traduzione possiamo descrivere con le coordinate dell’osservatore 2 tutti gli eventi descritti in precedenza con le coordinate dell’osservatore 1.
Una cosa concettualmente molto utile per ciò che faremo dopo è rappresentare i due sistemi di riferimento nello stesso grafico. Rispetto all’osservatore 1, gli assi dell’osservatore 2 si ottengono impostando le loro equazioni T=0 e X=0. Infatti l’asse T è anche noto come “la retta verticale tale che X=0“. Quindi possiamo ricavare l’asse T nelle coordinate (x,t) sostituendo “0” al posto di “X“
Nel diagramma spazio-tempo di prima avremo quindi
Una trasformazione di Galileo da coordinate (x,t) a coordinate (X,T).
La cosa più importante da notare è che rispetto all’osservatore di coordinate (x,t), l’asse T del secondo osservatore è geometricamente inclinato: questa inclinazione rappresenta il fatto che il secondo osservatore si sta muovendo rispetto al primo con una certa velocità.
Ora studiamo un po’ come questi osservatori interpretano lo spaziotempo intorno a loro. Le linee di simultaneità sono sempre rette parallele agli assi x e X per definizione:
I punti dello spazio simultanei tra loro secondo l’osservatore (X,T) sono simultanei anche per l’osservatore (x,t). Per verificare, scorri una retta arancione con il dito e verifica che non ti stai spostando né sulla coordinata t, né sulla coordinata T.
Le trasformazioni di Galileo non toccano la simultaneità: il tempo, nella concezione galileiana e newtoniana della fisica classica, è assoluto.
Ovviamente invece il discorso cambia se consideriamo gli eventi che avvengono in un unico punto nello spazio dell’osservatore in movimento. Magari l’osservatore 2 è in auto e sta segnando sul taccuino la posizione di un suo compagno di viaggio che è fermo rispetto a lui in ogni istante di tempo. Tuttavia dal nostro punto di vista in cui osserviamo l’autostrada da un casello, quel compagno di viaggio non è fermo!
Come abbiamo fatto prima, per ottenere le rette degli eventi che avvengono nello stesso punto dello spazio tracciamo le parallele all’asse T, quindi si avrà:
Le rette degli eventi che per l’osservatore (X,T) avvengono tutti in uno specifico punto del suo sistema di riferimento.
Come puoi notare, le rette non sono verticali anche per l’osservatore fermo (x,t), proprio perché dal suo punto di vista tutti quegli eventi che sono fissi nel sistema di riferimento (X,T) si muovono alla stessa velocità di questo. Infatti le rette hanno la stessa inclinazione dell’asse T, che rappresenta, come detto, il moto dell’osservatore 2.
Il tuo occhio potrebbe ora notare un fatto interessante: dal grafico sembra che l’intervallo temporale ∆T tra i due eventi (indicato in rosso), sia maggiore dell’intervallo temporale ∆t, quando invece sappiamo che nelle trasformazioni di Galileo deve essere rigorosamente:
L’intervallo di tempo tra due eventi è un numero su cui tutti gli osservatori connessi da una trasformazione di Galileo devono sempre concordare.
Questo è un dettaglio acutissimo e che potenzialmente potrebbe generare molta confusione. Non se ne parla spesso.
La verità è che quell’asse “T” ruotato non ha la stessa scala di lettura dell’asse originale, proprio per via della rotazione! Una volta tenuto conto di questo fattore di scala, troviamo che anche se visivamente le lunghezze indicate in rosso sembrano diverse, a conti fatti risultano uguali, come ci aspettiamo.
Una dimensione spaziale in più
Ora che abbiamo macinato un po’ di percorso, aggiungiamo una dimensione spaziale in più per divertimento. Assieme alla “x” consideriamo anche la “y” per ottenere il classico, beneamato piano euclideo. Lo spazio-tempo ha ora dimensione 2+1 (due spaziali e una temporale), e può essere visualizzato nel modo seguente:
La rappresentazione di uno spazio bidimensionale nel tempo, descritta come una sovrapposizione di copie.
Concentriamoci però solo sul piano spaziale senza considerare il tempo, o se preferisci, congeliamo un singolo istante di tempo. Il piano euclideo è proprio quello che ci ha svezzato e ci ha introdotto alla geometria piana, è quel posto magico in cui l’ipotenusa di un triangolo rettangolo è data dal teorema di Pitagora:
Tutti concordano sul teorema di Pitagora, è un fatto matematico che è indipendente dal proprio stato di moto! Se le trasformazioni di Galileo fanno quel che promettono di fare, non dovrebbero mai e poi mai alterare la lunghezza dell’ipotenusa di un triangolo rettangolo! Ci aspettiamo che sia:
Le trasformazioni di Galileo lasciano invariata la geometria euclidea dello spazio.
Effettivamente è così, le trasformazioni di Galileo restituiscono il risultato corretto, lasciando intatto il teorema di Pitagora (non avrebbe proprio senso se dovesse dipendere dallo stato di moto!). Nel caso più semplice in cui il moto relativo è lungo l’asse x dell’osservatore 1 si ha:
Nota che il conto restituisce il risultato che ci aspettiamo solo se poniamo uguale a zero l’intervallo temporale “∆t” tra i due eventi spaziali che specificano i cateti del triangolo rettangolo! Questo passo è fondamentale, le lunghezze spaziali, nello spaziotempo, si calcolano per definizione a tempo fissato. Non avrebbe proprio senso dire “questo oggetto è lungo 3 cm tra gli istanti di tempo 1 e 10 secondi”: un osservatore è in grado di misurare una lunghezza spaziale nel proprio sistema di riferimento solo una volta che individua simultaneamente gli estremi dell’oggetto che vuole misurare.
Ora che abbiamo completato il riscaldamento con la relatività di Galileo, è il momento di passare al succo del discorso, ovvero il motivo per cui sei qui!
Ripensare il principio di relatività
Alla fine del XIX secolo ci si accorse che una serie di argomenti teorici e sperimentali rendevano incompatibili le leggi dell’elettromagnetismo con il principio di relatività, o meglio, con il principio di relatività mediato dalle trasformazioni di Galileo. Siccome l’elettromagnetismo era fondato su radici sperimentali solidissime, e si presumeva che il principio di relatività fosse un qualcosa di irrinunciabile per la Fisica, si spalancarono due possibilità:
1) La teoria dell’elettromagnetismo è falsa e bisogna trovarne una migliore, che sia compatibile con Galileo. Il principio di relatività è irrinunciabile.
2) La teoria dell’elettromagnetismo è vera. Il principio di relatività può essere abbandonato.
Fu quel giovanotto di Einstein a trovare il mix perfetto tra queste due soluzioni molto drastiche, la cosiddetta terza via:
3): La teoria dell’elettromagnetismo è vera. Il principio di relatività è irrinunciabile. Le trasformazioni di Galileo però non sono le trasformazioni corrette per applicare il principio di relatività.
Einstein notò che le trasformazioni di coordinate che lasciavano invariate le leggi dell’elettromagnetismo non erano quelle di Galileo, ma le trasformazioni di Lorentz:
“c” è la velocità della luce: 300.000 km/s. È evidenziato il fattore gamma.
Queste bestiole non sono altro che le trasformazioni di Galileo con un po’ di accorgimenti in più: ad esempio compare a moltiplicare il “fattore gamma: γ” che contiene il rapporto tra la velocità relativa dei due osservatori e la velocità della luce al quadrato. La velocità della luce compare per due motivi, uno storico e uno concettuale:
1): Queste trasformazioni furono trovate tra quelle possibili che lasciavano invariate le leggi elettromagnetiche tra osservatori in moto a velocità costante. Siccome la luce è un’onda elettromagnetica che si propaga nel vuoto con velocità “c”, questa compare direttamente nelle trasformazioni come fattore costante per far sì che l’equazione dell’onda rimanga appunto invariata, come vuole il principio di relatività.
2): Studiando le conseguenze di queste trasformazioni si scoprì che facevano una predizione insolita: la velocità della luce è un vero e proprio limite di velocità: nessuno può raggiungerla e nessuno può superarla. È una conseguenza matematica di queste trasformazioni. (Si nota già dal fatto che il fattore gamma “γ” esplode se poniamo la velocità relativa “v” uguale a “c”. Non si può dividere per zero!). Come tutti i limiti di velocità, deve essere uguale per ogni “automobilista”: la velocità della luce è una costante che ha lo stesso valore numerico per tutti gli osservatori che si muovono di moto relativo a velocità costante. Questo è anche un fatto rigorosamente verificato sperimentalmente.
Senza soffermarci troppo sulla matematica di queste trasformazioni, osserviamo che la prima differenza importante con quelle di Galileo è il fatto che la coordinata temporale dell’osservatore in moto relativo è ottenuta mischiando coordinate temporali e spaziali dell’osservatore iniziale!
A differenza di Galileo, non è semplicemente “T=t”, ma compare prepotentemente anche lo spazio con la coordinata “x”!
Questo fatto è assolutamente inedito, e dà i natali a una interpretazione completamente rivoluzionaria del concetto di spaziotempo!
Il tempo non è più assoluto e uguale per tutti, ma è una cosa personale per ogni osservatore dell’universo, così come sono personali le proprie coordinate spaziali. L’importante poi è riuscire a tradurre da una lingua all’altra per mettersi tutti d’accordo, ma a questo ci pensano proprio le trasformazioni di Lorentz.
Il problema dell’elettromagnetismo ci ha aiutato a capire che sono in realtà le trasformazioni di Lorentz quelle corrette da introdurre quando si parla di principio di relatività. Le trasformazioni di Lorentz si riducono a quelle di Galileo nel limite in cui la velocità relativa “v” è molto inferiore alla velocità della luce “c” (cosa che ci riguarda in particolar modo, dato che nulla nel nostro mondo viaggia a velocità prossime a 300.000 km/s, eccezion fatta per la luce e alcune particelle subatomiche).
Lo spaziotempo di Minkowski
Ricordi la questione del teorema di Pitagora discussa poco fa? Le trasformazioni di Galileo vanno molto d’accordo con la geometria euclidea dello spazio. Anche le trasformazioni di Lorentz ci vanno d’accordo, ma concentrarsi solo sulla parte spaziale è riduttivo. Si trovò che esiste una nuova quantità spaziotemporale che è lasciata invariata dalle trasformazioni di Lorentz! Tenendoci sempre in dimensioni 2+1, questa quantità è la seguente:
L’intervallo spaziotemporale lasciato invariato
Cioè se prendiamo due eventi separati da una distanza spaziale e da una distanza temporale, la quantità costruita in questo modo assume lo stesso valore per tutti gli osservatori che si muovono con velocità costante:
Questo fatto ci fa capire quanto fosse poco casuale che tempo e spazio si mischiassero nelle trasformazioni di Lorentz. Tempo e spazio si mischiano per un motivo ben preciso: fanno parte di un costrutto più grande dello spazio, lo spaziotempo! In questo spaziotempo la velocità della luce gioca un ruolo così importante da comparire addirittura nella “versione estesa del teorema di Pitagora spaziotemporale”.
L’insegnamento che ne possiamo trarre è il seguente: se lo moltiplichiamo per la velocità della luce, il tempo diventa a tutti gli effetti una nuova dimensione spaziale.
