La Dolce Vita tra i Calcoli Sbagliati – Cronache di Fisica Teorica

Cambio posizione per l’ennesima volta. La scalinata davanti al Palazzo Ducale di Genova non è uno dei posti più comodi per mettersi a scrivere calcoli sul tablet. La speranza è che la scomodità della situazione stimoli il cervello a produrre più di quanto farebbe a casa.

È il mio primo tentativo nel mondo della ricerca in Fisica Teorica, e davvero sento di non poter sbagliare. In qualche modo sono convinto che un ricercatore alle prime armi abbia a disposizione un solo tentativo, altrimenti è tacciato di incompetenza. Qualcosa tipo “se non ottieni risultati, almeno salvati la reputazione e non commettere errori”.

Tra le questioni da indagare nel mio lavoro ce n’è una che mi sta molto a cuore: una spiegazione teorica del perché elettrone, muone e tau (tre particelle “sorelle” da tutti i punti di vista) abbiano masse così spropositatamente diverse:

Elettrone, muone e tau, assieme al bosone di Higgs.
  • Rapporto massa elettrone/muone m_e/m_\mu\approx 1/200
  • Rapporto massa muone/tau m_\mu/m_\tau\approx 1/17

Questi rapporti non sono in nessun modo giustificati nel Modello Standard. È un puzzle vero e proprio nella fisica delle alte energie: perché particelle così simili in tutto e per tutto devono differire in maniera così marcata nelle loro masse?

Non che stessi provando a fare nulla di nuovo, negli ultimi 40 anni sono state pubblicate molte teorie (non verificate) in grado di spiegarlo, il punto è che il lavoro di ricerca prevedeva la risoluzione di questo puzzle in un contesto più ampio, una nuova simmetria della Natura proposta di recente: la simmetria modulare. Tale simmetria aiuterebbe a fare previsioni sulle particelle più elusive che conosciamo: i neutrini.

La simmetria modulare funziona molto bene, ma non è facile incastrarci in maniera naturale quei rapporti di massa. Questo era parte della scommessa del nostro lavoro di ricerca. Nulla di sconvolgente, ma un possibile (interessante) avanzamento in un’area molto misteriosa.

Il Sole picchia forte su quella scalinata, e man mano che si sposta nel cielo traccia un’ombra che io sono costretto a seguire per vedere meglio i miei calcoli. Nella mente riecheggiano le parole del mio supervisore, sentito poco prima in una informalissima chiamata Teams al telefono:

Quei pesi modulari possono avere un ruolo nella spiegazione dei rapporti di massa, qualcosa che non è stato ancora provato…

I “pesi modulari” sono speciali coefficienti con cui scriviamo le teorie di simmetria modulare, e sono collegati in qualche modo agli accoppiamenti delle particelle con il campo di Higgs (il quale dà massa alle particelle, come sai). Detto in maniera spiccia: un peso diverso corrisponde a un accoppiamento più o meno forte con il campo di Higgs, per via di interazioni che avvengono a energie altissime con altri campi ad oggi sconosciuti.

Il mio obbiettivo è quello di spiegare con lo stesso modello sia i rapporti di massa di queste tre particelle, sia alcuni parametri fondamentali nelle oscillazioni dei neutrini. La maggior parte dei modelli “modulari” in letteratura riesce a fare solo la seconda cosa.

Provo quindi tutte le combinazioni possibili di pesi da assegnare. Dai! Elettrone, muone e tau, da qualche parte dovrete pur distinguervi l’uno dall’altro. Nessuna strada mi convince, forse perché cerco di essere più ortodosso possibile: non sia mai che proponga una mia idea originale col rischio di metterci la faccia e fallire quella che io penso sia la mia unica chance.

Tra un calcolo e l’altro, le ore scorrono a una velocità impressionante: un soleggiato (ma freddo) pomeriggio autunnale inizia a volgere al termine.

Sono sempre stato uno studente più “visivo” che “logico” quando si tratta di conti, cerco anzitutto analogie e somiglianze tra i simboli. Spesso funziona, e se funzionasse pure stavolta?

Mi intestardisco su un’idea: e se dessi dei pesi diversi a queste tre particelle? Provo varie possibilità, decisamente alla cieca.

Verso il tramonto, inizio a notare un pattern nei miei calcoli. Un’assegnazione di pesi modulari pare riprodurre la gerarchia di masse correttamente. La mia testardaggine con quei calcoli pare premiarmi. Ho tentato un approccio un po’ meno ortodosso, ma sì sai forse che quasi quasi è anche…originale?

Il cuore salta un battito. Che bella la verginità del ricercatore alle prime armi: basta così poco.

Rialzandomi da quella scalinata, mi accorgo di aver perso sensibilità alle gambe dopo averle pressate per almeno 4 ore sul marmo fresco. Mentre sto perdendo l’equilibrio penso: l’mportante è non far cadere il tablet, no quello è troppo importante. Ovviamente per quello che ci sta scritto dentro.

Sono così paranoico che decido subito di mandare al mio supervisore una mail con le paginate che ho scritto. Paginate illeggibili, dunque inutili per chiunque non fosse me, ma dovevo in qualche modo salvarle. Potevo sempre essere rapito o finire in un tombino nella via di casa…e quelle pagine non avrebbero mai visto la luce del giorno.

Il tempo di allontanarmi dal Palazzo ed arriva una telefonata su Teams, è lui.

Nel momento in cui finisco la chiamata mi ritrovo quasi dall’altra parte della città. Nell’euforia ho percorso tutto viale XX settembre. Sono convinto di essermi giocato la mia unica carta da fisico teorico, e che forse è quella vincente.

Ricordo bene quella sensazione mistica: mi sentivo davvero in comunicazione con le leggi della Natura, la stessa sensazione che mi ha sempre attratto alla Fisica. Le parole entusiaste del mio supervisore mi hanno folgorato.

Quella chiamata su Teams ha però esaurito le ultime energie vitali del mio telefono. Un’ottima occasione per riflettere su quanto fatto, in solitudine, per riprendersi dallo shock.

