Giusto per ricordare che i gatti sono riusciti a conquistarsi pure la meccanica quantistica, nell’immaginario popolare.

Ciò che frullava nella mia testa quando ho sentito la parola “numeri quantici” per la prima volta, durante una lezione di chimica in terza liceo, era qualcosa tipo:

“Tutto interessante e sembra anche molto logico. Giusto una cosa però: ma alla fine cosa sono 'sti numeri quantici? Proprio terra-terra, in meno parole possibili!"

Dopo aver studiato meccanica quantistica alla triennale credevo di essere praticamente pronto per dare una risposta terra-terra, a una persona non addetta ai lavori come il me stesso della terza liceo, ma poi mi sono accorto che non è tutto così “rapido”.

Non c’è NIENTE di intuitivo nel concetto di “numero quantico”.


Quando mi è stata posta la stessa domanda qualche tempo fa, nel bel mezzo dei miei studi alla magistrale, ho sputato fuori questa risposta un po’ frettolosa:

“Sono dei numeri che usiamo per catalogare delle soluzioni particolarmente semplici per risolvere problemi molto complessi. Sono utili anche perché nei processi "si conservano“, un po' come l'energia di un sistema, e semplificano quindi un po' di calcoli e previsioni."

Non è che fossi tanto convinto di questa risposta, e ancora meno lo era la persona di fronte a me. Mi sono accorto che probabilmente non sapevo dare una risposta più rapida senza coinvolgere dei semestri di algebra lineare, spazi di funzioni e fenomenologia delle interazioni fondamentali.
Se a te questa risposta soddisfa: nessun problema, è comprensibile. Rende comunque l’idea da un punto di vista pragmatico.

Se invece senti ci sia un gap nella divulgazione di questi concetti e provi curiosità, allora questo articolo vuole provare a rimediare.
Per raggiungere più persone possibili sarò molto conciso con ragionamenti “a grandi linee”, con varie licenze tecniche necessarie per un’esposizione di taglio divulgativo. Inoltre, per ragioni logistiche (e per non affaticare il lettore), l’articolo è suddiviso in due parti, questa è la prima parte!


Una tazza di caffè e possiamo iniziare!

Gli operatori della meccanica quantistica

Alla fine tutto l’ambaradan nasce dal fatto che la meccanica quantistica, a differenza della fisica classica, si basa su degli oggetti chiamati operatori. Come suggerisce il nome, questi oggetti operano sugli stati della teoria: prendono in input uno stato e ne restituiscono un altro come output, generalmente diverso dal primo:

Tutte le quantità che in meccanica classica erano dei semplici numeri reali (posizione, quantità di moto, energia, e così via) diventano, in meccanica quantistica, degli operatori: operatore posizione, operatore quantità di moto , operatore dell’energia (altrimenti detto “hamiltoniano”) etc.


Perché sono così necessari gli operatori? (qualsiasi cosa significhi per te in questo momento la parola “operatore”).
In breve, serviva un formalismo matematico capace di spiegare un fatto sperimentale: lo stato di un sistema poteva essere completamente determinato dalla posizione di una particella, ma al contempo la misura della quantità di moto della stessa particella non restituiva un valore ben preciso. È il principio di indeterminazione di Heisenberg.
Un modo per esprimere questo fatto dal punto di vista matematico era quello di trasformare posizione e quantità di moto in degli operatori lineari e scrivere che:

\hbar è la costante di Planck divisa per 2\pi.

Questa relazione racchiude, in un formalismo compatto (e criptico per i non addetti) la chiave per il principio di Heisenberg su posizione e quantità di moto. La compattezza del formalismo e la facilità del calcolo sono due condizioni che spinsero i fisici ad adottare l’approccio operatoriale nella meccanica quantistica, ed è il motivo per cui la matematica di questa teoria è ritenuta essere “più complicata” di quella della fisica classica.

L’operatore più importante

Ciò che nella fisica classica rappresentava un modo alternativo di risolvere i problemi, nella meccanica quantistica diventa l’unico modo matematicamente conveniente di descrivere l’evoluzione di un sistema. Si tratta dell’energia, la quale nel formalismo quantistico diventa l’operatore hamiltoniano.

Nella fisica classica l’energia di un sistema era un semplice numero indicato con la lettera “E”. In meccanica quantistica diventa un operatore chiamato “Hamiltoniano“.


L’energia di un sistema è definita come la somma tra energia cinetica (p^2/2m) ed energia potenziale V. Coloro che prima erano semplici numeri ora diventano due operatori che, come dice il nome, “operano” sugli stati di una particella, comandandone l’evoluzione dinamica.

