Come la gravità ci impedisce di misurare distanze più piccole della lunghezza di Planck

Uno dei punti fondamentali per la conquista dell’unificazione tra gravità e meccanica quantistica riguarda la comprensione dello spaziotempo a una scala subatomica di lunghezza.

Lo spaziotempo è essenzialmente un concetto classico: possiamo immaginarcelo come una struttura invisibile che può essere descritta utilizzando i numeri reali (cioè quelli della quotidianità: 2.3, 0.01, \pi, e^{-\pi/2}, -3/4, 2.9999...).

Come immaginiamo la griglia dello spaziotempo curvata dalla massa.

I numeri reali costituiscono un insieme non numerabile, in parole povere non solo abbiamo a disposizione un’infinità di numeri da -\infty a +\infty, ma anche che tra due numeri come 0 e 1 è compresa un’altra infinità di numeri. Inoltre è anche un insieme continuo, cioè dato un certo numero x, è sempre possibile trovare un altro numero y sufficientemente “vicino” al primo in modo che la distanza x-y tra i due si avvicini a zero fino alla cifra decimale che si desidera.
Nei numeri interi, invece, la distanza tra due numeri può solo coincidere con lo zero nel caso in cui i due numeri siano uguali, altrimenti esiste una distanza minima che è quella che riguarda due numeri consecutivi come 4 e 5.

Ecco, classicamente si pensa che lo spaziotempo possa essere descritto con un insieme di numeri reali piuttosto che di numeri naturali. Non è definita una distanza minima se non quella uguale a zero.

Cosa succede quando tiriamo in ballo la meccanica quantistica?

Ispirato dal seguente brillante articolo di Calmet, Graesser e Hsu pubblicato nella Physical Review Letters, ho deciso di volgarizzare un ragionamento che ho trovato molto intrigante, dato che su questi temi si discute sempre pochino e male.

Immaginiamo di avere un certo detector per rivelare la distanza tra due punti x(t) e x(0) nella griglia dello spaziotempo, uno al tempo t=0 e l’altro al tempo t.
Supponiamo per semplicità che il detector, di grandezza L e massa M, misuri questi due punti spostandosi con una velocità v=p/M dove p è la sua quantità di moto. Avremo cioè

Il discorso che sto per fare ora si basa su un’approssimazione euristica al fine di scongiurare l’introduzione di operatori quantistici, dato che aggiungerebbero poco o niente alla sostanza del discorso principale.

Una volta misurate le posizioni x(t) e x(0) con una certa incertezza \Delta x(t) e \Delta x(0), possiamo anche stimare l’incertezza sulla quantità di moto \Delta p usando le formule sulla propagazione delle incertezze:

Considerando ad esempio il punto x(t), varrà il principio di indeterminazione di Heisenberg:

A questo punto sostituiamo dentro il principio di Heisenberg l’espressione di \Delta p=(M/t)[\Delta x(t)+\Delta x(0)] trovata con la propagazione delle incertezze. Trascurando termini quadratici del tipo (\Delta x(t))^2 essendo più piccoli di un ordine di grandezza, si arriva a una relazione interessante:

Le incertezze sulla posizione iniziale e finale sono legate da un principio di indeterminazione, il cui valore aumenta all’aumentare del tempo. Di sicuro questa è una relazione interessante.
Ancora più interessante è chiedersi quale sia l’incertezza sulla distanza tra x(t) e x(0), cioè s=x(t)-x(0). Anche ora, per via della propagazione degli errori, si ha che

    \[\Delta s=\Delta x(t)+\Delta x(0)\]

Se \Delta x(t) diminuisce allora \Delta x(0) aumenta al fine di mantenere vera la \Delta x(0)\Delta x(t)\ge \frac{\hbar t}{2M}, quindi \Delta s è limitato dal valore più grande tra \Delta x(0) e \Delta x(t).