Camminando, l’euforia lascia il posto a una strana sensazione di sollievo: penso “fiùu, per fortuna me la sono giocata bene questa carta, ora posso essere preso sul serio“. Subentra anche una certa ansia da prestazione: ora che ho mosso bene il primo passo, ci si aspetta che azzecchi pure il prossimo? E così via, senza fine? Quasi toglie un po’ di sapore a quella che penso essere la vita del ricercatore.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Quella notte non riesco a prendere sonno, vorrei sia subito mattina per ritornare a lavorare, e magari scrivere in bella copia quei risultati preliminari.

Ma, come a volte mi capita (specialmente dopo aver dato un esame scritto) la notte è portatrice di lucidità divina. Inizio ad avere dei sospetti su quello che ho fatto, così mi alzo e mi presento in salotto, illuminato al chiaro di Luna, tablet in una mano e computer nell’altra. Mi rileggo un po’ di articoli su questa nuova teoria, in cerca di eventuali punti deboli nel mio ragionamento.

L’orgoglio scaturito dalla giornata mi impedisce di avere grossi dubbi, ma ho anche fiducia nella mia attività cerebrale in regime di dormiveglia: se ho accumulato qualche sospetto ho il dovere di controllare.

La città inizia a risvegliarsi, e assieme a lei il cinguettio degli uccellini del parco vicino. Fa un suono ben più forte il tonfo del mio cuore mentre realizzo che ho trascurato alcuni vincoli fondamentali nelle equazioni del modello.

Il modello che ho trovato non è corretto perché alcuni vincoli di simmetria non sono rispettati.

Tutto distrutto, tutto in malora, per via di un dettaglio.

Con mia enorme sorpresa, il tonfo non è però doloroso, somiglia più a quella sensazione che hai dopo essere sceso dalle montagne russe. Lo spavento è intenso, ma la voglia di rifarlo lo è ancora più.

In pochissimi secondi ho il vero lampo della giornata: non sono deluso, sono estasiato. Tutto ha molto più sapore, e arriva il vero sollievo.

La dolce illusione di aver trovato qualcosa di nuovo è molto più gustosa del risultato in sé. In quelle chiamate su Teams non ero entusiasta solo per l’elettrone, il muone e il tau, ma anche per la possibilità di conversare con un altro ricercatore su questioni difficili di cui nessuno sa la risposta certa.

Quella notte, in quell’istante, realizzo di essere orgoglioso di me.

Il tentare e ritentare, senza l’obbligo di dover trovare tutto al primo colpo, questa è la Ricerca. Il ricercatore può (e deve) sbagliare tanto, perché ha poi il dovere di informare gli altri su quali strade non funzionano.

Chiaramente il mio era un approccio infantile. Ma quanto spesso pensiamo di doverci giocare la carriera in un colpo solo? Quante volte rigettiamo il fallimento! Quante volte sentiamo di dover dimostrare qualcosa per darci un po’ di tregua e accettarci?
Eppure, quante altre volte la ricerca del successo è ben più saporita del successo stesso?

In quell’attimo, ho capito davvero perché mi interessa la strada della ricerca.


Matteo Parriciatu

Dopo la laurea in Fisica (2020) e la specializzazione in Fisica Teorica (2023) all’Università di Pisa, studia simmetrie di sapore dei leptoni e teorie oltre il Modello Standard, interessandosi anche di Relatività Generale.

È autore del libro “L’apprendista teorico” (2021).

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Quando Heisenberg propose che Protone e Neutrone fossero due stati della stessa particella

Nel 1932 James Chadwick scoprì una nuova particella, era elettricamente neutra e aveva circa la stessa massa del protone. Essendo la prima particella neutra scoperta, venne battezzata “neutrone” per ovvi motivi.

Werner Heisenberg (1901-1976), premio Nobel per la Fisica 1932.

Meno ovvia era invece la natura intrinseca di questa particella, specialmente in un epoca dicotomica come quella, anni in cui protone ed elettrone erano lo yin e lo yang della fisica particellare. Tutto doveva essere composto di pochissimi costituenti elementari: il protone e l’elettrone rappresentavano l’unità di carica positiva e negativa per antonomasia.

Quindi ogni altra particella di qualsiasi carica doveva essere una composizione di protoni ed elettroni. Ah, se solo i fisici di quegli anni avessero potuto immaginare il gigantesco zoo di particelle che sarebbe apparso solo 20 anni dopo!

Sempre nel 1932 il fisico teorico Werner Heisenberg (lo stesso del famoso principio di indeterminazione) fu uno dei primi a lavorare su una interpretazione teorica del neutrone. Il suo obbiettivo era una teoria delle interazioni nucleari (materia su cui si sapeva ancora pochissimo e le idee erano molto confuse). Si cercava di rispondere a domande come: cosa compone i nuclei? Da cosa sono tenuti assieme? Come si possono modificare o trasformare?

Addirittura prima del 1932 si credeva che i nuclei fossero composti da protoni ed elettroni (i secondi avevano lo scopo di neutralizzare parte della carica del nucleo), cosa che non poteva essere più distante dalla realtà.

Fu Heisenberg a introdurre un po’ di ordine: sfruttò subito la scoperta del neutrone per inserirlo all’interno dei nuclei. In questo modo non servivano gli elettroni dentro il nucleo: invece di mettere il doppio dei protoni era sufficiente che ce ne fosse solo la metà che corrisponde alla carica elettrica nucleare, la restante parte della massa che serviva a raggiungere l’accordo con gli esperimenti era garantita dalla presenza di alcuni neutroni.

Si spiega più semplicemente guardando questo esempio:

Lo stesso nucleo descritto prima e dopo la scoperta del neutrone.
Prima del 1932, al fine di spiegare la massa misurata sperimentalmente era necessario introdurre il doppio dei protoni. Ma per compensare la carica elettrica in eccesso si doveva postulare la presenza di elettroni nel nucleo.