Ecco come si procede di solito: immagina una particella immersa in un certo spazio e sensibile a certe interazioni fisiche (elettromagnetiche ad esempio, come un elettrone in un campo magnetico, o in prossimità del nucleo di un atomo).

La seguente frase “questa particella si muoverà in questo spazio con una certa velocità e occuperà maggiormente alcune posizioni invece di altre, sulla base delle interazioni che percepisce” viene tradotta quantisticamente nella seguente:

Lo stato di una particella evolve da un valore iniziale a un valore finale grazie all’azione dell’operatore Hamiltoniano, il quale rappresenta le interazioni e il contenuto cinetico che caratterizzano il moto della particella.

Come forse avrai sentito da qualche parte, lo stato di una particella è indicato da una funzione a più valori, nel tempo e nello spazio: \Psi(\vec{x},t). Il fatto che questo stato venga trasformato nel tempo per via delle interazioni è riassunto dalla seguente scrittura molto compatta:

L’esponenziale di un operatore è lo sviluppo in potenze dell’operatore stesso, secondo la regola degli sviluppi di Taylor. Non preoccuparti di questo dettaglio matematico, l’ho messo solo per completezza.

L’operatore hamiltoniano agisce sullo stato iniziale della particella, e per ogni tempo t successivo restituisce un certo stato finale.

Questa è la ricetta prescritta dalla celebre equazione di Schrödinger, la quale governa la dinamica degli stati quantistici di un sistema. Quella che ti ho mostrato è proprio la soluzione dell’equazione: Schrödinger scrisse che, una volta noto l’operatore hamiltoniano, la dinamica del sistema è nota..

Più facile a dirsi che a farsi: è difficile trovare il corretto operatore che riesca a riprodurre gli stati in cui evolvono i sistemi quantistici negli esperimenti. Trovare l’hamiltoniano giusto equivale a trovare la teoria giusta per descrivere il sistema, ed è esattamente il mestiere del fisico.

Se un fisico ha fatto bene il suo mestiere, otterrà una predizione sull’evoluzione temporale dello stato del sistema, e potrà fare previsioni probabilistiche su quale sarà lo stato in cui verrà misurata la particella a un dato istante di tempo dell’esperimento.

Gli autostati di un operatore

A differenza di uno stato normale, l’autostato di un operatore mantiene la sua direzione dopo la trasformazione, e al massimo si allunga o si accorcia.

Possiamo architettare un esperimento con lo scopo di misurare una certa proprietà della particella quantistica di cui abbiamo parlato prima. L’atto della “misurazione” consiste inevitabilmente in una “riorganizzazione” delle informazioni quantistiche dello stato della particella e anche dello stato del rivelatore che stiamo utilizzando per misurare quella proprietà.

Per via di uno dei postulati della meccanica quantistica (i quali fanno sì che la teoria riproduca quanto si osserva negli esperimenti) a ogni osservabile (sono chiamate così le uniche quantità misurabili negli esperimenti) è associato un operatore, e gli stati possibili in cui la particella può essere rivelata nell’esperimento vanno ricercati in alcuni stati molto speciali che hanno la particolarità di rimanere “quasi inalterati” sotto l’azione dell’operatore.

Per spiegarlo in termini semplici, immagina che lo stato sia una freccia nello spazio: l’operatore in generale può far compiere alla freccia una certa rotazione (il che corrisponde al trasformare lo stato in un altro stato diverso dal primo). Tuttavia alcune frecce speciali vengono trasformate dall’operatore in modo che al massimo si allungano o si accorciano, ma senza ruotare:: la direzione rimane la stessa. Questi stati speciali sono chiamati autostati.

In generale ogni operatore ha il suo set di autostati “personale”.

In sostanza gli autostati di un operatore ci semplificano la vita perché trasformano in maniera molto semplice: significa meno calcoli da fare!

Un esempio preso in prestito dalla geometria: in alcuni casi gli operatori della meccanica quantistica e le matrici sono praticamente la stessa cosa (se non sai come funziona una matrice, vai a questo articolo). Una matrice come quella di rotazione attorno all’asse z sul piano x-y ha il compito di ruotare un vettore di un certo angolo. Siccome la rotazione si svolge attorno all’asse z, la componente z del vettore rimane inalterata. Il vettore di componenti (0,0,1) viene quindi mandato in se stesso, cioè è un autovettore di questa particolare matrice di rotazione.

Il vettore (0,0,1) viene trasformato in se stesso dalla rotazione attorno all’asse z.