Nel caso in cui \Delta x(t)\approx \Delta x(0) cioè misuriamo i punti x(t) e x(0) con incertezze circa uguali, il principio di indeterminazione fornisce:

Quindi da un punto di vista quantistico possiamo misurare una lunghezza spaziale con una precisione

Dove ricordiamo, t è il tempo che abbiamo lasciato correre tra una misura e l’altra, e M è la massa del nostro detector (che abbiamo fatto interagire con lo spazio attorno a sé lasciandolo muovere liberamente).
Controllando questi due parametri possiamo rendere \Delta s piccolo a piacere. Possiamo costruire un detector molto massivo e fare tante misure consecutive separate da intervalli di tempo t molto piccoli.
Rendendo piccolo il rapporto t/M possiamo rendere \Delta s piccolo a piacere.

Tutto ciò andrebbe bene in un mondo in cui non esiste la gravità. Questo è il messaggio da portare a casa! Se non ci fosse di mezzo la gravità, come puoi vedere, nulla impedirebbe di rendere \Delta s piccolo a piacere (anche se non può mai essere nullo, per via del principio di Heisenberg).

L’intervento della gravità

Ho mentito, non possiamo rendere t piccolo a piacere! Se L è la dimensione del nostro detector, dobbiamo considerare dei tempi t tali che t>L/c cioè maggiori del tempo impiegato dalla luce a percorrere il nostro detector (altrimenti solo una frazione del detector può essere considerato “detector”).

Inoltre non possiamo rendere M grande a piacere: se rendiamo M troppo grande rispetto alle dimensioni L del detector, questi potrebbe collassare in un buco nero, e ciò impedirebbe di leggere qualsiasi informazione sulle misure del nostro esperimento. Il parametro di lunghezza fondamentale di un buco nero è dato dall’orizzonte degli eventi

    \[r_s\sim \frac{GM}{c^2}\]

dove G è la costante di gravitazione di Newton e c la velocità della luce.

Affinché il detector non sia un buco nero da cui non escono informazioni, desideriamo che sia L>r_s. Mettendo tutto assieme avremo quindi

La quantità risultante è identificata come lunghezza di Planck \ell_p, definita come:

La lunghezza di Planck, costante fondamentale della Fisica.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Non c’è nessun parametro che possiamo controllare nella formula della lunghezza di Planck: è composta da costanti fondamentali della Fisica come G, \hbar, c (costante di gravitazione di Newton, costante di Planck e velocità della luce). Quindi \Delta s\ge \ell_p è un limite inferiore che non possiamo sormontare in alcun modo ingegnoso: la gravità impedisce di misurare distanze più piccole della lunghezza di Planck.

Se vuoi sapere da dove spunta fuori la lunghezza di Planck da un punto di vista storico, ho scritto un articolo a riguardo.

Quanto è piccola una lunghezza di Planck nelle nostre unità di misura quotidiane? \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

Il punto fondamentale è che se non ci fosse la gravità, non esisterebbe una lunghezza minima misurabile e potremmo rendere piccola a piacere l’incertezza quantistica della misura!

Ad avere l’ultima parola sulle dimensioni spaziali subatomiche non è quindi la quantistica, ma la gravità!
Questo risultato è molto significativo per la Fisica! Perché?

Quando si effettuano esperimenti di Fisica delle interazioni fondamentali (come le collisioni tra particelle) si esplorano scale di energia sempre più alte (che equivale a dire: si esplorano regioni di spazio sempre più piccole). La presenza di una scala di lunghezza sotto la quale non si può andare implica anche l’esistenza di una scala di energia sopra la quale non si può andare (perché la gravità diventerebbe rilevante e si inizierebbe a parlare di collasso in buco nero, avendo accumulato tanta energia in una regione di dimensioni molto ridotte). Un altro pezzo del puzzle per la lunga scalata che ci porterà verso la gravità quantistica?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Il trucco per stimare la temperatura di Hawking: la gravità quantistica dietro le unità naturali

Stephen Hawking, 1942-2018.

Quello che propongo è un esercizio concettuale che ci porterà a stimare in maniera molto euristica (e non rigorosa) la temperatura di evaporazione dei buchi neri, altrimenti nota come “temperatura di Hawking”, dal suo scopritore Stephen Hawking. Su ispirazione da una lettura del fisico Anthony Zee, ritengo ci sia tanta fisica teorica dietro questo semplice giochino concettuale, quindi ci tengo a condividerlo con gli appassionati.