In ogni caso Heisenberg aveva anche l’obbiettivo di provare a interpretare la natura del neutrone utilizzando lo “yin e lo yang”. D’altronde questa particella aveva lo stesso spin e circa la stessa massa del protone, saranno mica così diversi?
Immaginò quindi che il neutrone potesse essere composto da un protone e da una specie di “elettrone con spin nullo”. In questo modo carica positiva più carica negativa fa zero, e lo spin (che è 1/2 per il protone) sommato con lo spin zero di quella specie di elettrone ipotetico, faceva correttamente 1/2.

Questa teoria fu abbandonata quasi subito, ma l’elettrone e il suo spin rimasero comunque la principale fonte di ispirazione per il vero guizzo creativo di Heisenberg.

Anzitutto il fisico si soffermò su un aspetto peculiare:

Le masse di protone e neutrone sono quasi uguali: differiscono solo dello 0.14%.

In particolare, Heisenberg notò che se in un esperimento la strumentazione di laboratorio non fosse abbastanza sensibile da distinguere questa differenza in massa, e se fossimo in grado di “spegnere” ogni tipo di interazione elettromagnetica, non saremmo nemmeno in grado di distinguere un protone da un neutrone!

Anzi, Heisenberg fece un passo ancora più lungo: la piccolissima differenza in massa tra protone e neutrone può essere ricondotta all’elettromagnetismo: il protone, essendo carico elettricamente, riceve dei contributi elettromagnetici che abbassano leggermente la sua massa rispetto a quella del neutrone (così si pensava all’epoca).

Come anticipato, Heisenberg prese ispirazione dal problema dello spin di un elettrone.
Già dagli anni ’20 si sapeva che lo spin di un elettrone era una quantità speciale che poteva assumere solo due valori distinti, per convenzione +1/2 e -1/2.

Una rappresentazione grafica dei due possibili valori di spin dell’elettrone.

Lo spin era un numero quantico aggiuntivo che serviva a distinguere i possibili stati occupabili dagli elettroni negli orbitali atomici, e aveva a che fare con il comportamento degli elettroni in un campo magnetico.

In particolare si osservava che sotto l’azione di un campo magnetico gli atomi di un gas sviluppavano dei livelli energetici (sovrapposti a quelli già presenti) che prima non c’erano, segno che gli elettroni avevano interagito, tramite il loro spin, con questo campo magnetico: in base ai due possibili valori dello spin degli elettroni si ottenevano due nuovi livelli energetici molto vicini tra loro (vedi Effetto Zeeman).

In sostanza è come se una certa variabile nascosta (lo spin dell’elettrone) fosse venuta allo scoperto solo durante l’interazione elettromagnetica con il campo esterno.
Un fisico, per spiegare la separazione dei livelli energetici, avrebbe dovuto anzi postulare l’esistenza di questo nuovo numero quantico, e assegnargli precisamente due valori possibili.

Detto ciò, ad Heisenberg bastò tenere a mente la celebre equazione per l’energia a riposo di una particella, dovuta ad Einstein (E=mc^2 ) per fare un collegamento molto interessante: la piccola differenza in massa (\Delta m) tra protone e neutrone si traduce in una certa differenza in energia:

    \[\Delta E=\Delta mc^2\]

A suo dire, questa differenza in energia era dovuta all’interazione elettromagnetica, allo stesso modo in cui la differenza in energia di due livelli atomici nell’effetto Zeeman era dovuta all’interazione con il campo magnetico.

Nel caso dell’effetto Zeeman, il tutto era spiegabile con l’introduzione di un nuovo numero quantico, lo spin.
Prima dell’accensione del campo magnetico, il livello energetico è lo stesso, dopo l’accensione, il livello si separa in due livelli.

Protone e neutrone potevano essere pensati come lo stesso livello energetico, la cui separazione è indotta (secondo Heisenberg) dalle interazioni elettromagnetiche!

L’analogia è evidenziata in questa figura:

Analogia tra effetto Zeeman e la teoria di Heisenberg su protone e neutrone.

Doveva allora esserci un nuovo numero quantico interno in grado di distinguere protone e neutrone durante i normali esperimenti, proprio come lo spin.

I fisici dell’epoca chiamarono isospin questo nuovo numero quantico, proprio per via dell’analogia con lo spin. In questo modo protone e neutrone non erano altro che due stati diversi della stessa particella, la quale fu battezzata nucleone. Per convenzione, al neutrone venne assegnato isospin -1/2 e al protone +1/2.

Heisenberg sfruttò l’isospin per costruire una delle prime teorie sull’interazione nucleare. Il fisico tedesco sapeva bene che la forza nucleare doveva essere ben diversa da quella elettromagnetica fino ad allora conosciuta. Doveva essere una forza attrattiva, certo, se no il nucleo come fa a stare assieme? Però il tipo di attrazione non poteva essere simile a quello elettromagnetico.
Ciò era evidenziato da fatti sperimentali: proprio in quegli anni venivano condotti degli studi sulle energie di legame dei nuclei, e si scoprì che queste non crescevano come sarebbero cresciute se l’interazione nei nuclei fosse stata elettromagnetica.

La differenza tra il comportamento nucleare e quello elettromagnetico.

Inoltre, i dati sperimentali suggerivano che la carica elettrica del protone non influiva quasi per niente sui livelli energetici del nucleo. Quindi secondo Heisenberg i nucleoni contenuti all’interno dei nuclei dovevano interagire in maniera molto speciale, non tramite forze di tipo puramente coulombiano, ma tramite quelle che chiamò forze di scambio.

Queste forze di scambio potevano essere parametrizzate tramite degli operatori di isospin, del tutto simili agli operatori di spin della meccanica quantistica, i quali governavano le interazioni spin-obita e spin-spin tra i vari costituenti dell’atomo.

In questo formalismo lo stato quantistico di protone o neutrone poteva essere indicato con un vettore a due componenti:

Ma in realtà i nomi “protone” e “neutrone” divengono dei segnaposto per parlare di due stati della stessa particella: stato “isospin in alto” e stato “isospin in basso” (nota come ciò si traduce nella posizione del numero 1 nella componente alta e bassa del vettore).

Nella teoria delle forze di scambio nucleare non è possibile distinguere tra protone e neutrone, cioè la teoria, globalmente, “non distingue” tra la carica elettrica del protone e quella del neutrone. Vengono visti come due facce della stessa medaglia, e sono interscambiabili senza che cambi nulla.

In questo senso si parla di simmetria di isospin delle forze nucleari

Per capire meglio come funziona questa teoria occorre fare un ripasso di algebra lineare in due dimensioni.

Un vettore 2D può essere rappresentato sul piano cartesiano (x,y) come una freccia uscente dall’origine:

La rappresentazione cartesiana del vettore (1,1). Le sue componenti sono v1=1 sull’asse x, e v2=1 sull’asse y.

Ad esempio per costruire un vettore di componenti (1,1), cioè v_1=1 sull’asse x, e v_2=1 sull’asse y, parto dall’origine e mi sposto di 1 sull’asse x, poi mi sposto di 1 sull’asse y. Il punto in cui arrivo è la testa del vettore. Collegando la testa con la coda (cioè l’origine) ottengo una linea diagonale che chiamo “vettore”.
Un vettore può essere trasformato da una matrice usando la seguente ricetta di composizione:

Il risultato della trasformazione di un vettore è un nuovo vettore le cui componenti possono essere ottenute dalla ricetta contenuta nella matrice.

Il vettore trasformato ha le sue componenti che nascono mischiando le componenti del vettore di partenza, secondo una particolare ricetta descritta dalla matrice-operatore.
Anche il non fare niente è una trasformazione: prende il nome di matrice identità, la sua azione mi fa ottenere di nuovo il vettore di partenza. Puoi verificare anche tu con la ricetta data sopra che il seguente calcolo lascia invariato il vettore di partenza:

La matrice identità lascia il vettore invariato.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Infatti in questo caso l’operatore è tale che a_1=1, \,\,a_2=0\,\, a_3=0,\,\,a_4=1, e sostituendo nella ricetta di sopra otteniamo proprio che il vettore rimane invariato.

Per passare da uno stato all’altro del nucleone, cioè da protone a neutrone, si utilizzano gli operatori di salita e di discesa chiamati \tau_+ e \tau_{-}, le quali sono matrici 2\times 2 che agiscono sui vettori proprio come abbiamo visto sopra.

Puoi fare il conto anche tu e verificare che:

Trasformazione di un protone in un neutrone
Trasformazione di un neutrone in un protone

In generale lo stato di un nucleone è parametrizzato dalla sovrapposizione degli stati di protone e neutrone:

Lo stato più generico di un nucleone. \alpha e \beta sono parametri costanti.

Nella teoria di Heisenberg l’interazione tra due nucleoni deve tenere conto dei loro possibili stati di isospin. In particolare in un processo generico deve conservarsi l’isospin totale dei due nucleoni. La richiesta di questa conservazione permetteva di fare alcune previsioni su alcuni nuclei leggeri per mezzo di calcoli piuttosto semplici.

Alla fine la simmetria di isospin serviva a questo, era una semplificazione per i calcoli: tra tutte le possibili interazioni tra i nucleoni sono permesse solo quelle che conservano l’isospin totale, mentre vanno scartate tutte le altre.

Una simmetria imperfetta

La teoria dell’isospin di Heisenberg fu un buon colpo di genio, ma si rivelò piuttosto insoddisfacente a lungo andare. La verità è che a livello subnucleare protone e neutrone hanno una massa ben distinta! Ciò non è dovuto solo all’interazione elettromagnetica, ma anche alla composizione in quark di protone e neutrone (inutile dire che all’epoca di Heisenberg non si conoscevano i quark).

Se avessero masse uguali allora la simmetria di isospin sarebbe perfetta, quindi l’isospin sarebbe un numero quantico al pari dello spin degli elettroni. Questa differenza nella massa fa sì che la simmetria sia imperfetta, cioè consente di fare previsioni corrette solo entro un certo grado di approssimazione.

Nonostante ciò, l’idea delle simmetrie interne (come l’isospin) cambiò per sempre il modo di fare fisica delle particelle. Le simmetrie imperfette furono utilizzate per raggruppare alcuni gruppi di particelle che sbucavano fuori dagli esperimenti sui raggi cosmici e dagli acceleratori degli anni ’50 e ’60. In questo contesto le particelle di massa molto simile venivano catalogate come stati di una stessa particella con numeri quantici diversi (se ti incuriosisce: la via dell’ottetto).

Le simmetrie imperfette servirono ad ispirare Gell-Mann e altri fisici nella costruzione di una simmetria perfetta, che è quella della cromodinamica quantistica e che riguarda i quark. Ma di questo parleremo magari in un altro articolo…


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché è stato necessario teorizzare il bosone di Higgs? Demistificando la rottura di simmetria

Sono passati quasi 10 anni, e il bosone di Higgs rimane ancora l’ultima grande scoperta del CERN.
Per molti ciò ha chiuso un capitolo della fisica delle particelle, in quanto l’Higgs rappresentava l’ultimo pezzo del puzzle del Modello Standard, la teoria che ad oggi descrive tutto il mondo subatomico.

Il Modello Standard con tutte le particelle e i bosoni mediatori

Tuttavia rimane ancora un po’ di “misticismo” attorno al ruolo teorico giocato da questa particella, che è stata impropriamente soprannominata “la particella di Dio” in più occasioni. Il suo ruolo dovrebbe essere quello di “dare massa” alle particelle del Modello Standard, ma in che senso ciò avviene? E perché serve proprio il campo di Higgs per dare massa a un qualcosa che la massa (nel nostro immaginario) ce l’ha già di per sé?