La scrittura che ci semplifica tanto la vita, e che ricerchiamo continuamente in meccanica quantistica, è

La costante \lambda è chiamata, in gergo, “autovalore” dell’autostato. A ogni autostato viene associato il suo “autovalore”, il suo numerino personale da utilizzare come etichetta. Possono esserci anche più autostati aventi lo stesso autovalore, ma non vedrai due autovalori diversi associati allo stesso autostato.

Questa scrittura è un vero sospiro di sollievo: l’esistenza di stati che rimangono praticamente invariati sotto l’azione degli operatori rappresenta una semplificazione incredibile per i calcoli della teoria. Invece di chiederci come trasforma qualsiasi stato dell’universo sotto l’operatore (una pretesa diabolicamente assurda), ci interessiamo solo a quegli stati che invece “cambiano molto poco”.

Il motivo di ciò va ricercato in uno dei postulati fondamentali della meccanica quantistica, già accennato sopra:

Le quantità che misuriamo sperimentalmente corrispondono agli autostati della particolare osservabile a cui siamo interessati. Lo so che suona strano e inutilmente astratto, ma è grazie a questo postulato che vengono riprodotti i risultati sperimentali.

La cattiva notizia: non tutti gli stati della teoria sono autostati dell’operatore che ci interessa.


La buona notizia: gli autostati dell’operatore che ci interessa possono essere usati come blocchetti elementari per costruire gli stati più generici della particella.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.


Questo è il principio di sovrapposizione degli stati: ogni stato può essere costruito sovrapponendo tra loro tanti altri stati.

In generale conviene, anzi è proprio mandatorio, utilizzare come blocchetti elementari gli autostati dell’operatore che ci interessa. Ti conviene pensare agli autostati proprio come a dei “Lego” con cui costruire uno stato più generico possibile (la struttura fatta coi Lego è lo stato generico).

Questi autostati andranno a comporre lo stato della particella, ciascuno con un proprio peso statistico, come specificato dalle regole della meccanica quantistica (la quantistica è praticamente una teoria della probabilità, camuffata)

La tipica struttura di uno stato generico, sviluppato come somma di autostati di un certo operatore di nostro interesse. I numeri a_i sono i pesi statistici, cioè il loro modulo al quadrato, ad esempio |a_2|^2, rappresenta la probabilità che la particella, inizialmente nello stato generico “\ket{\Psi}“, venga misurata in un ‘autostato \ket{p_2}.

Il risultato della misurazione (misurazione dell’osservabile, associata a sua volta a un certo operatore della teoria) è il famigerato, e ancora dinamicamente poco compreso, “collasso della funzione d’onda”, il quale seleziona uno degli autostati dell’operatore associato all’osservabile coinvolta:

La particella viene rivelata in UNO solo degli autostati possibili dell’operatore associato all’osservabile.
Prima aveva una probabilità ben precisa di trovarsi in ciascuno degli autostati possibili, mentre DOPO la misura la probabilità di ritrovarla nello stesso autostato sarà il 100%.

ed è proprio questo a cui ci si riferisce quando si parla di “collasso della \Psi“.

Il numero che si misura nell’esperimento coincide con la costante \lambda, cioè l’autovalore dell’autostato in cui è stata rivelata la particella.

Un esempio rapido di quanto detto: un’osservabile di una particella può essere il suo spin (che sperimentalmente si misura grazie all’effetto di un campo magnetico sulla traiettoria della particella). A questo effetto osservabile è associato un operatore di spin.
Se ad esempio sperimentalmente si osserva che alcune particelle possono avere solo due tipi di deflessioni in un campo magnetico allora all’operatore di spin della teoria verranno associati due autostati.

Un tipico esperimento in cui è possibile misurare lo spin di una particella: Stern-Gerlach.

Prima di misurare la deflessione tramite l’accensione del campo magnetico, dal punto di vista della nostra interpretazione la particella si trova in una sovrapposizione di autostati di spin, e con la misurazione (l’accensione del campo magnetico) viene “selezionato un autostato” con una certa probabilità calcolabile quantisticamente.

Tutto questo discorso è importante per capire il seguito, e cioè capire perché ci interessiamo a specifici numeri quantici associati ad operatori accuratamente selezionati della teoria.

I numeri quantici non sono altro che gli autovalori di specifici operatori della teoria, accuratamente selezionati affinché soddisfino delle proprietà che ci permettono di semplificare il modo in cui possiamo fare previsioni verificabili con l’esperimento.

In ogni caso, non basta essere un autovalore di un’osservabile per essere un buon numero quantico!

Un buon numero quantico ci semplifica la vita negli esperimenti, e nella parte II di questa serie vedremo perché!
(Per chi si incuriosice: ha a che fare con il teorema di una famosa matematica tedesca…)


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

3 comments

Rispondi

%d blogger hanno fatto clic su Mi Piace per questo: