Il paradosso di Putnam: il futuro esiste già rispetto a noi?

In che modo, partendo dalle trasformazioni di Lorentz, possiamo dimostrare che il futuro coesiste con il presente? Per vederlo servono alcune argomentazioni metafisiche, unite a una rapida infarinatura sui diagrammi di Minkowski.
La relatività di Einstein ci ha insegnato a vedere il mondo da un punto di vista geometrico: tempo e spazio diventano un tutt’uno chiamato spaziotempo. In tale contesto il tempo viene misurato come una distanza spaziale semplicemente moltiplicandolo per la velocità della luce “c”. Gli eventi del mondo visto da un sistema di riferimento inerziale possono quindi essere individuati (se consideriamo una sola dimensione spaziale) da due coordinate: ct e x, cioè ci basta sapere quando è successo l’evento (ct) e dove è successo, cioè la posizione (x). L’insieme di tutti gli eventi può essere descritto quindi da un diagramma di Minkowski mostrato in figura 1.

Figura 1: diagramma di Minkowski in dimensione 1+1 (una dimensione spaziale e una dimensione temporale).

In tale diagramma le rette parallele all’asse x sono l’insieme degli eventi che avvengono simultaneamente (cioè ct=costante), mentre le rette verticali sono l’insieme degli eventi che avvengono nello stesso punto (cioè x=costante). Lo spaziotempo di un osservatore situato in O è diviso in 2 macroregioni: il suo futuro assoluto e passato assoluto (cioè ct>0 e ct<0), ciò significa che potrà ricevere segnali solo se da punti spaziotemporali contenuti tra le due bisettrici:

che nel diagramma di Minkowski (x,ct) sono quindi rette inclinate di 45 gradi rispetto all’asse x.

Se consideriamo un secondo osservatore inerziale in moto con velocità v, ci interessa di solito sapere con quali coordinate egli veda il mondo interno a sé, e magari esprimerle in funzione di quello che vede un altro osservatore inerziale (in Fisica è fondamentale saper tradurre cosa vedono due scienziati che usano coordinate diverse per descrivere la stessa cosa).

Come otteniamo questa trasformazione di coordinate tra i due osservatori? Le coordinate (ct’,x’) del secondo osservatore rispetto al primo si ottengono con le trasformazioni di Lorentz

in cui

Assumiamo che v sia la velocità relativa tra i due osservatori inerziali


Come si muove l’origine O’ , e cioè i punti x’=0 e ct’=0 del secondo osservatore, nelle coordinate del primo?
Sostituendo nella trasformazione di Lorentz, la traiettoria di O’ nel diagramma dell’osservatore O (cioè il suo asse verticale x’=0) è rappresentato dalla retta

cioè una retta che ha un’inclinazione 1/β rispetto all’asse x (come se avessimo una retta x=3y sul piano cartesiano (x,y) che ha quindi coefficiente angolare 1/3). Siccome nulla può superare la velocità della luce, è sempre v<c e allora è sempre β<1 , quindi

cioè le traiettorie degli osservatori inerziali sono sempre rette con inclinazione maggiore di 45 gradi, come detto prima (in modo da farle stare all’interno della regione del futuro assoluto).
Il diagramma di Minkwoski del secondo osservatore rispetto al primo sarà quindi dato graficamente da

Il punto focale è proprio il fatto che ora la linea di simultaneità degli eventi per il secondo osservatore è una retta parallela al suo asse ct’=0 (ovvero l’asse x’), ma tale asse ct’=0 ha invece un’inclinazione rispetto all’osservatore originale, cioè non è parallela rispetto al suo asse x, quindi tali eventi non sono simultanei per l’osservatore originale: nella relatività di Einstein gli osservatori non devono per forza concordare sulla simultaneità degli eventi.

Simultaneità e realtà per Putnam

Facciamo ora il gioco metafisico di Putnam per divertirci.

Ipotesi:

Diremo che un evento è ontologicamente reale rispetto a noi, se e solo se questo evento è simultaneo a noi. Questa definizione è piuttosto innocua ed è facile che metta d’accordo tutti. In realtà non è così innocua. Prendiamo un osservatore in moto con velocità v, che al nostro tempo t=0 si trova a una certa distanza da noi, cioè supponiamo che la sua origine O’ sia simultanea rispetto alla nostra origine O.

Come abbiamo visto dalle trasformazioni di Lorentz, gli assi minkowskiani del secondo osservatore sono inclinati rispetto a noi, quindi è possibile che la linea di simultaneità individuata da ct’=0 possa intersecare il futuro assoluto dell’evento collocato in O nel sistema di coordinate originale, ad esempio in un punto A.

Ma ct’=0 corrisponde proprio all’asse x’, il quale include, tra tutti gli eventi, ovviamente anche l’origine O’ . Ma tale origine era per costruzione simultanea a O, quindi se la simultaneità è transitiva allora il fatto che A sia simultaneo ad O’ e che O’ sia simultaneo a O, implica che O debba essere simultaneo ad A, cioè a un evento del suo futuro assoluto.

Per quanto sembri assurda, questa costruzione è geometricamente permessa, come si vede in figura, dalla metrica dello spaziotempo minkowskiano.

Se ora usiamo la condizione di Putnam, cioè che un evento è ontologicamente reale rispetto a noi se e solo se è a noi simultaneo, allora dobbiamo concludere che il nostro futuro esiste già rispetto a noi: futuro e presente coesistono.
Notiamo quindi come un’assunzione innocua, come dire “se un evento è a me simultaneo, allora coesiste con me”, possa portare, nel contesto della relatività, a un paradosso di proporzioni enormi.
L’argomento è più metafisico che fisico, ed è dibattuto ancora oggi nella corrente dell’eternalismo. Per maggiori informazioni su questo affascinante dibattito: Hilary Putnam: Time and Physical Geometry.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.