Alle fine, tutto inizia con Planck.
Max Planck è uno scienziato rinomato non solo per l’ipotesi sulla quantizzazione della radiazione, ma anche per essere stato il primo a proporre le “unità naturali” nella Fisica. Intendo proprio delle unità di misura molto speciali, dette “naturali” per un motivo ben preciso.

Perché mai avremmo bisogno di utilizzare delle “unità naturali", e poi che significa “naturale"? Naturale rispetto a cosa?

Se ci pensiamo un attimo, la storia dell’umanità è cosparsa di convenzioni sulle unità di misura:
cos’è un litro? Un piede? Una spanna? Un centimetro? Un gallone? Un secondo?

Chiaramente ogni unità di misura ha la sua definizione riconosciuta internazionalmente, ma tutte hanno in comune un unico fatto: sono antropocentriche per costruzione (d’altronde non poteva essere altrimenti, no?).
Questo porrebbe non pochi problemi dal punto di vista della comunicazione scientifica interstellare!

Per fare un esempio, a un abitante di un pianeta della galassia di Andromeda non può fregare di meno che per misurare quella che chiamiamo “temperatura” ci riferiamo alla graduazione di alcuni tubi contenenti mercurio, riferendoci alla convenzione proposta in un laboratorio nel 700′.

La fisica moderna ci ha insegnato invece che alcune quantità fondamentali, come tempo, lunghezza e massa, devono necessariamente essere espresse in modo che qualsiasi civiltà della nostra galassia (e oltre) possa concordare sul loro valore. Pensa quanto sarebbe difficile descrivere l’unità di misura del “piede del Re” a un abitante di un altro pianeta! Sfortunatamente tutte le unità di misura quotidiane sono affette da questa arbitrarietà.

Ad esempio utilizziamo un’unità temporale che essenzialmente deriva da quanto velocemente il nostro pianeta compie una rivoluzione attorno al proprio asse, e scandiamo il passaggio dei tempi lunghi riferendoci a quante volte il nostro pianeta compie un giro completo intorno alla sua stella. In una galassia popolata da 100 miliardi di pianeti, la misura del tempo riferita al numero di rivoluzioni di UNO solo tra questi appare tutto tranne che efficiente.

Tutto quello che chiediamo è di poter misurare tempi, lunghezze e masse usando qualcosa su cui ogni essere vivente può concordare (supponendo che la Fisica sia la stessa in tutta la galassia).

È possibile misurare tempo, lunghezza e massa senza riferirsi ad unità di misura inventate dall’uomo?

Tempo, lunghezza e massa. Ci bastano queste tre cose per poter fare previsioni fisiche sul mondo che ci circonda, e fortunatamente le costanti fondamentali della Fisica vengono in nostro soccorso.

L’indizio di Newton: lunghezza e massa sono correlate

Se nella teoria di Newton compariamo l’energia cinetica di un corpo gravitante con la sua energia potenziale gravitazionale

Comparando l’energia cinetica di un corpo di massa ”m” con l’energia potenziale nel campo gravitazionale di una massa “M“.

ed esprimiamo la sua velocità come una frazione di quella della luce, cioè v=\beta c con 0<\beta<1, vediamo che è possibile, tramite le costanti fondamentali c e G (velocità della luce e costante di gravitazione universale) esprimere una lunghezza in funzione di una massa

Semplificando m e risolvendo per r, otteniamo una relazione tra lunghezza e massa che dipende solamente da costanti fondamentali.

Il rapporto G/c^2 è una costante fondamentale della Natura, su cui potenzialmente tutti gli osservatori dell’universo possono concordare (magari nel loro linguaggio o nella loro matematica, ma sarebbe comunque possibile capirsi in qualche modo). Stiamo dicendo implicitamente che basta conoscere la teoria della gravità (costante G) e la velocità della luce (costante c) per poter convertire da lunghezza a massa!