Il campo di Higgs (da cui nasce il suo bosone come fluttuazione quantistica) non descrive un’interazione fondamentale, e non ha radici teoriche nei princìpi primi.
Ma allora, perché non potevamo fare a meno di teorizzarlo?

In realtà il campo di Higgs è uno strumento teorico che permette il funzionamento di un meccanismo ben preciso. La rivelazione sperimentale del bosone ha solo confermato che il meccanismo è stato azzeccato appieno.

Al contrario delle interazioni fondamentali, il campo di Higgs non è venuto a cercarci, siamo stati noi a invocarlo per poi verificarne l’esistenza

Vediamo quali sono i punti concettuali che hanno fatto sorgere l’esigenza del meccanismo di Higgs.

L’elettrodinamica e le simmetrie: squadra che vince non si cambia

Tra le quattro forze fondamentali, la prima che fu spiegata con una teoria quantistica di campo fu l’elettromagnetismo. Come spiegato in un precedente articolo, si scoprì negli anni ’30 che il modo più semplice per descrivere l’interazione elettromagnetica tra le particelle era quello di richiedere che la teoria fosse simmetrica sotto una particolare trasformazione che chiamiamo “θ“.
Il campo elettromagnetico è noto, nel gergo tecnico, come campo di gauge. I campi di gauge trasformano in una maniera particolare sotto la “θ“, in modo da far sì che le equazioni del moto (e quindi la Fisica del sistema) rimangano invariate.
D’altro canto, gli oggetti che compongono la teoria quantistica delle particelle (cioè i campi) non lasciano invariata la Fisica del sistema una volta che li trasformiamo sotto la “θ“. La trasformazione produce purtroppo dei pezzetti in più, e la teoria non è quindi invariante. Un modo per cancellare i pezzetti in più è quello di accoppiare il campo di gauge con il campo della particella.

La cosa stupefacente è che questo accoppiamento è perfettamente sufficiente per descrivere tutti i fenomeni di interazione tra le particelle con la teoria. Il mediatore dell’interazione diventa proprio il campo di gauge.

Abbiamo ottenuto un’interazione a partire da una questione che apparentemente non c’entrava proprio nulla, e cioè la richiesta di simmetria sotto una certa trasformazione.

Il meccanismo con cui otteniamo le interazioni in teoria quantistica dei campi

Il campo mediatore tra le particelle per una teoria di campo che conservi la carica elettrica (la quantità conservata sotto la trasformazione “θ“) è proprio il campo elettromagnetico, il cui bosone (cioè le oscillazioni del campo) è noto come fotone.

Questa tecnica di accoppiamento con un campo di gauge funzionò così bene che oggi l’elettrodinamica quantistica è ritenuta essere la teoria scientifica meglio testata di sempre.

Nel momento in cui si presentò il problema di descrivere le altre due interazioni subatomiche, cioè l’interazione debole e l’interazione nucleare forte, si decise di seguire un vecchio motto: squadra che vince non si cambia. Si cercò quindi di scrivere una teoria di campo per le interazioni a partire da princìpi di simmetria e introducendo altri campi di gauge.

L’interazione debole e il problema della massa

Per garantire la simmetria della teoria, il campo di gauge deve godere di una caratteristica fondamentale: i suoi quanti di eccitazione (cioè i suoi bosoni), devono avere massa nulla. Se il campo di gauge ha massa, non si può garantire la simmetria della teoria quantistica con la tecnica esposta sopra. Fortunatamente questa condizione è soddisfatta dal fotone, il quale ha notoriamente massa nulla.
Ma non è detto che saremo sempre così fortunati.

C’è infatti una differenza sostanziale tra interazione elettromagnetica e interazioni deboli: la prima è a raggio di azione infinito, mentre le seconde sono confinate alle dimensioni nucleari. Come spiegato in un precedente articolo, ciò significa che i bosoni mediatori delle interazioni deboli devono essere massivi, al contrario del fotone elettromagnetico, che non ha massa. Quindi se dovessimo introdurre dei campi di gauge per costruire una teoria dell’interazione usando la tecnica della simmetria, questi dovrebbero essere massivi, ma allora dovremmo sacrificare la simmetria, e quindi anche le quantità conservate che da essa derivano.

Si arrivò a un punto in cui si ritenne che il principio di simmetria di gauge fosse indispensabile per descrivere le interazioni fondamentali, quindi le teorie del Modello Standard vennero scritte usando campi di gauge senza massa, così come le particelle coinvolte.
Che cosa da pazzi, sacrificare la massa pur di avere la simmetria!

Il colpo di genio fu quello di immaginare che i bosoni di gauge, così come le particelle, acquisissero massa spontaneamente, con un particolare meccanismo alle basse energie

L’approccio è simile a quello che si usa quando si studia il moto di una particella massiva avente energia relativistica “E” data da:

“p” è la quantità di moto della particella, “m” è la sua massa.

Una particella senza massa ha energia data da “E=pc” (le particelle senza massa possono trasportare quantità di moto, come dimostrato dalle vele solari che sfruttano la pressione di radiazione). Tuttavia anche una particella massiva con grande quantità di moto può essere pensata in prima approssimazione come una particella a massa nulla

La massa può essere trascurata dentro la radice, se la quantità di moto è molto più grande di lei.

L’intenzione era quindi quella di teorizzare le interazioni fondamentali usando particelle senza massa ad alte energie, in modo da garantire la simmetria di gauge. Alle basse energie le masse sarebbero dovute emergere naturalmente, senza appiccicarcele manualmente, perché tale intervento romperebbe la simmetria di gauge accuratamente costruita. Serviva un particolare escamotage teorico affinché questo funzionasse.