Viviamo quindi in una realtà a quattro dimensioni: tre dimensioni spaziali e una dimensione temporale. A differenza di come la pensavano qualche secolo fa, la dimensione temporale è in grado di mischiarsi con le informazioni spaziali tramite le trasformazioni di Lorentz.
Il teorema di Pitagora spaziotemporale è però particolarmente speciale, perché non possiamo ignorare che il termine temporale presenta un segno negativo!
Tempo e spazio non sono trattati allo stesso modo, c’è un segno meno di differenza!
Cambia proprio il concetto di geometria: la geometria dello spaziotempo non è più euclidea! Hai mai visto un teorema di Pitagora con una differenza al posto di una somma? È la somma dei quadrati a rendere euclidea la geometria spaziale del teorema di Pitagora.
D’altra parte la geometria dello spaziotempo si dice essere “pseudo-euclidea“. Questo nome potrà essere figo da pronunciare, ma non dice nulla di troppo rilevante per i nostri scopi.
Una cosa ben più rilevante da esplorare invece è il diagramma spaziotempo (detto “di Minkoswki“). Ricordi i diagrammi che abbiamo studiato nel caso di spazio-tempo classici? Quello spazio-tempo era particolarmente noioso in quanto tempo e spazio non erano in alcun modo connessi reciprocamente da trasformazioni di coordinate rilevanti per la Fisica. Ora si son mischiate un po’ le carte, quindi vediamo cosa bolle in pentola.
Consideriamo di nuovo due osservatori in moto relativo l’uno rispetto all’altro con velocità costante, ed esattamente come prima rappresentiamo i loro sistemi di riferimento in un unico grafico spaziotempo.
Per fare ciò dobbiamo trovare le equazioni degli assi T e X del secondo osservatore in funzione delle coordinate del primo! Con un procedimento identico a prima troviamo le seguenti rette:
Il risultato del mixing tra coordinate spaziali e temporali cambia completamente le regole del gioco: nel caso di Galileo avevamo che solo l’asse temporale dell’osservatore appariva ruotato nello spazio-tempo dell’osservatore fermo. Ora abbiamo una rotazione di entrambi gli assi!
Un diagramma di Minkowski. Nota che gli assi temporali sono moltiplicati per la velocità della luce. Come suggeritoci dal “teorema di Pitagora dello spaziotempo”, la dimensione temporale deve comparire moltiplicata per la velocità della luce.
Questo fatto ha delle implicazioni senza precedenti, perché se ora andiamo a chiederci, come fatto prima, quali siano le rette di simultaneità per l’osservatore in movimento, dovremo tracciare nuovamente la parallela all’asse X:
Eventi che giacciono sulle rette di simultaneità, come si vede, sono separati da un intervallo temporale ∆t non nullo per l’altro osservatore.
Il fatto che le rette di simultaneità non siano parallele all’asse “x” del primo osservatore implica che:
Eventi simultanei per un osservatore in moto possono non essere simultanei per un altro osservatore
La simultaneità di due eventi è relativa a chi osserva gli eventi! Se io osservo due eventi A e B accadere allo stesso istante di tempo sul mio orologio, un osservatore che si muove rispetto a me potrebbe veder succedere A prima o dopo B.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
Questo fatto dipende dalla velocità della luce: la velocità della luce è una costante per tutti gli osservatori, e siccome le informazioni sugli eventi possono arrivarci al massimo alla velocità della luce (noi “vediamo” il mondo intorno a noi proprio grazie alla luce) l’unico modo in cui il moto relativo dell’osservatore riesce a non influenzare questi due fatti è proprio mettendo mano alla coordinata temporale. Concettualmente, è come se la coordinata temporale si fosse “sacrificata” per preservare la velocità della luce.
Ricordi quegli astronauti che sincronizzavano i loro telefoni, convinti di poter definire un unico istante comune di “simultaneità” anche se distanti? Nel contesto dello spaziotempo di Minkowski ha poco senso: non esiste una retta di simultaneità degli eventi comune a tutti gli osservatori!
Se pensi che ciò sia la cosa più strabiliante di tutta questa faccenda, ti consiglio di continuare a leggere la prossima!
Dilatazione temporale
Consideriamo un evento che avviene in una singola posizione spaziale per l’osservatore in moto, e che la durata da lui registrata sia ∆T. Indicando con dei pallini il momento iniziale e il momento finale dell’evento, questi giace sulla retta degli eventi che avvengono in quella posizione, che ricordiamo, si ottiene tracciando la parallela all’asse T.
La durata ∆T dell’evento è indicata dalla striscia rossa sull’asse T. Come si vede graficamente, la durata dell’evento è indicata in rosso anche dal punto di vista dell’osservatore fermo. Secondo le trasformazioni di Galileo avremmo dovuto avere “∆T=∆t“: cioè la durata temporale dell’evento deve essere una cosa su cui è possibile concordare indipendentemente dal proprio stato di moto.
La trasformazione di Lorentz per la coordinata temporale ha tutta l’aria di promettere un po’ meno. Anzi, promette discordia tra gli osservatori a seconda del loro stato di moto.
Quanto è durato lo stesso evento secondo l’osservatore fermo? Per scoprirlo facciamo ricorso al teorema di Pitagora pseudo-euclideo, ovvero l’unica quantità su cui i due osservatori possono concordare di certo. Consideriamo un’unica dimensione spaziale e ipotizziamo che il moto relativo si svolga sull’asse “x” del primo osservatore. Per l’osservatore in moto l’evento avviene in un unico punto dello spazio, cioè la sua posizione non cambia, quindi si ha ∆X=0.:
Qui stiamo indicando con ∆t e ∆x la durata e la variazione in posizione dell’evento dal punto di vista dell’osservatore fermo, il quale evidentemente vedrà l’evento muoversi alla stessa velocità dell’osservatore in moto. Non ci resta che eguagliare le due espressioni per l’invarianza di Lorentz citata prima:
Abbiamo l’obbiettivo di isolare ∆t per capire quanto dura l’evento dal punto di vista dell’osservatore fermo. A tale scopo raccogliamo
Siccome l’evento in questione si sposta alla stessa velocità dell’osservatore in moto, chiamiamo proprio “v” il rapporto tra spazio percorso e l’intervallo di durata, dove “v” è proprio la velocità relativa dell’osservatore in moto. A questo punto ricaviamo ∆t dividendo tutto per quella quantità e calcolando la radice quadrata di entrambi i membri
E questa è una delle formule più famose nella storia della Fisica: la dilatazione temporale.La durata di un evento dal punto di vista di un osservatore che vede l’evento muoversi rispetto a lui è sempre maggiore della durata calcolata nel sistema di riferimento solidale a dove l’evento è avvenuto. Perché maggiore? Proprio perché ∆T, qualunque esso sia, è diviso per una quantità che è sempre minore di 1, quindi questa divisione produce un numero più grande di ∆T.
È questa forse la conseguenza più difficile da accettare sullo spaziotempo della nostra realtà, nonostante sia stata verificata sperimentalmente innumerevoli volte nell’ultimo secolo. La durata temporale degli eventi dipende dallo stato di moto dell’osservatore. Lo spaziotempo di Minkowski non è solo un’utile rappresentazione di quello che succede quando usiamo le trasformazioni di Lorentz, ma anche un’ottima intuizione su quale sia la vera natura della nostra realtà.
Ok forse questo è stato più un capitolo di un libro piuttosto che un articolo del blog, ma volevo essere davvero sicuro che ogni pezzo del puzzle del ragionamento cascasse al posto giusto. In futuro parlerò ancora di spaziotempo, quindi userò questo articolo come utile referenza per chi ne avesse bisogno.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei Neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale. È autore del libro “L’apprendista teorico” (2021).
Ci sono pochi argomenti che fanno da musa ispiratrice sia per i fisici teorici che per i fisici sperimentali. Le simmetrie discrete rappresentano una guida importantissima con cui interpretiamo i risultati sperimentali e con cui strutturiamo la forma matematica delle teorie, perché hanno la capacità di predire “cosa è concesso e cosa è vietato”.
Vuoi osservare il decadimento di una particella e non sai quali proprietà aspettarti dai suoi prodotti di decadimento? Argomenti di simmetria scarteranno alcune tra le varie possibilità, permettendoti di focalizzare le tue misure su altre proprietà.
Vuoi scrivere una teoria che descrive l’interazione nucleare? Sappi che gli esperimenti non hanno mai osservato la violazione di una certa simmetria “A”, quindi assicurati che le tue equazioni abbiano la stessa simmetria!
Quando diciamo “il sistema ha una simmetria” dobbiamo prima specificare rispetto a quale trasformazione. Infatti una simmetria è sempre preceduta da una trasformazione, altrimenti dire “simmetria” perde ogni significato. (Per un’introduzione al concetto di simmetria rimando a un precedente articolo).
Non tutte le trasformazioni sono una simmetria di un certo sistema. Ciò non è un problema: in ogni caso abbiamo scoperto che è molto comodo catalogare gli oggetti in base al loro comportamento sotto determinate trasformazioni. Ad esempio la freccia in figura possiamo chiamarla “generica freccia bianca con punta a destra”
Potremmo decidere arbitrariamente di studiare il comportamento di questa freccia sotto alcune trasformazioni interessanti: ad esempio la trasformazione “inversione speculare” trasforma la freccia in quest’altra:
L’oggetto ottenuto non è lo stesso di prima, ora la freccia ha la punta verso sinistra: diremo che “la riflessione speculare non è una sua simmetria della freccia”. Pazienza! Non tutto può essere simmetrico. Abbiamo comunque imparato qualcosa di nuovo: possiamo dare un nuovo nome a questo sistema: tipo “freccia bianca che sotto riflessione va nel suo opposto“. Questo modo di chiamare un oggetto in base a come si comporta sotto una trasformazione è ciò che facciamo per catalogare le particelle e le interazioni fondamentali del Modello Standard.
Il Modello Standard è caratterizzato da tre simmetrie fondamentali: la simmetria di Lorentz (le leggi della Fisica hanno la stessa forma in tutti i sistemi di riferimento inerziali, o in altri termini, sono simmetriche sotto una trasformazione di Lorentz), la simmetria di gauge (gli oggetti matematici della Fisica presentano più variabili di quelle fisicamente necessarie), e la simmetria CPT. Le prime due sono abbastanza astratte rispetto all’ultima, su cui ci concentriamo oggi.
La simmetria “CPT” evidenzia un fatto importantissimo della nostra realtà: le leggi della Fisica rimangono inalterate se applichiamo tutte e tre le seguenti trasformazioni:
Inversione spaziale “P”
Inversione di carica “C”
Inversione temporale “T”
Le trasformazioni P, C, T sono chiamate in gergo “simmetrie discrete”. Svisceriamole una ad una.
La simmetria P: inversione spaziale
L’inversione spaziale, altrimenti nota come “trasformazione di parità” consiste nell’invertire tutte e tre le direzioni spaziali: le coordinate cartesiane (x,y,z) vengono mandate in (-x,-y,-z). Per visualizzare meglio questa trasformazione, considera una freccia in tre dimensioni, ad esempio dotata di un certo spessore, una punta e due facce rettangolari. Chiamiamo “A” e “B” le due facce di questa freccia.
Le due facce “A” e “B” della stessa freccia.