Ok, magari questa relazione non significa nulla se la decontestualizziamo dal problema fisico (eguagliare energia cinetica con energia potenziale serve per risolvere un problema specifico), ma qui stiamo cercando delle relazioni che ci consentano di esprimere delle quantità in funzione di alcune costanti fondamentali.

“Aspetta un attimo, ma anche le costanti fondamentali sono riferite alle unità di misura antropocentriche. La velocità della luce si misura in m/s ad esempio. Non è un discorso circolare?"

Semplicemente diremo che nelle unità fondamentali la velocità della luce ha un valore unitario, e che ogni altra velocità ha un valore che è una frazione di quel valore unitario, cioè v=\beta con 0<\beta<1 e c=1.

”Ma non ha senso, in questo modo come facciamo a distinguere una velocità da una massa? Come faccio a dire che il numero “1" si riferisce a uno spazio percorso nel tempo invece che a un chilogrammo?

Giusta osservazione, ecco perché dovremmo provare ad esprimere tempi, lunghezze e masse in maniera indipendente tra loro, in funzione di poche costanti fondamentali. Siccome abbiamo tre quantità, ci servono tre costanti fondamentali, ma finora ne abbiamo raccolto solo due.

Nella teoria di Newton abbiamo a disposizione solo la costante G, e con Einstein abbiamo guadagnato la costante c. Il prossimo passo fu compiuto da Max Planck quando introdusse \hbar nella definizione di quanto di energia

Se \omega è ad esempio la frequenza di un fotone, la conversione tra frequenza ed energia è garantita dalla costante di Planck \hbar.

Il contributo quantistico

A meno che tu non abbia vissuto dentro una caverna negli ultimi anni, se ti interessa la Fisica avrai sicuramente sentito parlare del principio di Heisenberg, che relaziona una quantità spaziale (\Delta x) con la quantità di moto (\Delta p) (per un approfondimento sul significato matematico del principio, ho scritto un articolo). Il mediatore di questa relazione è la costante di Planck, \hbar

Se proviamo a far incontrare gravità e meccanica quantistica risulta naturale considerare la lunghezza gravitazionale travata in precedenza, e cioè la combinazione GM/c^2. Se al posto della quantità di moto poniamo poi Mv=M\beta c con al solito 0<\beta<1 possiamo ricavare, con un po’ di sorpresa, una massa in funzione di sole costanti fondamentali:

Ignorando il fattore arbitrario \beta e calcolando la radice quadrata, incappiamo in una massa espressa solamente in funzione delle tre costanti fondamentali, la cosiddetta “massa di Planck”:

La massa di Planck.

A questa massa contribuiscono le tre costanti delle tre teorie fondamentali della Natura:

  • G, la costante di gravitazione per la teoria della gravità di Newton.
  • c, la costante della velocità della luce, per la teoria della relatività di Einstein.
  • \hbar, la costante dei quanti di energia, per la teoria quantistica di Planck e Heisenberg.

Tre costanti, tre teorie fondamentali, e in regalo abbiamo una massa espressa in maniera universale.

Se come quantità di moto usiamo questa massa, cioè p=M_p(\beta c), la lunghezza quantistica associata è, sempre per il principio di Heisenberg

Sostituendo il valore trovato per M_p=\sqrt{\hbar c/G} e trascurando la costante \beta irrilevante, troviamo quella che è definita lunghezza di Planck

La lunghezza di Planck

che è anche pensabile come la distanza percorsa dalla luce in un tempo di Planck definito così

Il tempo di Planck

Grazie alle tre teorie fondamentali: gravità, relatività e quantistica, siamo riusciti a trovare tre costanti fondamentali per esprimere le tre quantità più importanti della Fisica in maniera indipendente

Le tre costanti fondamentali da cui discendono massa, lunghezza e tempo.

Cosa ci abbiamo guadagnato? Ora possiamo esprimere qualsiasi altra massa, lunghezza o tempo in unità di queste che abbiamo trovato! Cioè diremo che

Le costanti \apha_m,\alpha_\ell,\alpha_t sono adimensionali, cioè sono dei numeri puri.

in cui \alpha_m, \alpha_\ell,\alpha,t sono ora le letture di “quanta massa, quanta lunghezza o quanto tempo c’è” nelle unità M_p,\ell_p,t_p.