Si decise di lasciare che la simmetria si rompesse da sola, spontaneamente, usando un escamotage teorico

Lungo e corto raggio: un’analogia per la rottura di simmetria

Per capire il meccanismo della rottura spontanea di simmetria a livello intuitivo, facciamo un’analogia con un sistema fisico più intuitivo, caratterizzato da una grossa simmetria.
Consideriamo il reticolo di un ferromagnete: ogni molecola del reticolo può essere pensata, per convenienza di ragionamento, come una bussola il cui “ago magnetico” punta, in una configurazione di minima energia, nello stesso verso del campo magnetico locale. Ciò succede se supponiamo che ogni ago magnetico sia a sua volta una sorgente di magnetismo e che riesca a interagire con gli aghi magnetici vicini al suo sito.
L’allineamento è contrastato dall’agitazione termica:

  • Ad alte temperature l’orientamento degli aghi magnetici è casuale, perché l’agitazione termica è ben più forte delle interazioni locali. In media troveremo tanti aghi allineati in un verso, quanti ne troveremo allineati in verso opposto, il risultato netto è una magnetizzazione nulla.
  • A basse temperature la configurazione di minima energia è quella in cui tutti gli aghi sono allineati nello stesso verso e il materiale acquista una magnetizzazione media diversa da zero.

Quale delle due situazioni ha maggiore simmetria geometrica? Si tenderebbe a pensare che sia la seconda, dato che siamo abituati a pensare la simmetria come un “grado di ordine” delle cose. Per lo stesso motivo potremmo sostenere che l’acqua sia più simmetrica quando si solidifica in ghiaccio, rispetto alla sua fase liquida.
In realtà la simmetria va pensata come segue:

“Io eseguo una trasformazione mentre tu chiudi gli occhi, quando li riapri possono succedere due cose: se vedi che il sistema è uguale a prima, allora la trasformazione era una simmetria del sistema, se invece vedi che il sistema è cambiato, quella trasformazione non era una simmetria.”


Il moto delle particelle agitate termicamente è molto più simmetrico, perché possiamo eseguire qualsiasi rotazione geometrica e il sistema rimarrà uguale a se stesso (nel nostro esempio continueranno a esserci tanti aghi magnetici allineati in qualsiasi direzione, con un risultato netto nullo). Le molecole sono così tante e in una disposizione così caotica che non avremmo modo di accorgerci di qualsiasi rotazione attorno a qualsiasi asse.

A sinistra un dipinto caotico di Marc Quinn, a destra lo stesso dipinto ruotato di 180 gradi. Difficile notare la differenza, eh?

Se ora abbassiamo la temperatura il sistema si “irrigidisce” e perde molta simmetria, gli aghi magnetici si dispongono in una situazione di energia minima allineandosi tutti, e ora una rotazione manda il sistema in se stesso solo se la eseguiamo attorno all’asse di magnetizzazione.

Il sistema ha ridotto spontaneamente la simmetria iniziale una volta scelto lo stato energetico più basso!

La simmetria non viene però semplicemente rotta e dispersa, ma viene tradotta in una certa libertà: l’allineamento degli aghi può comunque avvenire in qualsiasi direzione dello spazio in maniera casuale. Il sistema può scegliere di allinearsi lungo tantissime direzioni diverse, tuttavia una volta scelta un’orientazione si stabilizza solo in quella e in nessun’ altra. La simmetria è rotta dalla particolare scelta dell’orientamento, ma tale scelta è comunque casuale per via della simmetria globale iniziale.

In figura sono mostrati due stati di minima energia tra i quali il sistema può scegliere. Questi due stati sono differenziati da una rotazione simultanea di tutti gli aghi magnetici, ma il livello energetico è lo stesso

Non costa energia trasformare uno stato di minima energia in un altro alla stessa energia

Nel gergo della fisica teorica, se una certa interazione non costa energia, può essere descritta da un quanto di vibrazione senza massa.
Che succede se invece di ruotarli tutti assieme, ruotiamo un solo aghetto magnetico rispetto agli altri? Questo ci costerà energia! Invece nello stato di massima energia questa azione non sarebbe costata così tanta energia, per via dell’agitazione termica. Ora è come se l’interazione fosse descritta da un modo di vibrazione massivo.
Il motivo è che costa più fatica portare in cima a una collina una massa più grande rispetto a una massa più piccola. Se la massa più piccola diventa nulla, costerà nessuna fatica muoverla nel campo gravitazionale.

I modi di vibrazione che erano senza massa ad alta energia, diventano massivi a bassa energia.

L’accoppiamento con il campo di Higgs

La grossa simmetria di gauge del Modello Standard alle alte energie è composta da tre simmetrie principali, che vengono indicate con dei nomi simpatici a cui non devi badare troppo:

La simmetria di gauge del Modello Standard

Alle alte energie le interazioni deboli sono un tutt’uno con le interazioni elettromagnetiche, e in totale l’interazione elettrodebole risultante è descritta da quattro campi di gauge senza massa.
Tuttavia le interazioni deboli devono prevedere dei bosoni di gauge massivi, per fare previsioni sperimentali accurate.
Per salvare le simmetrie di gauge e al contempo avere dei bosoni di gauge massivi, i fisici teorici decisero di introdurre un’interazione ad hoc con un campo chiamato “campo di Higgs”, caratterizzato da un potenziale a forma di cappello messicano:

Il potenziale del campo di Higgs. Sulla cima del cappello l’energia è maggiore che sulla valle. Tutti i punti della valle sono alla stessa energia,.

Possiamo immaginarlo di nuovo come una collina: ciascuna particella sulla sommità preferirà rotolare verso il basso e stabilizzarsi in una situazione di minima energia. Il campo di Higgs può assumere spontaneamente una valore di minimo in ogni punto della valle nel cappello messicano.
Siccome nella teoria quantistica dei campi i valori medi sono un’indicazione del numero di particelle in un determinato stato, possiamo dire che la sommità del cappello rappresenta uno stato poco popolato con valore medio nullo del campo di Higgs, mentre la valle è uno stato densamente popolato con valore medio diverso da zero per il campo di Higgs. Popolato da chi? Da bosoni di Higgs, cioè i quanti di eccitazione del campo. Questo è analogo alla magnetizzazione degli aghi magnetici, che aveva valore medio nullo alle alte energie, mentre alle basse energie acquisisce un valore medio diverso da zero.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Se ora accoppiamo il campo di Higgs con i campi del Modello Standard, cioè sia i campi di gauge che i campi delle particelle, abbiamo una rottura spontanea di simmetria alle basse energie.
L’accoppiamento va scelto saggiamente, perché vogliamo far acquisire massa solo ai bosoni dell’interazione debole. Per far ciò possiamo costruire il campo di Higgs in modo che trasformi come un oggetto appartenente allo spazio di simmetria SU(2), che è la simmetria caratteristica dell’interazione debole.