Visualizziamo la freccia in una certa posizione iniziale, ad esempio disponiamola con la faccia “A” rivolta verso di noi (quindi la faccia “B” è rivolta verso la pagina di questo articolo), e la punta è rivolta verso destra. Per ottenere una trasformazione di parità eseguiamo due step: anzitutto ruotiamo di 180 gradi la freccia attorno alla direzione della sua punta ed infine invertiamo la punta. Infatti così facendo abbiamo mandato la faccia “A” nel suo opposto (cioè la faccia B), poi abbiamo invertito il basso con l’alto, ed infine abbiamo invertito la destra con la sinistra. Gli step sono illustrati in figura
Una trasformazione di parità della freccia. Dall’alto verso il basso: la freccia nella sua posizione iniziale, la freccia dopo una rotazione di 180 gradi attorno alla direzione della sua punta, e poi l’inversione della punta nell’ultimo step.
Nota bene, una trasformazione di parità è ben diversa da una trasformazione “speculare”. Non è come vedere la freccia davanti a uno specchio!
Una trasformazione speculare della freccia.
Spesso invece capita di sentire che l’inversione spaziale corrisponde a “vedere l’universo attraverso uno specchio”, come mai questa inesattezza? Immagina per un attimo se la freccia avesse due facce uguali e non ci fosse modo di distinguere il basso dall’alto, in quel caso la riflessione speculare e la trasformazione di parità coincidono!
Questo perché la freccia iniziale era simmetrica sotto una rotazione di 180 gradi rispetto alla direzione della punta (quindi il primo step della trasformazione di parità la lascia invariata). Moltissimi sistemi fisici di interesse godono di una simmetria sotto rotazioni attorno a una certa direzione, per cui non è così scorretto dire che l’inversione spaziale “coincide” con l’osservare l’universo allo specchio.
"Però mi sfugge cosa c'entri con la Fisica tutto questo discorso sull'inversione dello spazio. Cosa gliene frega alle particelle se prendo gli assi cartesiani in un verso o nell'altro?"
Magari non è immediato vederlo, ma la connessione è piuttosto profonda e ha a che fare con le interazioni fondamentali.
In particolare ha a che fare con il modo con cui scriviamo le teorie della Fisica. Se le evidenze sperimentali suggeriscono ad esempio che un processo ha la stessa probabilità di avvenire in una direzione rispetto alla direzione opposta, allora sarà meglio che la teoria sia simmetrica sotto una trasformazione di parità dal punto di vista matematico! Lo schema di queste ragionamento è il seguente:
Per fare un esempio consideriamo la teoria di Dirac per un fermione di massa m. Nella teoria il termine di massa è scritto accoppiando i campi ψ del fermione nel seguente modo:
La trasformazione di parità dei campi fermionici si ottiene moltiplicandoli per una matrice detta “di Dirac”: γ0
Trasformazione di parità per i campi fermionici. La matrice di Dirac è caratterizzata dall’equazione (γ0)2 =1, cioè il suo quadrato è uguale all’identità.
A questo punto mostriamo che il termine di massa della teoria di Dirac è invariante sotto parità:
La trasformazione di parità dei campi fermionici lascia invariato il termine di massa grazie al fatto che (γ0)2 =1. La teoria di Dirac è costruita in modo da essere invariante sotto parità (ciò era suggerito dagli esperimenti).
In teoria nulla garantisce che le leggi della Natura siano invarianti sotto inversione spaziale, è una nostra assunzione ragionevole, confermata dalla maggior parte dei risultati sperimentali e per la maggior parte delle interazioni fondamentali. Negli anni 50′, con grossa sorpresa, si scoprì che la nostra assunzione non corrispondeva alla realtà.
L’interazione debole e la violazione della parità
È arcinota l’importanza dei vettori nella Fisica. Siccome i vettori sono quantità riferite agli assi cartesiani, invertire gli assi con una trasformazione di parità invertirà anche i vettori. Un vettore r verrà mandato nel suo opposto –r in seguito a una trasformazione di parità. Se però consideriamo il prodotto di due vettori, ad esempio come il momento angolare L=rxp , sotto una trasformazione di parità si ha
I segni meno si cancellano e il momento angolare rimane uguale a se stesso, non si inverte.
Un giroscopio davanti a uno specchio. L’asse di rotazione del giroscopio è perpendicolare alla superficie dello specchio: il verso di rotazione rimane inalterato nella riflessione.
Ciò si capisce intuitivamente se pensiamo a un sistema invariante sotto rotazioni e caratterizzato da un asse di rotazione, come un giroscopio. Per questo oggetto la trasformazione di parità equivale alla riflessione speculare (come precisato sopra). Se mettiamo un giroscopio rotante davanti allo specchio, il suo verso di rotazione non viene invertito: se gira in senso orario nel “nostro mondo”, continuerà a girare in verso orario anche nello specchio.
Fatta questa premessa, consideriamo uno degli esperimenti cruciali nella Fisica delle particelle: l’esperimento di Wu (1956). Nell’esperimento di Wu si considerò un particolare decadimento nucleare del Cobalto-60, che provocava l’emissione di elettroni e antineutrini. Tramite l’accensione di un campo magnetico, il team di Wu orientò gli spin dei nuclei di Cobalto in una direzione privilegiata, proprio come si farebbe con degli aghi magnetici. Per la conservazione del momento angolare, gli spin dell’elettrone e dell’antineutrino emessi dovevano avere lo stesso orientamento spaziale degli spin dei nuclei di Cobalto. L’obbiettivo dell’esperimento era di seguire le traiettorie degli elettroni e vedere quale direzione prendessero rispetto allo spin del nucleo decaduto. Dopo un po’ di raccolta dati, si scoprì che gli elettroni avevano una direzione preferita di emissione: opposta allo spin nucleare. L’informazione raccolta sulla Fisica del problema era l’osservazione sperimentale: “la direzione preferita di emissione da parte degli elettroni è quella opposta allo spin del nucleo.”
Di primo acchito questa osservazione non sembra presentare nulla di problematico. Consideriamo però una trasformazione di parità: lo spin nucleare (essendo analogo a un momento angolare) viene mandato in se stesso come abbiamo visto, ma la direzione di moto degli elettroni viene invertita. Quindi in un mondo speculare (con asse di riflessione coincidente con quello dello spin) la conclusione dell’esperimento è che la direzione di emissione preferita da parte degli elettroni è quella concorde allo spin del nucleo.
Sotto una trasformazione di parità le conclusioni sperimentali sono diverse, in netta contrapposizione l’una con l’altra! Per la prima volta nella storia della Fisica una conclusione sperimentale è modificata da una trasformazione di parità, cioè la parità NON è una simmetria del sistema!
Perché la parità potesse essere una simmetria del sistema, ci saremmo aspettati tanti elettroni emessi nella direzione dello spin nucleare, quanti emessi nella direzione opposta. Ciò non è quello che si osserva, per cui siamo portati alla conclusione che la parità non è una simmetria fondamentale della natura, nonostante sia una simmetria delle forze nucleari e delle forze elettromagnetiche.
Interpretazione dell’esperimento di Wu
L’interpretazione dell’esperimento fu la seguente: esiste un’interazione fondamentale capace di far decadere un nucleo emettendo elettroni e antineutrini (oggi nota come interazione debole) che non è simmetrica rispetto a una trasformazione di parità. La parità NON è più una simmetria fondamentale della Natura. L’universo visto allo specchio ha un comportamento diverso se si considerano i decadimenti deboli di alcuni nuclei. Questa distinzione fu abbastanza sconcertante e i fisici dell’epoca rimasero piuttosto sorpresi.
La simmetria C: inversione di carica
La trasformazione matematica di un elettrone in un positrone.
Una trasformazione di inversione di carica viene effettuata sulle funzioni d’onda che descrivono le particelle. Le funzioni d’onda possono essere caratterizzate da numeri quantici come: carica elettrica, numero leptonico, numero barionico e numero leptonico di sapore. L’inversione di carica, come suggerito dal nome, inverte tutti questi numeri quantici: non solo la carica elettrica, ma anche numero leptonico, numero barionico e sapore!
Ad esempio l’inversione di carica su un elettrone lo trasforma in un positrone (cioè una particella con stessa massa, ma carica elettrica opposta e numero leptonico opposto). Quindi effettivamente l’inversione di carica trasforma una particella nella sua anti-particella (per un resoconto su come siamo arrivati a teorizzare le antiparticelle rimando a un precedente articolo).
D’altra parte, una particella senza carica elettrica e senza altri numeri quantici (come il fotone) viene mandato in se stesso da questa trasformazione: il fotone è l’antiparticella di se stesso.
Per la maggior parte dei processi fisici, l’inversione di carica C è una simmetria: potremmo sostituire tutte le particelle del processo con le rispettive antiparticelle e il processo rimarrebbe lo stesso (stesse previsioni teoriche e stessi risultati sperimentali). Ancora una volta fa eccezione l’interazione debole: per questa interazione entrambe le trasformazioni P e CP (combinazione di C e P) non sono una simmetria. Si pensa che questo fatto sia la risposta al quesito: perché il nostro universo è composto per la maggior parte da materia rispetto ad antimateria? In qualche momento dopo il big bang ci fu una maggior produzione di materia forse proprio grazie al fatto che l’interazione debole presenta questa asimmetria nel trattare particelle e antiparticelle.
La simmetria T: inversione temporale
L’ultima trasformazione discreta è l’inversione temporale: si inverte il tempo nelle equazioni della Fisica. L’inversione del tempo agisce su tutte quelle quantità in cui il tempo compare, ad esempio la quantità di moto (contenendo la velocità definita come il rapporto tra spazio e tempo) acquista un segno negativo sotto inversione temporale: p va in –p. Il momento angolare acquista un segno negativo anche lui, dato che L=rxp e r va in se stesso, ma p va in –p, quindi rx(-p)=-L.
Di nuovo, la maggior parte delle teorie fisiche rimane inalterata sotto inversione temporale, ad eccezione della solita guastafeste: l’interazione debole!
Ciò non sconforta ormai più di tanto, dato che le eventuali simmetrie sotto C,P e T separatamente non hanno motivo di esistere se non per la nostra soddisfazione personale. Esiste un’unica simmetria che però deve essere rispettata affinché non crolli tutto il palazzo della Fisica Teorica, ed infatti esiste un Teorema che lo dimostra precisamente. Questa simmetria è la combinazione simultanea di C, P e T: la simmetria CPT.
Il Teorema CPT
Il Teorema CPT discende dall’unione tra meccanica quantistica e relatività ristretta, nel contesto della teoria quantistica dei campi. La sua dimostrazione dipende fortemente da tutto ciò che sappiamo essere verificato sperimentalmente sulla meccanica quantistica e sulla relatività ristretta. TUTTE le leggi della Natura sono invarianti se applichiamo successivamente: un’inversione di tutte le coordinate spaziali, un’inversione della carica di tutte le particelle (cioè la trasformazione di tutte le particelle in antiparticelle) e l’inversione temporale dei processi fisici.
Stiamo dicendo che non è possibile distinguere un esperimento di Fisica condotto in un anti-universo composto da anti-particelle, studiate con coordinate spaziali invertite e con i processi che avvengono al contrario nel tempo.
Per capire il significato del teorema, dobbiamo ricollegarci all’interpretazione di Feynman-Stückelberg sulle antiparticelle, come discusso in un articolo precedente. Un’antiparticella può essere interpretata come una particella che si muove “indietro nel tempo”.