Ovviamente in queste unità la massa di Planck ha \alpha_m=1, il tempo di Planck ha \alpha_t=1 e la lunghezza di Planck ha \alpha_\ell=1 (per definizione). È come dire “quanti chili ci sono in un chilo?” ovviamente uno, è la definizione.

Un ritorno alle unità primordiali

Volendo potremmo esprimere queste nuove unità utilizzando quelle a cui siamo abituati quotidianamente, come il chilogrammo, il secondo e il metro, giusto per avere un’idea delle scale in gioco.

Siccome la parola “quantistica” ci fa venire in mente quantità molto piccole, non ti sorprenderà sapere che tempo di Planck e lunghezza di Planck sono spaventosamente piccole nelle nostre unità

Ma anche questo non dovrebbe scandalizzarci. Chi ci dice che le nostre unità di misura quotidiane siano significative? Quanto piccolo è troppo piccolo, e quanto grande è troppo grande? Dipende dalle unità che si sta usando. Nelle unità naturali fondamentali t_p=1, \ell_p=1, nulla di insolito, non sono piccole.
Nelle unità primordiali a cui siamo abituati invece si ha:

  • t_p\sim 10^{-44}\,\text{s}, ovvero un numero così piccolo che non vale nemmeno la pena specificare quanto.
  • \ell_p\sim 10^{-33}\,\text{cm}, ovvero 10^{-25} volte il raggio tipico di un atomo. Per enfatizzare, il numero 10^{-25} corrisponde a 24 cifre dopo lo zero, cioè qualcosa del tipo 0.\underbrace{000.....0}_{24}1. Giusto per intenderci.

La massa di Planck corrisponde invece a M_p\sim 10^{-5}\,\text{grammi}.
Dal punto di vista “quotidiano” M_p può sembrare molto piccola, ma in realtà corrisponde a 10^{19} volte la massa del protone, un valore spropositatamente elevato per la fisica delle particelle. Nelle nostre unità, M_p appare così grande perché dipende dalla costante G al denominatore, cioè M_p\propto 1/\sqrt{G}, con G che è un numero molto piccolo nella teoria della gravità.

Ma passiamo ora alla questione di interesse: le unità naturali ci permettono di calcolare con estrema velocità una quantità che è il risultato di una primordiale teoria di gravità quantistica: la temperatura di Hawking per l’evaporazione dei buchi neri.

L’evaporazione dei buchi neri

In termini rozzissimi “l’evaporazione” di un buco nero si basa su due aspetti fondamentali:

  • Il “vuoto“, dal punto di vista quantistico, non è davvero un vuoto, ma una “brodaglia quantistica” caratterizzata da processi di creazione-distruzione di coppie particella-antiparticella. Queste particelle sono “virtuali“, nel senso che non sono osservabili fisicamente e rappresentano solo un conveniente costrutto matematico, una conseguenza delle nostre teorie. Il loro utilizzo conduce tuttavia a predizioni accurate sulle particelle osservabili.
  • L’orizzonte degli eventi di un buco nero è definito sul vuoto spaziotemporale attorno al buco nero, e racchiude una regione (il buco nero) dalla quale NULLA, nemmeno la luce, può sfuggire.

Che succede se si viene a creare una coppia virtuale di particella-antiparticella esattamente sull’orizzonte degli eventi? Una delle due particelle non potrà più uscire dalla regione spaziotemporale, mentre l’altra proseguirà in direzione opposta per la conservazione della quantità di moto.

Una coppia virtuale di particella-antiparticella si crea sull’orizzonte del buco nero.

Ci tengo a rimarcare: questa descrizione del processo è molto euristica e non del tutto precisa, ma rende bene l’idea. Non ne ho mai trovate di più semplici di questa.


Il punto importante da capire è che in un certo senso è come se il buco nero avesse emesso della radiazione sotto forma di particella! Un attimo prima non c’era nulla, e un attimo dopo è come se si fosse creata radiazione dal niente, anche se in realtà il partner della particella emessa è stato risucchiato nel buco nero.