La simmetria iniziale di gauge da cui siamo partiti viene ora utilizzata per scegliere una posizione qualsiasi sul cappello messicano. Infatti ricordiamo: una trasformazione dei campi di gauge non cambia la fisica, e questa libertà può essere utilizzata per scegliere una determinata configurazione in cui l’universo andrà a sostare.
Ciò è analogo al modo in cui gli aghi magnetici erano liberi (per via della simmetria iniziale) di scegliere un’orientazione privilegiata a basse temperature, ed una volta scelta, si stabilivano lì.

L’accoppiamento tra i campi di gauge e il campo di Higgs fa sì che ora non tutte le direzioni di movimento sul cappello messicano siano gratuite: se volessimo risalire lungo la collina ci costerebbe un po’ di energia. Questo costo in energia viene interpretato come un modo di vibrazione massivo. I bosoni delle interazioni deboli, tramite un particolare formalismo matematico, si mischiano tra di loro per via di una particolare scelta della configurazione nello spazio della simmetria iniziale ed acquisiscono massa. Con un altro speciale tipo di accoppiamento acquisiscono massa anche le particelle del Modello Standard!

Siccome la “rottura” di simmetria avviene spontaneamente alle basse energie, abbiamo salvato la simmetria iniziale alle alte energie e le teorie di campo hanno una forma elegante e sperimentalmente solida.

Una visualizzazione pittorica del campo di Higgs e delle particelle frenate da questo “fluido universale”.

In un certo senso il campo di Higgs può essere pensato come un fluido che permea l’universo, e in questo fluido le particelle senza massa (che si muoverebbero alla velocità della luce) vengono “frenate” dal campo di Higgs come se ci fosse un certo attrito, che è il risultato dell’accoppiamento.
Il risultato è che le particelle non si muovono più alla velocità della luce, perciò hanno una massa ben precisa, predetta dal meccanismo di Higgs.

Il risultato del mixing dei campi di gauge dopo la rottura di simmetria corrisponde a tre bosoni di gauge massivi e uno senza massa.
I tre bosoni massivi corrispondono ai mediatori dell’interazione debole alle basse energie, mentre il bosone senza massa corrisponde a quello dell’elettromagnetismo, cioè il fotone.

La verifica sperimentale della massa del bosone di Higgs ha permesso di verificare con grande precisione tutte le previsioni sulle masse dei bosoni dell’interazione debole e sulle masse delle particelle del Modello Standard (con poche eccezioni come i neutrini, che rimangono ancora oggi un grande mistero).

Che mondo imperfetto sarebbe se ogni simmetria fosse perfetta!

B.G. Wybourne

PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Da dove nascono i princìpi di conservazione della Fisica?

La parola “conservazione” è una delle più ripetute su tutti i libri di fisica, ed è una delle prime parole prettamente “teoriche” imparate da bambini, a cui viene insegnata la “conservazione della massa” e dell’energia ancora prima di arrivare al liceo.
Quello che però non gli viene insegnato è il “perché” la scienza sia governata da princìpi di conservazione, ma c’è poco da biasimare: nessuno lo sa. Tuttavia la fisica teorica dell’ultimo secolo ha trovato il modo di interpretare matematicamente questo fatto, e il risultato è delizioso, ma ha a che fare con due concetti fondamentali: la trasformazioni e la simmetria sotto trasformazioni.

Trasformazioni e simmetrie

Detto in soldoni la fisica studia il comportamento dei sistemi sotto particolari tipi di trasformazione.

Se a un fisico presenti un qualsiasi oggetto, la prima cosa che gli interessa è controllare come reagisce l’oggetto sotto una trasformazione.

Un esempio di oggetti che possiamo descrivere con una proprietà di forma geometrica.
A sinistra un oggetto simmetrico sotto una riflessione attorno al suo asse verticale, a destra un oggetto asimmetrico sotto la stessa trasformazione.

Tutta la scienza fa ciò: prende un oggetto e ne verifica il comportamento sotto alcune trasformazioni, perché nei secoli si è capito che questo è il miglior modo per studiare il mondo che ci circonda.
Un esempio tipico di trasformazione è la rotazione spaziale: si tratta di ruotare gli oggetti attorno a qualsiasi asse passante per essi. Una volta effettuata la trasformazione ci si può chiedere quali proprietà dell’oggetto si vogliono indagare.
Ad esempio puoi prendere in mano il tuo telefono ed elencarne alcune proprietà:
La prima proprietà può essere quella ontologica: il telefono è un telefono perché è costruito in modo da funzionare come un telefono. La seconda proprietà può essere funzionale: la facciata del telefono ha funzione di touchscreen, mentre il retro non ha questa funzione. Una terza proprietà può essere la forma geometrica: un telefono è rettangolare.

Eseguiamo una trasformazione: ruotiamo il telefono di 180 gradi rispetto al suo asse verticale, cioè giriamolo in modo che ora il retro sia rivolto verso di noi.

Una volta ruotato il telefono possiamo chiederci: come sono cambiate le proprietà che avevamo elencato?

  • La prima proprietà non può variare: un telefono rimane tale indipendentemente da che angolo lo guardi.
  • La seconda proprietà varia, perché ora non puoi usare il touchscreen sul retro.
  • La terza proprietà non varia: un telefono rimane di forma rettangolare anche se ruotato.
La forma geometrica di una sfera è simmetrica sotto qualsiasi rotazione.