Siccome la trasformazione combinata “CP” trasforma tutte le particelle in anti-particelle e inverte le coordinate spaziali (in modo da farle muovere “all’indietro” rispetto alle coordinate originali), se applichiamo un’ulteriore trasformazione “T” di inversione temporale stiamo facendo muovere queste antiparticelle all’indietro nel tempo e in una direzione spaziale opposta alle coordinate originali. Tradotto: siamo ritornati punto e a capo, e cioè all’universo originale. Quindi, se operiamo un’ulteriore trasformazione di inversione temporale “T”, l’anti-universo ottenuto con la trasformazione “CP” può essere reso indistinguibile dall’universo iniziale.
Una delle prime dimostrazioni del teorema CPT è dovuta a Wolfgang Pauli, il quale fu tra i primi a formalizzare il concetto di simmetria discreta nella teoria quantistica dei campi.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
La violazione di CP e T, ma non di CPT
Sottolineiamo: la simmetria sempre conservata è la combinazione simultanea CPT, ma ciascuna delle trasformazioni separate C, P o T può comunque non essere una simmetria delle teorie fisiche.
Abbiamo visto che l’interazione debole viola la simmetria P. Sappi che viola anche la simmetria CP, cioè la combinazione simultanea di C e P ( è stato verificato sperimentalmente). Questo fatto mise in grave allarme i fisici dell’epoca, perché la simmetria CPT era quindi in pericolo, e assieme a lei tutta la struttura matematica della teoria quantistica dei campi.
Grazie all’interpretazione di Feynman-Stückelberg sappiamo che, se CP è violata, allora l’unico modo per avere simmetria CPT è che anche T sia violata. Un po’ come dire: se voglio ottenere +1 dal prodotto di due numeri, dovranno essere entrambi negativi in modo che si cancelli il segno “-“, in questo modo (-1)(-1)=+1. Fisicamente corrisponde a dire:
Analogia tra la violazione delle simmetrie e la moltiplicazione tra numeri negativi.
I risultati sperimentali odierni sembrano confermare che la simmetria T sia violata, quindi la CPT dovrebbe essere salva, assieme a tutto il castello della Fisica Teorica.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale. È autore del libro “L’apprendista teorico” (2021).
Tutte le particelle note del nostro universo sono state da noi classificate con alcune proprietà che a nostro giudizio sono le più interessanti: la carica elettrica, la massa e lo spin. Per studiare queste proprietà è di vitale importanza osservare il comportamento delle particelle nelle interazioni con il mondo, in particolare ci si concentra su:
Come interagiscono con un campo elettromagnetico: questo al fine di stimare la loro carica elettrica e la loro massa.
Come interagiscono con le altre particelle di un materiale noto: questo al fine di capire il particolare meccanismo di forza a cui la particella è sensibile.
Per il neutrone, elettrone, protone e tante altre particelle, questi metodi ci hanno permesso di avere delle stime molto accurate sulla loro carica elettrica, massa e spin. Ad esempio neutrone e protone hanno quasi la stessa massa, ma il primo è neutro elettricamente: quindi il neutrone non è sensibile alla forza elettromagnetica, percepisce solo la forza forte e la forza debole (per una rapida infarinatura sulle interazioni fondamentali consulta un articolo recente cliccando qui). Il protone invece è sensibile a tutte le forze fondamentali della natura. L’elettrone non è sensibile alla forza forte, ma lo è alla forza elettromagnetica e debole. Il modo che abbiamo per scoprirlo è utilizzando i due metodi esposti sopra.
Il modo in cui studiamo le interazioni: un proiettile di particelle viene mandato contro un bersaglio. Dopo aver interagito con il bersaglio, le particelle vengono rivelate con un rivelatore. Grazie a calcoli teorici, si può capire che tipo di interazione hanno fatto le particelle nel materiale,ad esempio in base all’angolo di uscita.
Tra tutta la zoologia di particelle, il neutrino è senza dubbio la più seccante.
Immagina se dovessimo studiare le proprietà di una particella che risponde molto male ai nostri metodi di indagine. Una bella gatta da pelare! Una particella parecchio seccante è proprio il neutrino: il primo metodo è inefficace in quanto il neutrino è neutro, mentre il secondo metodo è frustrante in quanto il neutrino interagisce pochissimo con la materia che lo circonda:
In media, un neutrino interagisce una sola volta dopo aver percorso 100 miliardi di volte un diametro terrestre.
In sintesi: il neutrino si comporta come un fantasma in grado di attraversare i muri: non c’è peggior comportamento che una particella possa avere, se il fine è quello di studiare come interagisce!
“Siamo sicuri che questo neutrino esista? Come fanno i fisici a studiare una cosa che non si lascia studiare e poi affermare che esiste con certezza?"
Questo è l’aspetto più frustrante: non possiamo fare a meno del neutrino: per una giustificazione storica dell’esistenza del neutrino clicca su questo articolo. I neutrini sono stati scoperti sperimentalmente e vengono studiati con cura dagli anni ’50, questo perché sono state impiegate sorgenti che emettono grandi quantità di neutrini: in questo modo si contrasta la scarsa probabilità di interazione con l’enorme numero di proiettili. È la stessa filosofia di comprare un centinaio di “gratta e vinci” per aumentare le chances di pescarne almeno uno vincente.
I neutrini interagiscono così poco perché sono sensibili (per quanto ne sappiamo oggi) a un solo tipo di interazione che sfortunatamente è la più debole di tutte (alle energie tipiche degli sperimenti), non per niente si chiama “forza debole“. Ora devi sapere che dal punto di vista della relatività speciale (leggi qui e qui) ogni particella di spin 1/2 può partecipare alle interazioni in due configurazioni possibili: con il proprio spin orientato come la quantità di moto, o con lo spin orientato in direzione opposta. Il primo modo si dice destrorso, il secondo modo si dice sinistrorso. Non esiste nessun motivo teorico per cui la configurazione destrorsa debba essere favorita rispetto alla sinistrorsa, eppure per qualche mistero l’interazione debole accoppia le particelle solo nella loro configurazione sinistrorsa (questo fatto si chiama “violazione della simmetria di parità spaziale”).
Il mistero della massa
Siccome i neutrini interagiscono solo con l’interazione debole, essi hanno di fatto un’unica configurazione che possiamo studiare sperimentalmente: quella sinistrorsa. Questo fa sorgere un dubbio dato che, come spiegato brevemente qui, una particella massiva avente lo stesso spin del neutrino dovrebbe invece manifestarsi con entrambe le configurazioni, per questione di relatività. Se i neutrini si manifestano solo con una delle due configurazioni, potrebbero non avere massa?
Questo sospetto andava a braccetto con i dati sperimentali sulla massa del neutrino: dagli esperimenti sul decadimento beta nucleare (spiegato brevemente qui) si osservava che la massa doveva essere piccolissima, almeno un milione di volte più piccola anche di quella dell’elettrone. Se poggio e buca fa pari, i neutrini dovevano allora avere massa esattamente uguale a zero!
Invece i neutrini si sono rivelati ancora una volta una spina nel fianco, perché nel 1998 furono osservate le oscillazioni dei neutrini. Devi sapere infatti che di neutrini ne esistono ben tre specie (sono chiamati sapori leptonici): “e, μ, τ”. Siccome si pensava che i neutrini non avessero massa, questi sapori erano ben distinti l’uno dall’altro. Nelle oscillazioni accade proprio il contrario: un neutrino può cambiare sapore con una certa probabilità, e la grande notizia è che ciò può avvenire solo se la massa del neutrino è diversa da zero!
Un neutrino può cambiare sapore con una certa probabilità dovuta alla sovrapposizione quantistica degli stati.
D’accordo, i neutrini hanno massa, ma per via degli esperimenti sul decadimento beta nucleare sappiamo che questa massa deve essere piccolissima, e dunque molto difficile da misurare (in un mondo di particelle molto più massive è difficile misurare una massa piccola). Gli esperimenti sulle oscillazioni dei neutrini evidenziano che una massa c’è, ma non ci dicono quanto vale. A dire il vero ci dicono solo quanto vale la differenza tra i quadrati delle masse. Infatti la notizia interessante è che le masse dei tre neutrini non sono identiche, anche se la differenza dei quadrati è comunque un numero molto piccolo.
Cosa potremmo desiderare di più? Siamo di fronte a particelle neutre, che interagiscono in un solo modo e pure molto debolmente, di cui non sappiamo precisamente nemmeno la massa. Inoltre queste non sono particelle rare: si stima che in ogni centimetro cubo della nostra vita ci siano almeno 300 neutrini! Sono la seconda particella più abbondante nell’universo dopo il fotone!
Il vero motivo per cui i neutrini sono frustranti
Tutte queste difficoltà della Fisica dei neutrini non sarebbero così tragiche se questi fossero particelle noiose e poco importanti. Il problema è che è vero il contrario: i neutrini prendono parte ad alcuni dei processi più importanti della storia dell’universo, dalle teorie cosmologiche fino al meccanismo di funzionamento delle Stelle, e nel fare ciò mettono a nudo la nostra ignoranza residua sul Modello Standard attuale.
Perché la forza debole viola la simmetria di parità? Perché i neutrini sono così leggeri rispetto alle altre particelle elementari? Perché i neutrini sono le uniche particelle elementari neutre? I neutrini possono coincidere con la propria antiparticella? E se sì, i neutrini possono spiegare la iniziale asimmetria tra materia e antimateria negli istanti dopo il Big Bang?
È un po’ come se queste particelle celassero la chiave per aprire le porte a una nuova teoria oltre il Modello Standard, e per via di ciò, ci fosse “reso” molto difficile lavorare con loro. In un certo senso è quasi come se l’universo cercasse di ostacolare il nostro percorso, quasi come se non dovessimo proprio sapere dell’esistenza di queste particelle, le più eccitanti della Fisica moderna.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Partiamo dal capire cosa c’è dentro. Abbiamo di fronte a noi cinque simboli diversi, ciascuno con un ruolo ben preciso. Procediamo da sinistra verso destra
La “i”, altrimenti nota come unità immaginaria. Cosa è?: È un numero, proprio come anche 2 è un numero, o 13.4. L’unica differenza è che “i” ha delle proprietà speciali, infatti è l’unico numero che moltiplicato algebricamente per se stesso è capace di dare come risultato un numero negativo, cioè i2 = −1. Perché è presente nell’equazione?: la meccanica quantistica prevede l’utilizzo delle unità immaginarie al fine di semplificare la scrittura delle equazioni più importanti. I fisici sono pigri e preferiscono usare la notazione più comoda e diretta possibile. I “numeri complessi“ garantiscono comodità logistica. Nulla di più, nulla di meno.
“La matrice γμ “, nota come matrice di Dirac. Cosa è?: È una matrice, cioè un oggetto matematico che ha il compito di trasformare altri oggetti formati da più componenti. La trasformazione ha l’effetto di mischiare queste componenti secondo una particolare ricetta contenuta nella struttura matematica della matrice. In questo caso l’oggetto da trasformare è la funzione d’onda ψ, che nella teoria di Dirac è formata da 4 componenti. Perché è presente nell’equazione?: come discusso nel precedente articolo sulla genesi, le γμ sono presenti al fine di garantire la covarianza dell’equazione sotto le trasformazioni relativistiche di Einstein. (Per saperne di più sul concetto di covarianza clicca qui).