La particella che procede verso l’universo circostante è stata promossa da “particella virtuale” a “particella reale”, e questa promozione ha un costo energetico ben preciso, garantito dall’energia gravitazionale del buco nero. Tutto questo processo è noto come “radiazione di Hawking”.

La radiazione di Hawking prevede che i buchi neri perdano energia gravitazionale sotto forma di radiazione di particelle.

In questo senso si dice che i buchi neri “evaporano”, cioè è come se iniziassero a perdere massa.

Stima della temperatura di Hawking

Nelle unità naturali definite prima si pone convenzionalmente \hbar=c=1 per semplificare le equazioni. Come conseguenza di ciò, l’energia ha le stesse dimensioni di una massa:

Energia e massa diventano la stessa cosa in unità naturali.

In questo modo il principio di Heisenberg \Delta x\Delta p\sim\hbar per lunghezza di Planck \ell_p e quantità di moto\Delta p\propto M_p c=M_p con c=1, si scrive con \hbar=1:

Il principio di Heisenberg in unità naturali ci dice che le lunghezze hanno come unità l’inverso di un’energia.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

quindi impariamo che la lunghezza equivale all’inverso di una massa, cioè all’inverso di un’energia per quanto appena detto.

Da un punto di vista microscopico possiamo associare una certa temperatura alla radiazione di Hawking. Questo perché la temperatura è una misura dell’energia cinetica di un sistema. In un certo senso la temperatura è la manifestazione macroscopica di un processo microscopico, rappresentato dal moto caotico delle particelle. Noi vediamo solo “la temperatura” dal punto di vista sperimentale, quindi per via di questa limitazione abbiamo creato una costante ad hoc per convertire l’energia microscopica in scale graduate di colonnine di mercurio con cui misuravamo le temperature qualche secolo fa.

La conversione tra energia microscopica e la sua manifestazione “misurabile”, cioè la temperatura, avviene grazie alla costante di Boltzmann k_b.

Siccome non vogliamo usare unità antropocentriche come le colonnine di mercurio, porremo k_b=1 per semplicità. Quindi l’energia è proprio la temperatura: E=T.

Parlando del buco nero possiamo allora dire che siccome l’energia equivale all’inverso di una lunghezza, e che al contempo l’energia equivale a una temperatura, si ha che

Come lunghezza caratteristica del buco nero possiamo prendere proprio la lunghezza gravitazionale definita all’inizio di questo articolo, cioè GM/c^2, che in unità c=1 supponendo che il buco nero abbia una massa M diventa:

Di conseguenza possiamo fornire una stima (molto rozza, ma efficace) della temperatura di Hawking del buco nero di massa M

La temperatura di Hawking della radiazione.

Nonostante la nostra stima sia estremamente rozza, il risultato è comunque corretto: la temperatura del buco nero è tanto più alta quanto più è piccolo (cioè meno massivo). Inoltre, come la massa del buco nero diminuisce per via dell’evaporazione, la sua temperatura crescerà sempre di più ed evaporerà ancora più velocemente. Questo è quello che ci dice la formula per la temperatura di Hawking.

Ciò ha del paradossale: hai mai visto un corpo che più perde energia, più si riscalda ed emette in fretta? Questo è solo uno dei tanti problemi che derivano dall’infelice connubio tra relatività generale e meccanica quantistica, e questi problemi dovranno essere risolti da una pretendente teoria di gravità quantistica.

Abbiamo mai rivelato una radiazione di Hawking proveniente da un buco nero? Non ancora, specialmente perché per buchi neri di massa comune (abbastanza elevata) la temperatura di Hawking, andando come T_H\sim 1/M, è molto molto piccola, più piccola di quella del punto più freddo dell’universo, vicino allo zero assoluto in gradi Kelvin. La speranza è rivolta verso i buchi neri primordiali in quanto dovrebbero essere in fase di evaporazione finale, un momento in cui la loro massa tende a M\to0, e quindi dovremmo essere in grado di rivelare un incremento anomalo nella temperatura dell’emissione.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Perché secondo Rovelli la Relatività suggerisce di abbandonare il concetto di spaziotempo

Durante il secolo scorso, la Relatività Generale si è presentata con il più grande colpo di scena che la Fisica abbia mai visto:

L’interpretazione ortodossa della relatività generale: esiste uno spaziotempo che viene curvato dalle sorgenti di massa.
Le altre masse non possono fare altro che “seguire la curvatura” e quindi essere attratte.

