L’equazione d’onda relativistica dell’elettrone rappresenta uno dei trionfi più importanti della scienza del XX secolo.
Nota come “equazione di Dirac”, dal nome del suo scopritore Paul Dirac, essa costituisce la base di tutta la Chimica e di quasi tutta la Fisica moderna.
Trovo molto interessante provare a riavvolgere il filo del pensiero di Dirac, immedesimandoci in lui quando in una fredda serata a Cambridge nel 1928 arrivò a scrivere la sua equazione dopo essere stato tanto tempo seduto a fissare il caminetto (o così dice la leggenda).
Innegabilmente l’equazione di Dirac vanta una certa eleganza estetica, ed è per questo motivo bersaglio di una sempre crescente mercatizzazione (non è raro trovarsela stampata sulle tazze o sulle magliette).
Trovo anche io difficile resistere al suo fascino e decido quindi di raffigurarla qui in bella vista, prima di iniziare l’articolo:
Piccolo suggerimento: prima di procedere può essere utile dare un'occhiata a due articoli più introduttivi come questo e questo. Se non ne hai voglia ora, li citerò comunque nel prosieguo, inserendoli nei punti chiave in caso tu voglia approfondire.
Schrödinger: le particelle libere come onde piane
Nel 1926 Schrödinger aveva illustrato al mondo che le particelle quantistiche potevano essere descritte da funzioni d’onda la cui forma funzionale era fissata dalla soluzione dell’equazione
In questa equazione ψ è la funzione d’onda che vogliamo trovare, e H rappresenta l’interazione tra particella e il mondo circostante. Questa interazione, agendo su ψ nel membro di destra, produce una variazione nel tempo della ψ stessa, come evidenziato nel membro di sinistra col simbolo di variazione nel tempo ∂/∂t lasciato agire su ψ.
Per una particella libera (cioè senza interazioni con il mondo circostante, o con interazioni così deboli da poter essere trascurate rispetto all’energia cinetica della particella), l’equazione di Schrödinger ha una soluzione semplicissima: un’onda piana
Se non sei familiare con quella forma curiosa per l’energia cinetica ti basti sapere che partendo da 1/2 m v2, questa può essere riscritta in una forma più conveniente sostituendo la quantità di moto p=mv.
In che senso “più conveniente”? In meccanica quantistica si usano gli operatori, che sono oggetti matematici che trasformano le funzioni d’onda in un certo modo. Non tutte le quantità a cui siamo abituati classicamente sono dei buoni operatori. La quantità di moto è un operatore che sappiamo maneggiare bene nei calcoli, al contrario della velocità che è mal definita.
L’energia relativistica, un passo oltre Schrödinger
Nel 1905 Einstein rivoluzionò la meccanica newtoniana con la teoria della Relatività Ristretta. Una delle conseguenze fu la correzione all’energia totale di una particella libera. La forma newtoniana prevedeva, come abbiamo visto, E= p2/2m. In realtà questa non è altro che l’approssimazione della versione einsteiniana una volta che consideriamo velocità molto più basse di quelle della luce, in cui si ha:

A basse velocità otteniamo di nuovo la formula newtoniana per l’energia.
Le energie di legame atomiche sono solitamente così piccole da far sì che le particelle si muovano a velocità molto più basse di quella della luce. L’equazione di Schrödinger era stata creata proprio per descrivere i processi atomici, quindi all’inizio nessuno si preoccupò che non fosse relativistica, c’erano problemi ben più importanti da risolvere.
Se invece si indaga sulla scala subatomica si scopre che bisogna tenere conto delle correzioni relativistiche, proprio perché stavolta aumenta l’energia in gioco.
La strategia più naturale per rendere relativistica l’equazione di Schrödinger è quella di sostituire la vecchia forma di H con la formulazione relativistica:
Il problema è che, come anticipato prima, in meccanica quantistica la quantità di moto è un operatore, ed è problematico definire la radice quadrata di un operatore. Come superiamo questo ostacolo?
La Klein-Gordon e i suoi problemi
L’approccio proposto da Klein e Gordon per eliminare la radice fu quello di calcolare la variazione temporale di entrambi i membri dell’equazione relativistica, applicando ∂/∂t a sinistra e a destra
A sinistra abbiamo quindi una doppia derivazione rispetto al tempo, mentre a destra (siccome H è costante nel tempo) otteniamo ∂ψ/∂t, alla quale possiamo sostituire l’equazione di Schrödinger stessa. Con questo piccolo trucco otteniamo che la radice quadrata sparisce.