“La derivata parziale ∂μ” , scritta in un formato criptico e riassuntivo. Cosa è?: è un operatore, cioè trasforma gli oggetti proprio come una matrice, ma in aggiunta ha anche il compito di calcolare la variazione dell’oggetto in una specifica direzione dello spazio-tempo. Le direzioni dello spaziotempo sono specificate dall’indice μ=0,1,2,3 in cui μ=0 è la direzione temporale, e μ=1,2,3 sono le tre direzioni cartesiane x,y,z a cui siamo abituati. Perché è presente nell’equazione?: In fisica studiamo i sistemi chiedendoci come variano sotto certi stimoli. Le variazioni sono calcolate con le derivate. Le equazioni chiave della fisica sono chiamate “equazioni differenziali” perché contengono le derivate delle soluzioni che vogliamo trovare, cioè hanno il compito di descrivere l’evoluzione di un sistema chiedendoci: “sai trovare quella funzione soluzione ψ che quando varia in un certo modo descritto dall’equazione differenziale ci dà questo risultato?”. La risposta a questa domanda, matematicamente, fornisce la soluzione che permette di fare previsioni teoriche da verificare sperimentalmente.
“La massa m”. Cosa è?: è la massa della particella descritta dalla soluzione ψ. Perché è presente nell’equazione?: come spiegato nella genesi dell’equazione, l’equazione di Dirac è stata ricavata modellando l’equazione di Schrödinger e adattandola al caso relativistico. In tal caso l’energia di una particella ferma è proporzionale alla sua massa, come evidenziato da E=mc2: questa massa deve quindi comparire esplicitamente nell’equazione differenziale relativistica (perché l’equazione di Schrödinger coinvolge proprio l’energia della particella).
“La funzione d’onda ψ“, altrimenti nota come spinore di Dirac. Cosa è?: dal punto di vista quantistico rappresenta quella quantità matematica il cui modulo al quadrato rappresenta la densità di probabilità di trovare la particella in un certo punto dello spazio. Dal punto di vista della teoria dei campi rappresenta il campo della particella di massa m, distribuito nello spaziotempo. Le eccitazioni di questo campo vengono interpretate come la particella stessa. Perché è presente nell’equazione?: per trovare l’espressione matematica del campo ψ, occorre capire come si comporta quando si calcola una sua variazione. Questo è il metodo delle equazioni differenziali, e l’equazione di Dirac è un’equazione differenziale. L’equazione ci chiede di trovare la più generica ψ che rispetta una certa proprietà. Questa proprietà è evidenziata da un altro modo di scrivere la stessa equazione (portando cioè il termine di massa a secondo membro):
Un altro modo di scrivere l’equazione di Dirac.
L’equazione ci sta parlando, ci chiede di risolvere un determinato problema:
Sai trovare quella funzione ψ tale che, una volta trasformata tramite gli operatori “γμ∂μ” e moltiplicata per il numero “i”, produce come risultato la moltiplicazione di se stessa per una costante “m”?
La risposta a questa domanda fornisce la soluzione per il campo di una particella massiva, libera da forze.
Come si interpreta
Per capire il potere concettuale di questo modo di porre i problemi, cioè quello di ricavare delle informazioni su un certo oggetto ψ studiando prima come si comporta sotto trasformazioni generate da degli operatori, è molto utile sfruttare un’analogia con il concetto di vettori. Un vettore 2D può essere rappresentato sul piano cartesiano (x,y) come una freccia uscente dall’origine:
La rappresentazione cartesiana del vettore (1,1). Le sue componenti sono v1=1 sull’asse x, e v2=1 sull’asse y.
Ad esempio per costruire un vettore di componenti (1,1), cioè v1=1 sull’asse x, e v2=1 sull’asse y, parto dall’origine e mi sposto di 1 sull’asse x, poi mi sposto di 1 sull’asse y. Il punto in cui arrivo è la testa del vettore. Collegando la testa con la coda (cioè l’origine) ottengo una linea diagonale che chiamo “vettore”. Un vettore può essere trasformato da una matrice usando la seguente ricetta di composizione:
Il risultato della trasformazione di un vettore è un nuovo vettore le cui componenti possono essere ottenute dalla ricetta contenuta nella matrice.
Il vettore trasformato ha le sue componenti che nascono mischiando le componenti del vettore di partenza, secondo una particolare ricetta descritta dalla matrice-operatore. Anche il non fare niente è una trasformazione: prende il nome di matrice identità, la sua azione mi fa ottenere di nuovo il vettore di partenza. Puoi verificare anche tu con la ricetta data sopra che il seguente calcolo lascia invariato il vettore di partenza:
La matrice identità lascia il vettore invariato.
Infatti in questo caso l’operatore è tale che a1=1, a2=0, a3=0, a4=1, e sostituendo nella ricetta di sopra otteniamo proprio che il vettore rimane invariato. Una trasformazione meno banale può invece essere una riflessione, descritta da:
La riflessione del vettore produce un vettore con la componente y invertita di segno.
Puoi verificare il risultato pure tu usando la solita ricetta. Graficamente abbiamo invertito la componente verticale del vettore, come si vede sul piano cartesiano:
La riflessione di un vettore produce un vettore diverso, speculare rispetto al primo.
L’equazione di Dirac si presenta, come accennato, nella seguente veste:
La quale ricalca fortemente il modo in cui trasformiamo i vettori. In questo caso la ricetta prescritta dall’equazione è molto specifica: la trasformazione di ψ è tale da restituire come risultato la ψ stessa, moltiplicata per la massa m. Dal punto di vista matematico, questa richiesta può permetterci di trovare la ψ in maniera non ambigua.
NB: non a caso ψ soddisfa un’equazione con una struttura simile alle equazioni vettoriali con le matrici. Infatti ψ sono oggetti parenti dei vettori, chiamati spinori di Dirac. La differenza fondamentale con i vettori è legata al modo in cui trasformano sotto trasformazioni di Lorentz, come accennato in questo articolo.
Come si usa
Per dare un assaggio di come si affronti una situazione in cui si deve risolvere l’equazione di Dirac, scegliamo la situazione più semplice possibile: il caso di una particella libera e ferma rispetto a noi. Prima permettimi di trasformare l’operatore “γμ∂μ“ in una sua forma più agevole matematicamente:
In meccanica quantistica l’operatore ∂μ può essere espresso in termini della quantità di moto “p” della particella. Per ora prendi questa affermazione come un “ipse dixit”, non è questo il luogo e il momento per giustificarla. L’equazione di Dirac può quindi essere scritta come
L’equazione di Dirac espressa con la quantità di moto.
In cui esplicitiamo una volta per tutte il fatto che con γμpμ intendiamo una somma che per pigrizia non avevamo voglia di esplicitare prima
La somma ha il segno negativo nelle componenti spaziali per via della struttura dello spaziotempo della relatività ristretta di Einstein.
Le quantità γ1,γ2,γ3 sono tutte matrici di Dirac che non ci interessano perché noi supponiamo che la particella sia ferma rispetto a noi, quindi le componenti spaziali della quantità di moto sono nulle, cioè px=py=pz=0. La “quantità di moto” di indice p0 è invece solo un modo lezioso di chiamare l’energia totale della particella. Nel caso di particella a riposo l’energia è, com’è arcinoto:
m è la massa della particella, c è la velocità della luce.
Da ora in poi porremo c=1 per pigrizia, dato che questa scelta non cambia di sicuro la fisica del problema. L’equazione di Dirac si traduce in
che ha la stessa identica forma delle equazioni con i vettori studiate sopra. Le quantità scritte hanno le seguenti espressioni esplicite
Lasciando agire γ0 su u(p) otteniamo
L’effetto di γ0 su u(p) è quello di capovolgere le sue componenti. Puoi verificare usando la regola di composizione matrice-vettore.
Eguagliando questo risultato con u(p) stesso, come ci dice di fare l’equazione di Dirac, scopriamo di dover risolvere il seguente sistema a due incognite
il quale ha la soluzione ovvia u1=u2: una particella di Dirac ferma rispetto a noi ha uguali componenti spinoriali. La soluzione può essere scritta sostituendo u1=u2=ξ e invocando la struttura di onda piana (che è ovviamente soluzione, ed è evidenziata dall’esponenziale contenente quantità di moto e coordinate spaziali):
Da questa espressione si evince che in realtà lo spinore che abbiamo trovato è composto da altre due componenti aggiuntive. In realtà ti ho ingannato tutto il tempo per salvare la semplicità concettuale: uno spinore di Dirac è un oggetto a quattro dimensioni, non due. Tuttavia può essere visto come un oggetto di due componenti, le quali sono a loro volta composte da altre due componenti, per un totale di quattro. La matematica è molto simile e si presta bene a questo inganno.
Una volta ottenuta la soluzione per la particella ferma si può effettuare una trasformazione di Lorentz per osservarla in movimento e derivare così la soluzione più generica per una particella libera.
“Però io credevo che il mondo della Fisica fosse costellato da interazioni tra particelle. Che utilità hanno le soluzioni di particella “libera" senza interazioni?"
Giusta osservazione. Le soluzioni di particella libera in realtà sono ottime approssimazioni per trattare processi in cui le particelle arrivano a collidere e poi si allontanano: nei due stati iniziale e finale possiamo considerare le particelle come libere, ed usiamo la soluzione molto semplice dell’equazione di Dirac per descriverle. L’interazione viene trattata in maniera perturbativa considerando piccoli contributi delle interazioni, basandoci sempre sulla soluzione libera.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
L’equazione d’onda relativistica dell’elettrone rappresenta uno dei trionfi più importanti della scienza del XX secolo.
Nota come “equazione di Dirac”, dal nome del suo scopritore Paul Dirac, essa costituisce la base di tutta la Chimica e di quasi tutta la Fisica moderna.
Trovo molto interessante provare a riavvolgere il filo del pensiero di Dirac, immedesimandoci in lui quando in una fredda serata a Cambridge nel 1928 arrivò a scrivere la sua equazione dopo essere stato tanto tempo seduto a fissare il caminetto (o così dice la leggenda).
Innegabilmente l’equazione di Dirac vanta una certa eleganza estetica, ed è per questo motivo bersaglio di una sempre crescente mercatizzazione (non è raro trovarsela stampata sulle tazze o sulle magliette). Trovo anche io difficile resistere al suo fascino e decido quindi di raffigurarla qui in bella vista, prima di iniziare l’articolo:
L’equazione di Dirac descrive una particella libera (relativistica) di spin 1/2.
Piccolo suggerimento: prima di procedere può essere utile dare un'occhiata a due articoli più introduttivi come questo e questo. Se non ne hai voglia ora, li citerò comunque nel prosieguo, inserendoli nei punti chiave in caso tu voglia approfondire.
Schrödinger: le particelle libere come onde piane
Nel 1926 Schrödinger aveva illustrato al mondo che le particelle quantistiche potevano essere descritte da funzioni d’onda la cui forma funzionale era fissata dalla soluzione dell’equazione
In questa equazione ψ è la funzione d’onda che vogliamo trovare, e H rappresenta l’interazione tra particella e il mondo circostante. Questa interazione, agendo su ψ nel membro di destra, produce una variazione nel tempo della ψ stessa, come evidenziato nel membro di sinistra col simbolo di variazione nel tempo ∂/∂t lasciato agire su ψ. Per una particella libera (cioè senza interazioni con il mondo circostante, o con interazioni così deboli da poter essere trascurate rispetto all’energia cinetica della particella), l’equazione di Schrödinger ha una soluzione semplicissima: un’onda piana
Se non sei familiare con quella forma curiosa per l’energia cinetica ti basti sapere che partendo da 1/2 m v2, questa può essere riscritta in una forma più conveniente sostituendo la quantità di moto p=mv.