Il campo gravitazionale non esiste, la gravità è il risultato della curvatura dello spaziotempo.

Chiunque si sia mai interessato di relatività generale si è quindi abituato a visualizzare questa affermazione con la splendida rappresentazione dello spaziotempo “curvato”.

Lo spaziotempo è per noi una “griglia immaginaria” che esiste fin dal Big Bang, una qualche costruzione geometrica su cui si collocano tutti gli eventi della nostra realtà.
Questi eventi possono essere descritti con le coordinate che vogliamo, e queste coordinate vanno a strutturare il palcoscenico matematico a cui diamo il nome “spaziotempo” dal punto di vista dei calcoli. Ma in ogni caso stiamo sempre assumendo che questa griglia invisibile e sottostante esista sempre, e in genere diamo anche a lei il nome di spaziotempo.


Di sicuro è una rappresentazione che ci consente di fare i conti in maniera molto comoda, ma ciò ha un determinato prezzo da pagare.

Questa rappresentazione assume in qualche modo che lo spaziotempo esista indipendentemente dalla materia e da ogni altra sorgente di energia, e questo è proprio ciò che sancisce il divorzio completo con la visione “quantistica” delle interazioni, come illustrato nel seguente schema:

Ciò pone non pochi problemi dal punto di vista della gravità quantistica, la quale si ritrova a dover mediare tra due visioni nettamente diverse! Nonostante ciò, entrambe le teorie funzionano in maniera impeccabile nei loro rispettivi campi di applicazione. In particolare anche la relatività generale ha ricevuto l’ennesima schiacciante conferma di validità secondo i dati recenti sull’osservazione del buco nero al centro della nostra galassia (EHT).

Eppure, nonostante sia data per scontata, questa interpretazione dello spaziotempo in relatività generale è tutt’altro che definitiva.

Di recente mi è capitato di studiare dei paragrafi del testo specialistico “Quantum Gravity” di Carlo Rovelli, incappando in un’osservazione che ritengo di altissimo valore concettuale e che aiuta a risolvere un importante paradosso delle equazioni di Einstein.

In realtà questa argomentazione non è dovuta solo a Rovelli, ma risale fino agli albori della relatività generale. È il cosidetto “hole argument” di Einstein, il quale giunse alle importanti conclusioni illustrate anche da Rovelli.

Un paradosso molto arguto

Immaginati una regione nello spaziotempo senza sorgenti di gravità, cioè senza massa o altre forme di energia come quella elettromagnetica. Magari questa regione di spaziotempo la prendiamo piccola a piacere per non complicarci le idee.

Con il simbolo delle tre ondine increspate, intendiamo uno spaziotempo curvo in quel punto.

Considera ora due punti A e B in questa regione vuota, e supponi di essere in grado di misurare la curvatura dello spaziotempo in entrambi i punti. Per intenderci, definiamo lo spaziotempo con il simbolo g_{\mu\nu}.

Per via di una particolarissima disposizione delle sorgenti esterne alla regione che stiamo considerando, supponi che lo spaziotempo sia curvo nel punto A e piatto nel punto B.

Ora usufruiremo del nome “Relatività Generale”, che non è stato assegnato a caso! Questo nome testimonia il postulato fondamentale su cui è basata tutta la teoria: la Fisica non può dipendere dalle coordinate di chi la osserva. Quando passiamo da un sistema di coordinate ad un altro stiamo eseguendo una trasformazione che chiamiamo \phi. Quando lasciamo agire \phi su una quantità “e“, otteniamo il suo trasformato \bar{e}=\phi\,e indicato con \bar{e}. Le quantità importanti della relatività generale non cambiano sotto la trasformazione \phi.