Ora per semplificare i conti che seguiranno scegliamo di lavorare con delle unità in cui ħ=c=1 e facciamo un cambio di variabili, l’equazione di sopra diventa l’equazione di Klein-Gordon:
L’equazione di Klein-Gordon fu il primo tentativo di relativizzare l’equazione di Schrödinger. La soluzione di questa equazione è ancora un’onda piana per una particella di massa m, solo che a differenza di prima la forma dell’equazione è immediatamente covariante sotto trasformazioni di Lorentz, in quanto P2 e m2 sono degli scalari di Lorentz: in sostanza il principio di relatività è automaticamente soddisfatto (mentre non lo era nell’equazione di Schrödinger).
Dove sta la fregatura?
L’aver mandato via la radice quadrata ha sollevato un problema irritante: l’evoluzione temporale nell’equazione di Schrödinger era espressa da un termine di primo grado ∂ψ/∂t, mentre ora nella Klein-Gordon è espressa da un termine di secondo grado (∂2ψ/∂t2), e ciò fa sì che la densità di probabilità possa ora assumere valori non solo positivi, ma anche negativi o nulli.
Infatti i moduli quadri delle funzioni d’onda (che per la regola di Born rappresentano le densità di probabilità) possono essere calcolati tramite una particolare “ricetta” che dipende in una maniera molto precisa dal tipo di equazione dinamica da cui si parte. Si dà il caso che la “ricetta” ereditata dall’equazione di Klein-Gordon sia difettosa rispetto a quella dell’equazione di Schrödinger.
Ciò fa perdere di significato fisico tutta la struttura matematica della nostra teoria, una bella gatta da pelare!
Non c'era via di uscita? È questo il prezzo da pagare per aver cercato di introdurre la relatività nella meccanica quantistica?
L’illuminazione di Dirac
Per dei motivi che oggi non sono più rilevanti, Dirac era fortemente preoccupato dal problema della densità di probabilità nella Klein-Gordon. Per questa ragione si ossessionò al punto da forzare la matematica stessa: voleva abbassare l’ordine delle derivate temporali dal secondo grado al primo grado a tutti i costi, pur mantenendo un’equazione relativisticamente permessa. Nella sua mente la forma prediletta doveva essere, per ragioni relativistiche e di “eleganza”
In cui γ0 è un termine per ora indeterminato. Questa equazione doveva comunque essere collegata alla Klein-Gordon in qualche modo, perché questa garantisce l’invarianza relativistica. L’illuminazione arrivò quando fu colto il seguente parallelismo con la differenza algebrica dei quadrati a2-b2
dove le γμ sono degli oggetti per ora ignoti, e la notazione va intesa nel modo seguente:

Affinché valga l’uguaglianza con la Klein-Gordon tramite la differenza dei quadrati le misteriose γμ devono soddisfare
in cui ημν è la metrica dello spazio-tempo della relatività ristretta. Infatti per avere uguaglianza deve essere
e questa condizione può essere soddisfatta solo se vale la relazione scritta sopra, che lega la metrica ημν con gli oggetti γμ.
La richiesta di un’equazione con derivata temporale al primo ordine ha quindi generato due possibili equazioni relativistiche:
le quali descrivono particelle aventi energia di segno “opposto” (per saperne di più sulla questione dell’antimateria e l’equazione di Dirac clicca qui).
L’uguaglianza del loro prodotto con la Klein-Gordon impone poi che gli oggetti γμ debbano essere delle matrici quattro-dimensionali con delle ben determinate regole di composizione legate alla metrica dello spaziotempo. Non solo, la forma matematica di queste equazioni impone che la funzione d’onda ψ trasformi in una maniera ben precisa sotto trasformazioni di Lorentz.
Fu la prima volta nella storia della Fisica in cui una richiesta di struttura visiva della matematica portò a scoprire un’intera classe di nuovi oggetti matematici.
Tornando alla notazione con le derivate scritte in una forma più elegante:
otteniamo la forma dell’equazione di Dirac che si stampa sulle magliette:
È cruciale il fatto che ora possiamo interpretarla proprio come una sorta di decomposizione della Klein-Gordon per far sì di ottenere solo derivate di primo grado nel tempo. Nonostante ciò, è in realtà è più proficuo (dal punto di vista teorico) interpretare questa equazione come l’equazione del moto di una teoria di campo costruita per le particelle che trasformano come una rappresentazione di spin 1/2 sotto trasformazioni di Lorentz (se vuoi saperne di più sul perché classifichiamo le particelle come rappresentazioni di spin clicca qui).
PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.
Mi piace il suo approccio alla Leonard Susskind della essenzialità e del minimum teorico.
Ho letto il libro e la incoraggio a scrivere il 2 volume magari sistemando questi articoli che sta pubblicando
Grazie mille per questi preziosi spunti e per l’incoraggiamento!