In che senso “più conveniente”? In meccanica quantistica si usano gli operatori, che sono oggetti matematici che trasformano le funzioni d’onda in un certo modo. Non tutte le quantità a cui siamo abituati classicamente sono dei buoni operatori. La quantità di moto è un operatore che sappiamo maneggiare bene nei calcoli, al contrario della velocità che è mal definita.
L’energia relativistica, un passo oltre Schrödinger
Nel 1905 Einstein rivoluzionò la meccanica newtoniana con la teoria della Relatività Ristretta. Una delle conseguenze fu la correzione all’energia totale di una particella libera. La forma newtoniana prevedeva, come abbiamo visto, E= p2/2m. In realtà questa non è altro che l’approssimazione della versione einsteiniana una volta che consideriamo velocità molto più basse di quelle della luce, in cui si ha:
In queste formule “m” è la massa della particella, “p” la quantità di moto e “c” la velocità della luce. A basse velocità otteniamo di nuovo la formula newtoniana per l’energia.
Le energie di legame atomiche sono solitamente così piccole da far sì che le particelle si muovano a velocità molto più basse di quella della luce. L’equazione di Schrödinger era stata creata proprio per descrivere i processi atomici, quindi all’inizio nessuno si preoccupò che non fosse relativistica, c’erano problemi ben più importanti da risolvere. Se invece si indaga sulla scala subatomica si scopre che bisogna tenere conto delle correzioni relativistiche, proprio perché stavolta aumenta l’energia in gioco. La strategia più naturale per rendere relativistica l’equazione di Schrödinger è quella di sostituire la vecchia forma di H con la formulazione relativistica:
La forma relativistica dell’equazione di Schrödinger.
Il problema è che, come anticipato prima, in meccanica quantistica la quantità di moto è un operatore, ed è problematico definire la radice quadrata di un operatore. Come superiamo questo ostacolo?
La Klein-Gordon e i suoi problemi
L’approccio proposto da Klein e Gordon per eliminare la radice fu quello di calcolare la variazione temporale di entrambi i membri dell’equazione relativistica, applicando ∂/∂t a sinistra e a destra
In questo conto è fondamentale sapere che l’unità immaginaria “i” è definita in modo che i2=-1
A sinistra abbiamo quindi una doppia derivazione rispetto al tempo, mentre a destra (siccome H è costante nel tempo) otteniamo ∂ψ/∂t, alla quale possiamo sostituire l’equazione di Schrödinger stessa. Con questo piccolo trucco otteniamo che la radice quadrata sparisce. Ora per semplificare i conti che seguiranno scegliamo di lavorare con delle unità in cui ħ=c=1 e facciamo un cambio di variabili, l’equazione di sopra diventa l’equazione di Klein-Gordon:
L’equazione di Klein-Gordon scritta in una forma più simpatica all’occhio.
L’equazione di Klein-Gordon fu il primo tentativo di relativizzare l’equazione di Schrödinger. La soluzione di questa equazione è ancora un’onda piana per una particella di massa m, solo che a differenza di prima la forma dell’equazione è immediatamente covariante sotto trasformazioni di Lorentz, in quanto P2 e m2 sono degli scalari di Lorentz: in sostanza il principio di relatività è automaticamente soddisfatto (mentre non lo era nell’equazione di Schrödinger).
Dove sta la fregatura?
L’aver mandato via la radice quadrata ha sollevato un problema irritante: l’evoluzione temporale nell’equazione di Schrödinger era espressa da un termine di primo grado ∂ψ/∂t, mentre ora nella Klein-Gordon è espressa da un termine di secondo grado (∂2ψ/∂t2), e ciò fa sì che la densità di probabilità possa ora assumere valori non solo positivi, ma anche negativi o nulli.
Infatti i moduli quadri delle funzioni d’onda (che per la regola di Born rappresentano le densità di probabilità) possono essere calcolati tramite una particolare “ricetta” che dipende in una maniera molto precisa dal tipo di equazione dinamica da cui si parte. Si dà il caso che la “ricetta” ereditata dall’equazione di Klein-Gordon sia difettosa rispetto a quella dell’equazione di Schrödinger. Ciò fa perdere di significato fisico tutta la struttura matematica della nostra teoria, una bella gatta da pelare!
Non c'era via di uscita? È questo il prezzo da pagare per aver cercato di introdurre la relatività nella meccanica quantistica?
L’illuminazione di Dirac
Per dei motivi che oggi non sono più rilevanti, Dirac era fortemente preoccupato dal problema della densità di probabilità nella Klein-Gordon. Per questa ragione si ossessionò al punto da forzare la matematica stessa: voleva abbassare l’ordine delle derivate temporali dal secondo grado al primo grado a tutti i costi, pur mantenendo un’equazione relativisticamente permessa. Nella sua mente la forma prediletta doveva essere, per ragioni relativistiche e di “eleganza”
In cui γ0 è un termine per ora indeterminato. Questa equazione doveva comunque essere collegata alla Klein-Gordon in qualche modo, perché questa garantisce l’invarianza relativistica. L’illuminazione arrivò quando fu colto il seguente parallelismo con la differenza algebrica dei quadratia2-b2
dove le γμ sono degli oggetti per ora ignoti, e la notazione va intesa nel modo seguente:
j=1,2,3 indica le tre direzioni cartesiane x,y,z. Quindi x1=x , x2=y , x3=z.γPè quindi solo un modo rapido di scrivere quella somma di termini, comprendenti tutte le direzioni spaziali cartesiane.
Affinché valga l’uguaglianza con la Klein-Gordon tramite la differenza dei quadrati le misteriose γμ devono soddisfare
in cui ημν è la metrica dello spazio-tempo della relatività ristretta. Infatti per avere uguaglianza deve essere
e questa condizione può essere soddisfatta solo se vale la relazione scritta sopra, che lega la metrica ημν con gli oggetti γμ.
La richiesta di un’equazione con derivata temporale al primo ordine ha quindi generato due possibili equazioni relativistiche:
L’uguaglianza del loro prodotto con la Klein-Gordon impone poi che gli oggetti γμ debbano essere delle matrici quattro-dimensionali con delle ben determinate regole di composizione legate alla metrica dello spaziotempo. Non solo, la forma matematica di queste equazioni impone che la funzione d’onda ψ trasformi in una maniera ben precisa sotto trasformazioni di Lorentz.
Fu la prima volta nella storia della Fisica in cui una richiesta di struttura visiva della matematica portò a scoprire un’intera classe di nuovi oggetti matematici.
Tornando alla notazione con le derivate scritte in una forma più elegante:
otteniamo la forma dell’equazione di Dirac che si stampa sulle magliette:
È cruciale il fatto che ora possiamo interpretarla proprio come una sorta di decomposizione della Klein-Gordon per far sì di ottenere solo derivate di primo grado nel tempo. Nonostante ciò, è in realtà è più proficuo (dal punto di vista teorico) interpretare questa equazione come l’equazione del moto di una teoria di campo costruita per le particelle che trasformano come una rappresentazione di spin 1/2 sotto trasformazioni di Lorentz (se vuoi saperne di più sul perché classifichiamo le particelle come rappresentazioni di spin clicca qui).
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Gran parte del lavoro della fisica degli ultimi 70 anni è stato quello di scovare nuove leggi della natura a partire da princìpi di simmetria. Un esempio di questo modo di lavorare può essere fornito andando a re-inventare la ruota, cioè analizzando l’emergere della teoria dell’elettromagnetismo (studiata e compresa da ormai un secolo e mezzo) da un principio di simmetria.
L’identikit di una simmetria
Se mi chiedessero di riassumere ciò che i fisici teorici intendono con la parola magica “simmetria” tramite l’esempio più semplice possibile, userei questo:
Stai osservando un sistema fisico e nel mentre che chiudi gli occhi eseguo una certa trasformazione del sistema in modo che quando li riapri per te non è cambiato nulla: allora quella trasformazione è una simmetria del sistema.
Esistono simmetrie più intuitive e meno astratte di altre, e quelle della meccanica quantistica sono decisamente poco intuitive. Per questo motivo la nostra strategia sarà quella di cercare delle analogie con le simmetrie geometriche, con cui abbiamo più confidenza.
Prima di poter apprezzare il discorso è però necessario passare un piccolo purgatorio di matematica dei numeri complessi, perché è li che si nasconde la simmetria che fa nascere l’elettromagnetismo.
La natura complessa della quantistica
La meccanica quantistica studia il moto delle particelle tramite le funzioni d’onda che “vivono” in uno speciale spazio matematico. Si scoprì presto che, per riprodurre i risultati sperimentali a partire dalla teoria, tale spazio matematico doveva essere a valori complessi. Perché? Semplicemente è più facile fare i conti con i numeri complessi, ed alcune proprietà fisiche appaiono più evidenti.
In ogni punto dello spazio, il valore della funzione d’onda è rappresentato da un numero complesso: cioè una freccia sul piano di Gauss.
Se non hai molta dimestichezza col concetto di numero complesso, può aiutare un’analogia. L’essenza matematica è molto simile a quella di un vettore sul piano cartesiano, dove con “vettore” devi sostituire “numero complesso” e con “piano cartesiano” devi sostituire “piano di Gauss”.
Le analogie non finiscono qui!
Proprio come un vettore, un numero complesso può allungarsi, accorciarsi, ribaltarsi, e in generale ruotare sul piano di Gauss.
La lunghezza di un vettore è un numero reale ed è chiamata in gergo ”modulo”.
La “lunghezza“ di un numero complesso è un numero reale ed è chiamata in gergo ”modulo”.
I numeri complessi godono però di alcune proprietà aggiuntive che tornano molto comode nei calcoli, per cui vanno in ogni caso ben distinti dai vettori.
Nota bene: ciò che calcoliamo dalle misure negli esperimenti sono i numeri reali, non i numeri complessi. Per questo motivo la funzione d’onda di una particella è stata interpretata dai fisici come un numero complesso il cui modulo al quadrato restituisce un numero reale che è la densità di probabilità
La funzione d’onda di una particella è un numero complesso il cui modulo al quadrato (numero reale) viene interpretato come la probabilità di trovarla in un certo punto dello spazio.
dove la probabilità è in un certo senso ciò che si manifesta sperimentalmente, e quindi è la connessione tra mondo teorico e mondo degli esperimenti. Tutti i calcoli della meccanica quantistica hanno lo scopo di arrivare a una stima della probabilità.
La cosa interessante è che la definizione di probabilità come modulo quadro della funzione d’onda ci lascia una certa libertà: potremmo moltiplicare la funziona d’onda per un altro numero complesso “z” avente modulo uguale a uno, e la probabilità rimarrebbe la stessa
Se il numero complesso z ha modulo uguale a uno, la sua moltiplicazione con la funzione d’onda non ha alcun effetto sulla probabilità.
Dal punto di vista del mondo reale non è cambiato nulla (la probabilità è la stessa), ma dal punto di vista matematico la moltiplicazione per il numero “z” ha trasformato, in ogni punto dello spazio, il valore della funzione d’onda.
“Trasformato? Che vuol dire? Non è un semplice prodotto algebrico quello che abbiamo appena visto?"