Possiamo quindi classificare il telefono come un oggetto le cui proprietà variano in questo modo sotto una rotazione spaziale di 180 gradi attorno al suo asse verticale.
I fisici teorici lavorano così.

Se una certa proprietà rimane uguale a se stessa sotto una trasformazione, diremo che quella proprietà è una simmetria sotto quella trasformazione.

La simmetria è una “immunità” a una certa trasformazione.

Facciamo un altro esempio. Consideriamo la sfera in figura, caratterizzata da un simbolo a forma di stella sulla sua superficie. Questa sfera può essere caratterizzata da due proprietà: la sua forma geometrica e la posizione della stellina. Potremmo classificare questo oggetto chiamandolo anche “sfera con una stellina in alto a sinistra”.

È intuitivo che sotto qualsiasi rotazione la sfera rimanga una sfera ai nostri occhi, ma la proprietà “stellina in alto a sinistra” cambia in base al tipo di rotazione. Ad esempio se riflettiamo la sfera attorno al suo diametro orizzontale, ora la proprietà cambierà in “sfera con stellina in basso a sinistra”.

La lezione da portare a casa è che non tutte le proprietà con cui possiamo descrivere un oggetto rimangono invariate sotto una trasformazione, e non c’è nulla di male in ciò. Una simmetria va sempre riferita al tipo di trasformazione effettuato.
Possiamo dire che una sfera è simmetrica sotto rotazione, ma non possiamo dire che “sfera con stellina in alto a sinistra” rimane simmetrica sotto qualsiasi rotazione, ma magari solo per rotazioni di 360 gradi.

La conservazione e il teorema di Noether

Una classe speciale di trasformazioni in fisica sono le traslazioni. Possiamo considerare un certo sistema e segnare la sua posizione tramite degli assi cartesiani. In questo modo possiamo elencare alcune proprietà: ad esempio la massa dell’oggetto e la sua interazione con l’ambiente circostante, il suo moto ecc.

Una particella in uno spazio completamente vuoto e identico in ogni suo punto.

Per essere concreti consideriamo una particella in uno spazio completamente vuoto e identico in ogni suo punto. Siccome lo spazio è vuoto ed identico in ogni suo punto, se spostiamo la particella in un altro punto le sue proprietà di moto non possono variare, altrimenti significherebbe che una qualche posizione spaziale è più speciale di altre, in contraddizione con l’ipotesi di spazio identico.
Non solo la proprietà di “particella” rimane invariata sotto la traslazione spaziale, ma anche le sue proprietà di moto.

La simmetria delle proprietà di moto viene chiamata quindi “conservazione” di una certa quantità, che in questo caso è la quantità di moto: una particella, come ci diceva Galileo, prosegue indisturbata nel suo moto rettilineo in assenza di forze, o rimane ferma se era già ferma.

Se invece ci fosse una forza, generata da una sorgente localizzata nello spazio, allora perderemmo l’equivalenza dei punti spaziali: non può esserci conservazione della quantità di moto, perché la quantità di moto varia in base alla forza applicata.

Non tutte le proprietà rimangono simmetriche sotto una certa trasformazione. Supponiamo però che ora la sorgente di forza abbia una simmetria circolare, cioè che la forza sia la stessa lungo una circonferenza immaginaria centrata attorno alla sorgente.
In tale modo abbiamo ottenuto una simmetria sotto rotazioni attorno all’asse della sorgente. Per via di questa simmetria la traiettoria della massa è influenzata allo stesso modo indipendentemente da che angolo formi rispetto alla posizione della sorgente, ciò consente la conservazione di un’altra proprietà di moto: il momento angolare.

Abbiamo perso la conservazione della quantità di moto, ma abbiamo guadagnato la conservazione del momento angolare, che nasce da un’altra simmetria del sistema sorgente-particella.

Emmy Noether, fisica matematica tedesca. Nel 1915 pubblicò uno dei risultati più spettacolari della fisica teorica.

Il pattern è chiaro: una certa simmetria spaziale di un sistema fisico genera la conservazione di una certa proprietà del suo moto, e questo è il contenuto del teorema di Noether. Il risultato è spettacolare:

Le leggi di conservazione nascono dalle
simmetrie.


Emmy Noether era contemporanea di Einstein, il quale proprio in quegli anni ci insegnò che spazio e tempo devono fare parte di un unico concetto: lo spaziotempo. Se consideriamo le traslazioni spaziali dobbiamo quindi considerare anche le traslazioni temporali e studiare le trasformazioni dei sistemi fisici sotto tali traslazioni.

Il principio di conservazione dell’energia nasce proprio dalla simmetria sotto traslazioni temporali: se le interazioni di un sistema non variano nel tempo, deve conservarsi il suo contenuto energetico.

Energia e quantità di moto sono quindi due proprietà di un sistema che rimangono invariate sotto una traslazione temporale per la prima, e spaziale per la seconda.

Ciò aprì le porte alla fisica delle simmetrie, che ha permesso la classificazione di tanti tipi di interazione, con le relative particelle mediatrici. Infatti molti oggetti della fisica vengono classificati semplicemente in base a come trasformano: il modo che abbiamo di distinguere un processo di interazione da un altro è proprio osservarne il comportamento sotto trasformazioni. Nel tempo sono state studiate tante altre simmetrie:

  • La simmetria di inversione spaziale.
  • La simmetria di inversione temporale.
  • La simmetria sotto cambi di coordinate.
  • La simmetria sotto cambi di sistemi di riferimento inerziale.
  • ….

e da ciascuna di queste simmetrie è nata una teoria capace di spiegare i risultati sperimentali. Ad esempio la richiesta di simmetria di alcune quantità fisiche sotto un cambio di coordinate tra due sistemi in moto uniforme ha condotto alla relatività di Einstein. Oggi le nuove teorie della fisica vengono costruite sui princìpi di simmetria.



PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile a tutti e insegnare le tecniche matematiche necessarie a una sua comprensione. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.