Lo sarebbe se stessimo parlando di numeri reali. Tuttavia una proprietà molto interessante dei numeri complessi è che quando li moltiplichiamo tra loro otteniamo una rotazione sul piano di Gauss. La trasformazione prende il nome gergale “trasformazione di fase”.
Il numero complesso A viene ruotato di un angolo pari all’inclinazione del numero complesso B. Il risultato è un numero complesso AB ruotato.
La matematica della meccanica quantistica ci dà la libertà di trasformare il valore complesso delle funzioni d’onda in ogni punto dello spazio, senza intaccare la probabilità di osservazione che esse descrivono.
L’atto di trasformare un oggetto con il risultato di lasciare intatta una certa quantità (come la probabilità che osserviamo) corrisponde proprio all’identikit di una simmetria.
“Non mi convincono troppo queste parole altisonanti. “Simmetria" mi fa pensare più a una cosa geometrica, mentre mi pare di capire che qui siano solo astrazioni matematiche..."
Però abbiamo appena visto che la trasformazione di fase è parecchio analoga a una rotazione!
“Vorrai mica dire che c'è un modo per rendere più intuitive tutte queste astrazioni?"
Le interpretazioni di una simmetria: la teoria dei gruppi
Considera un quadrato disteso su un piano e immagina di chiudere gli occhi mentre io ruoto il quadrato di 5 gradi. Quando riapri gli occhi sei in grado di capire se ho eseguito una rotazione o meno?
Il quadrato iniziale (linea tratteggiata), e il quadrato dopo la rotazione di 5 gradi (linea continua).
“Mi prendi per uno stolto? Il quadrato ora è diverso da prima, è un po' più storto! Come fai a pretendere che non mi accorga della trasformazione?"
Ciò è successo perché la trasformazione “rotazione di 5 gradi” non è una simmetria del quadrato. Il quadrato non è rimasto identico a se stesso.
Un quadrato rimane identico a se stesso se invece lo ruotiamo per alcuni angoli speciali:
Possiamo non fare nulla, cioè ruotarlo di 0 gradi, e il quadrato rimane identico a se stesso.
Possiamo ruotarlo di 90 gradi e il quadrato rimane identico a se stesso.
Possiamo ruotarlo di 180 gradi e il quadrato rimane identico a se stesso.
Possiamo ruotarlo di 270 gradi e il quadrato rimane identico a se stesso.
In sostanza se io avessi eseguito una qualsiasi delle suddette rotazionimentre tenevi gli occhi chiusi, dopo non saresti in grado di dirmi se io abbia trasformato il quadrato o meno. In gergo gli angoli {90, 180, 270, 0} formano un gruppo: il gruppo di simmetria del quadrato.
Una rotazione di 90 gradi lascia il quadrato identico a se stesso.
Il nome “gruppo” si riferisce al fatto che se eseguissi due trasformazioni consecutive usando gli elementi del gruppo {90, 180, 270, 0} otterrei comunque una trasformazione che lascia invariato il quadrato, e quindi tale trasformazione deve fare anche lei parte del gruppo {90, 180, 270, 0}. Ad esempio se ruoto di 90 e poi ruoto di 180, ottengo una rotazione totale di 270, che è un elemento del gruppo. Se ruoto di 270 e poi ruoto di 180 ottengo una rotazione di 450 gradi, che equivale a 90 gradi. Il gruppo è una “società chiusa“.
Spingendoci un po’ più sull’astratto desideriamo che un gruppo di simmetria, per ritenersi tale ai nostri occhi, abbia queste proprietà importanti:
Chiusura: se due elementi appartengono al gruppo, allora anche la loro composizione (cioè applico prima l’uno e poi l’altro) appartiene al gruppo. Lo abbiamo appena visto con le rotazioni.
Esistenza dell’identità: anche la trasformazione “non faccio nulla” deve appartenere al gruppo. Come ben sai, il “fare nulla” lascia le cose uguali a come erano prima.
Esistenza dell’inverso: se ruoto di 90 gradi e poi voglio tornare indietro, posso ruotare di altri 270 gradi e fare quindi un angolo giro di 360 gradi per tornare da dove ero partito. La composizione 90+270 equivale al “non fare niente”. Quindi diremo che l’elemento 270 gradi è la trasformazione inversa della rotazione di 90 gradi.
Il gruppo di simmetria del quadrato ha, come hai visto, pochi elementi. Esistono però gruppi con un numero infinito di elementi. Considera ad esempio un cerchio
Nel caso del cerchio qualsiasi angolo di rotazione è un elemento del gruppo di simmetria. Se chiudessi gli occhi e io ruotassi il cerchio di 13.42 gradi, dopo non sapresti dire se io abbia eseguito la rotazione o meno. Il gruppo di simmetria del cerchio è definito da un angolo che può assumere infiniti valori.
“Tutto molto elegante, ma quindi? Non stavamo parlando di trasformazioni di fase?"
Le trasformazioni di fase: il gruppo U(1)
Abbiamo visto che le trasformazioni di fase che si fanno sulle funzioni d’onda sono delle rotazioni nel piano di Gauss, e la notizia è che sono molto simili al gruppo di simmetria del cerchio. Il loro collettivo ha un nome speciale: gruppo U(1).
Un elemento del gruppo può essere rappresentato da un esponenziale avente come esponente l’angolo di cui si sta facendo la rotazione.
“i” è l’unità immaginaria dei numeri complessi: la radice quadrata di -1.
Questa rappresentazione esponenziale degli elementi del gruppo rende più evidenti le proprietà dei gruppi elencate sopra:
Quindi la trasformazione di fase U(1) ha pieno diritto di essere considerata un gruppo di simmetria.
Quando trasformiamo una funzione d’onda moltiplicandola per un elemento del gruppo U(1), stiamo ruotando il suo valore sul piano complesso in ogni punto dello spazio in cui la funzione d’onda è definita. Se facciamo il modulo quadro di questo prodotto, l’effetto è quello di effettuare una rotazione inversa: la composizione delle due cose restituisce l’identità, cioè il non fare niente.
“Continuo a non capire perché porre tanta enfasi sulle simmetrie. È un accidente matematico e nulla di più, perché perderci tutto questo tempo?"
Il motivo di tanta enfasi è il teorema di Noether.
La teoria di Dirac per una particella libera di spin 1/2 e massa m.
Dove la parte di sinistra descrive un cambiamento della funzione d’onda nello spaziotempo, e la parte di destra descrive la massa “m” della particella.
La parte sinistra della teoria di Dirac coinvolge una derivata rispetto alle coordinate spaziotemporali, cioè calcola le variazioni della quantità su cui agisce. In questo caso agisce sulla funzione d’onda a destra.
La teoria di Dirac è stata costruita in modo da essere simmetrica rispetto a una trasformazione di fase globale. Le due funzioni d’onda scritte sopra trasformano infatti in modo opposto sotto una trasformazione U(1)
In modo che il loro prodotto rimanga invariato
La trasformazione di fase globale, ripetiamo ancora una volta, ha l’effetto di ruotare simultaneamente in ogni punto dello spaziotempo il valore della funzione d’onda nel piano di Gauss. In sostanza il valore dell’angolo di rotazione θ è uguale per tutti i punti dello spaziotempo.
Siccome θ è una costante (cioè uguale in tutti i punti dello spazio tempo, da cui il nome globale), la parte di variazione della teoria di Dirac è anch’essa lasciata intatta dalla trasformazione
L’angolo θ non dipende dallo spaziotempo e la derivata non ha effetto su di lui.
Questa simmetria della teoria di Dirac genera una quantità conservata molto importante: la differenza tra numero di particelle e numero di antiparticelle.
Tuttavia la relatività vieta che la trasformazione di una fase in un certo punto dello spaziotempo possa ruotare istantaneamente la fase in un altro punto.
Richiediamo che debba esserci un “tempo di propagazione diverso da zero” tra un punto e l’altro. L’unico rimedio è assumere che l’angolo di rotazione θ abbia un valore diverso punto per punto nello spaziotempo e che la trasformazione si propaghi ad una velocità finita, trasmessa da un qualche campo ignoto che siamo costretti a introdurre nella teoria:
Introduzione di un campo ignoto nella teoria per fare da mediatore nella trasmissione dell’informazione sulla fase tra i punti dello spaziotempo. “q” è una costante ignota.
Inoltre ora la teoria di Dirac ha perso la simmetria U(1), in quanto la parte di variazione comprende sia la variazione della funzione d’onda, sia la variazione dell’angolo che passa da θ costante a θ(x) funzione dello spaziotempo:
La richiesta che l’angolo di rotazione dipenda dallo spazio rompe la simmetria globale U(1)
quel termine aggiuntivo a destra rovina la festa, perché l’espressione non rimane uguale a se stessa dopo la trasformazione!
“Mi pare che andiamo di male in peggio. Ora non solo dobbiamo aggiungere alla teoria un campo ignoto per rispettare la relatività, ma abbiamo anche un pezzo in più dovuto alla variazione dell'angolo θ(x)!
Non ha proprio nulla di simmetrico, non ne usciremo mai!"
Siccome nella realtà nessun esperimento è in grado di rivelare questo cambiamento di fase θ(x) che abbiamo effettuato matematicamente, vorremmo eliminare questa imbarazzante rottura della simmetria nella matematica della nostra teoria. E se la via d’uscita fosse proprio il campo ignoto che siamo stati costretti a postulare?
Per preservare sia la simmetria U(1) che la relatività ristretta, possiamo imporre che la nostra teoria sia simmetrica rispetto a un nuovo tipo di trasformazione.
Ad esempio una trasformazione del tipo:
Per quale motivo proprio questa trasformazione? Furbizia! Infatti facendo entrambe queste trasformazioni, i termini aggiuntivi si eliminano e la nostra teoria rimane invariata, cioè abbiamo di nuovo una simmetria, che chiamiamo per ragioni storiche “simmetria U(1) di Gauge“.
L’azione combinata di entrambe le trasformazioni fa in modo di cancellare il termine aggiuntivo, la teoria è ora simmetrica.
Nasce l’elettrodinamica quantistica
Tramite alcune ragionevoli considerazioni si dimostra che il famigerato campo ignoto non è altro che il campo elettromagnetico. La teoria di Dirac descrive il comportamento delle particelle cariche in presenza di un campo elettromagnetico!
La costante “e” rappresenta la carica dell’elettrone, se vogliamo descrivere l’interazione di un elettrone con un campo elettromagnetico rappresentato da “A”.
Si è presentata la necessità dell’esistenza del campo elettromagnetico nel momento in cui abbiamo richiesto che venisse rispettata la relatività ristretta assieme alla simmetria U(1). Ciò ci ha condotto a considerare un nuovo insieme di trasformazioni sotto le quali la teoria è simmetrica: la U(1) di Gauge.
Inoltre la quantità conservata sotto questa nuova simmetria è proprio la carica elettrica.
La teoria ottenuta da queste considerazioni è nota come elettrodinamica quantistica, ed è la teoria del modello standard meglio verificata sperimentalmente.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Antiparticella = particella di uguale massa, ma con carica elettrica opposta
Il concetto di antimateria si è imposto praticamente da solo e prepotentemente, senza che nessuno lo abbia cercato di proposito, nel momento in cui sono state unificate meccanica quantistica e relatività ristretta alla fine degli anni ’20. Le prove sperimentali arrivarono fin dai primi anni ’30. Oggi siamo in grado di produrre antimateria anche a fini medici (si pensi alla PET dove si sfruttano gli anti-elettroni, noti come positroni).
Ha un fascino particolare provare a seguire il percorso concettuale che, dalla relatività di Einstein, ha condotto alla teorizzazione dell’antimateria (dovuta a Dirac).
Facciamo finta di star scoprendo noi stessi il concetto di antiparticella in questo momento, e ripercorriamo tutte le tappe logiche fondamentali in cui potremo apprezzare il ruolo fondamentale giocato dalla teoria di Einstein.
L’energia di una particella
Nella meccanica quantistica ordinaria l’energia di una particella libera avente una quantità di moto p e una massa m si trova inserendo dentro l’equazione di Schrödinger la soluzione di onda piana (che è il modo quantistico di dire “particella esente da forze”). Il risultato è
La relatività di Einstein impone invece che tale espressione matematica per l’energia sia solo la versione approssimata della seguente
c è la velocità della luce
nell’approssimazione di quantità di moto molto piccole rispetto all’energia di massa. Fin qui nessun problema, la Fisica funziona così: quella che oggi sembra la forma definitiva di un’equazione, sarà l’approssimazione della versione più completa scoperta in futuro.
Il vero problema nasce quando si tenta di rendere l’equazione di Schrödinger relativistica
Lo schema è lo stesso: l’equazione non relativistica è solo l’approssimazione di quella relativistica, la quale, ad oggi, è la “vera equazione del moto” in quanto rispetta il principio di relatività di Einstein.
Il principio di relatività cambia la struttura matematica dell’equazione di Schrödinger, e se si prova a calcolare l’energia di una particella libera inserendovi al suo interno una soluzione di onda piana, si ottiene stavolta l’energia in questa forma curiosa e problematica
“Scusa, ma dove sta il problema? Abbiamo appena detto che la vera energia di una particella è data da quell'espressione brutta con m e c al quadrato e così via, non siamo contenti che l'equazione relativistica di Schrödinger restituisca la stessa energia per la particella libera?"
Il punto è che la struttura matematica dell’equazione di Schrödinger relativistica ci pone ora dinanzi a due vie, perché non ci dà l’energia, ma l’energia al quadrato!
Prima o poi nella vita siamo stati tutti mazziati dalla seguente proprietà matematica:
Ora il gioco è lo stesso, per la prima volta in Fisica l’equazione del moto di una particella esente da forze ci impone che l’energia possa essere data sia da un numero negativo che da un numero positivo
“E che ci vuole? Buttiamo via la soluzione negativa come si fa a scuola. Non esistono particelle libere con energia negativa!"
Facciamo però l’avvocato del diavolo e scegliamo di ascoltare la matematica imposta dalla relatività ristretta (ha sempre portato bene nella storia della Fisica!). Facciamo finta che possa esistere una particella ad energia negativa.
Come si comporta una particella di energia negativa?
L’energia in meccanica quantistica è importante perché ci dice come si evolve, nel tempo, la dinamica di una particella. Tale evoluzione è descritta, in soldoni, da
è insomma un esponenziale di un certo numero (di Eulero) avente come esponente il prodotto tra il numero complesso “i”, l’energia “E” e il tempo “t”. Non soffermarti sul perché, non è questo il punto.
Concentrati solo sul fatto che l’evoluzione dipende dal prodotto tra energia e tempo.
Se l’energia di una particella è negativa, il prodotto viene mandato in:
Ed ora è il momento di dire la cruda verità: ai fisici non piace per niente il fatto che le particelle possano avere energie negative, perché ci sarebbero non pochi problemi riguardo alla stabilità stessa della materia (mancherebbe un limite inferiore all’energia, un fatto molto pericoloso perché la natura vuole sempre occupare stati a energia minore).
Ma allora è tutto da buttare?
Continuiamo a fare gli avvocati del diavolo. Forse c’è un modo interessante di interpretare quel segno meno nel prodotto.
Continuiamo a seguire ciò che ci ha insegnato la relatività ristretta sulla struttura spaziotemporale della nostra realtà.
Questione di interpretazione: lo spaziotempo di Einstein
Supponiamo di osservare due eventi (contrassegnati da “1″ e “2″) che accadono in due punti dello spazio e a due istanti di tempo diversi. Li annotiamo sul nostro taccuino come
Ipotizziamo che, secondo noi, l’evento 1 sia avvenuto prima dell’evento 2. Matematicamente chiediamo quindi che sia
Se un altro osservatore in moto con una velocità costante “v” rispetto a noi osserva gli stessi eventi, annoterà anche lui i due eventi sul suo taccuino usando le sue personalissime coordinate
dove “γ” è una quantità positiva che dipende dalla velocità, di cui non devi preoccuparti.
Preoccupiamoci invece di sottrarre le due equazioni di sopra per ottenere la differenza tra gli istanti di tempo dei due eventi rilevati dall’osservatore in moto, rispetto alle nostre coordinate (così per curiosità, perché non farlo?)
La matematica della relatività ci tenta di porre la seguente domanda “e se la differenza tra i due istanti di tempo per il secondo osservatore fosse negativa?”. Ciò si tradurrebbe in:
La seconda condizione è possibile se la velocità del secondo osservatore è tale che
A patto però, come dicono le regole di Einstein, che v non superi la velocità della luce. Cioè deve essere
L’ultima condizione ci dice che la distanza spaziale tra i due eventi deve essere maggiore della distanza percorsa da un raggio di luce (di velocità c) nel tempo che intercorre tra i due eventi stessi. Se gli eventi soddisfano questa particolare caratteristica, allora è possibile trovare un osservatore con una velocità v tale da rendere
ovvero l’ordine degli eventi è invertito per il secondo osservatore: secondo lui è successo prima l’evento “2″ dell’evento “1”.
In relatività ristretta è permesso che l’ordine temporale degli eventi possa essere invertito dal punto di vista di un osservatore in moto
“Aspetta un attimo, ma questo mi consentirebbe di vedere la gallina prima dell'uovo, no? Non c'è un problema di causa-effetto?"
Ottima osservazione, ma non c’è nessun problema! Infatti l’inversione temporale avviene solo per eventi che non possono essere connessi da alcuna relazione causale: non ci può essere trasmissione di informazioni tra eventi che distano nello spazio più della distanza percorribile dalla luce nel tempo che li separa! Lo abbiamo incluso tacitamente nella condizione:
“Ok...e quindi? Cosa c'entrano nella fisica gli eventi senza connessione causale? La fisica è fatta di causalità! Mi pare che tu stia a chiacchierare di metafisica!“
Ora interviene la meccanica quantistica!
Per il principio di indeterminazione di Heisenberg, è possibile che una particella si propaghi da un punto all’altro dello spazio anche se questi due punti non sono connessi causalmente.
Se una particella viene emessa in un punto A ed assorbita in un punto B (e tali punti non sono causalmente connessi per ipotesi) allora un osservatore che si muove con una certa velocità (calcolata sopra), vedrebbe l’assorbimento della particella nel punto B in un tempo che precede l’istante in cui viene emessa nel punto A.
Come si esce da questo paradosso?
L’interpretazione di Feynman-Stückelberg
Il fisico americano Richard Feynman
Torniamo al prodotto tra energia e tempo per quanto riguarda l’evoluzione temporale di una particella. Avevamo detto che se l’energia è negativa abbiamo
Immagina che io ti abbia bendato gli occhi e avessi messo il segno meno davanti al prodotto senza dirti a quale fattore è stato applicato. Potrei benissimo aver cambiato segno a “t” invece che all’energia, senza dirti nulla. Il risultato è a tutti gli effetti equivalente:
Matematicamente non cambia nulla, ma il risultato è rivoluzionario:
Una particella di energia negativa può essere pensata anche come una particella di energia positiva che si muove indietro nel tempo!
Questa è l’interpretazione di Feynman-Stückelberg, i quali volevano cancellare dall’esistenza il concetto di energia negativa. Dal punto di vista delle interazioni tra le particelle, la relatività prevede l’inversione temporale, come abbiamo discusso sopra.
“Ma che senso ha questa propagazione indietro nel tempo? A me pare ancora che si stia parlando di metafisica qui..."
Hai ragione. Infatti bisogna sedersi un attimo e ragionare su cosa significhi, dal punto di vista fisico, l’inversione temporale.
L’interpretazione dell’inversione temporale
Generalmente classifichiamo le particelle in base al modo in cui si comportano nelle interazioni fondamentali. In particolare ci interessa studiarne la traiettoria in una regione in cui è presente un campo elettromagnetico.
L’accoppiamento tra una particella e un campo elettromagnetico ha un nome tutto suo: la carica elettrica “q”.
La forza elettromagnetica su una carica “q” modifica la sua traiettoria accelerandola.
Le particelle descrivono traiettorie in una certa direzione, in base al segno della carica “q”, che può essere positivo o negativo.
Tra tutti i simboli dell’equazione appena scritta, concentriamoci solo sul tempo “τ“. Ci sono solo due termini che contengono il tempo esplicitamente, ed entrambi si trovano al denominatore ed appaiono come
Se invertiamo il tempo, otteniamo che il termine a sinistra non cambia (essendo un quadrato). Quindi cambia solo il secondo e si ha
Quindi sotto inversione temporale compare un segno meno globale per tutta l’equazione. Ora immagina di nuovo che io ti abbia bendato gli occhi e avessi fatto spuntare fuori questo segno meno senza dirti che ho invertito il tempo. Potresti benissimo interpretare il segno meno in questo modo
Dal punto di vista sperimentale, l’effetto è quello di aver invertito il segno della caricaelettrica. Le equazioni del moto relativistiche ci dicono che invertire il tempo si traduce, sperimentalmente, come il moto di una particella di carica elettrica opposta.
Una particella di energia positiva che si muove indietro nel tempo può essere interpretata come una particella di energia positiva, ma con carica opposta, che si muove avanti nel tempo.
Ecco che sparisce tutta la stranezza dell’inversione temporale! Ed ecco cosa ci ha insegnato la relatività ristretta applicata alla meccanica quantistica!
Le particelle ad energia negativa possono essere interpretate come delle particelle ad energia positiva che si muovono avanti nel tempo, ma che hanno carica opposta.
Oggi abbiamo un nome particolare per questo tipo di particelle che differiscono dalle particelle originali solo per il segno della carica elettrica e degli altri numeri quantici: le antiparticelle.
Una particella di energia negativa può essere interpretata come un’antiparticella di energia positiva che si muove, come tutte le altre particelle, avanti nel tempo. L’antiparticella differisce dalla particella solo per il segno della carica elettrica e di altri numeri quantici.
In questo modo abbiamo risolto anche il paradosso enunciato sopra:
Mettiamo che io veda una particella emessa in un punto A ed assorbita in un punto B. Come ci dice la relatività un altro osservatore potrebbe invece vedere una particella assorbita in B in un istante che precede la sua emissione nel punto A (se A e B non sono connessi causalmente). Ma ora sappiamo che ciò equivale ad osservare una particella di carica opposta che viene emessa in B ed assorbita in A. La causalità è salva.
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Matteo Parriciatu
Dopo la laurea in Fisica (2020) e la magistrale in Fisica Teorica (2023) all’Università di Pisa, fa ricerca sulle simmetrie di sapore dei leptoni e teorie oltre il Modello Standard.
È membro della Società Italiana di Fisica.
È autore del libro “L’apprendista teorico” (2021).