Se io calcolo una soluzione delle equazioni di Einstein che mi restituisce il valore della curvatura dello spaziotempo, il quale dipende da g_{\mu\nu}(x) in ogni suo punto x, allora un cambiamento di coordinate ottenuto con la trasformazione \phi genererà un’altra soluzione delle stesse equazioni, che ha la stessa validità della soluzione precedente.

Il punto è che \bar{g}_{\mu\nu} risolve le stesse equazioni di Einstein con le stesse sorgenti, non è cambiato nulla rispetto a prima. Cambia solo il linguaggio in cui abbiamo espresso g_{\mu\nu} (cioè le coordinate particolari che utilizziamo).

Supponiamo di trasformare le nostre coordinate in modo da mandare il punto A nel punto B e lasciare invariati tutti gli altri punti al di fuori del buco. Anche la soluzione delle equazioni di Einstein trasformerà come \bar{g}=\phi\,g. In sostanza, abbiamo fatto la seguente cosa:

Una trasformazione che lascia invariato tutto lo spazio tranne i punti all’interno della regione vuota. Dopo la trasformazione lo spaziotempo presenta una curvatura nel punto B , mentre la curvatura è nulla nel punto A.

Nelle nuove coordinate lo spaziotempo nel punto A è quindi piatto, mentre ora è curvo nel punto B.

Ripeto, \bar{g}_{\mu\nu} è una soluzione altrettanto valida, e la trasformazione che abbiamo fatto è consentita dalle leggi della Relatività Generale.

Ma allora lo spaziotempo nel punto A è piatto oppure curvo? Ci troviamo di fronte a un paradosso, come se le equazioni di Einstein fossero completamente inutili perché non sono in grado di descrivere lo spaziotempo univocamente.

Questo aspetto turbò gravemente Einstein in persona, tanto da fargli dubitare più volte che il principio di relatività generale avesse senso fisico.

In realtà, come fa notare Rovelli, la soluzione del paradosso sta nel ripensare la nozione di “punto dello spaziotempo”, o in generale: smetterla di attribuire tanta importanza a una griglia immaginaria come lo spaziotempo.

In realtà stavamo risolvendo un problema sbagliato.

La domanda fondamentale “com’è lo spaziotempo nel punto A? Ha in realtà meno significato di quello che pensavamo. Il problema era mal posto, o meglio, non aveva senso considerarlo un problema.

In Relatività Generale assumiamo l’esistenza di questa griglia invisibile chiamata “spaziotempo”, dandole un significato intrinseco che è maggiore di quello che realmente ha.
Nonostante accettiamo senza problemi il fatto che possiamo usare qualsiasi tipo di coordinate vogliamo per elencare i punti di questa griglia, qualcosa nella nostra intuizione ci porta a credere che la griglia abbia davvero un significato fisico.

Una rappresentazione bidimensionale della griglia spaziotemporale che ci immaginiamo nella nostra testa.

Il concetto di griglia ha però, come molti altri concetti, solo una natura strumentale. Spesso ci permette di capire ciò che stiamo facendo, ma non dovremmo dargli un significato ontologicamente maggiore di quello strumentale, o almeno questo è il suggerimento di Einstein e Rovelli.

Hai visto come il domandarci quale fosse la curvatura dello spaziotempo in uno specifico punto ci ha portato al paradosso che le equazioni di Einstein descrivono due cose diverse con due soluzioni che dicono in realtà la stessa cosa? Stavamo risolvendo un problema sbagliato, questo è l’errore a cui siamo condotti se non seguiamo il suggerimento.

Considera invece questa situazione: supponiamo che nel punto A si incrocino anche le traiettorie spaziotemporali di due particelle (cioè le loro geodetiche):

Le geodetiche delle particelle sono indicate con la linea tratteggiata blu.

Le coordinate con cui descriviamo il punto A adesso racchiudono non solo l’informazione sulla curvatura dello spazio tempo g_{\mu\nu}, ma anche l’informazione “si sono incrociate le geodetiche delle due particelle!“.
Anche le geodetiche dipendono dalle coordinate che utilizziamo, quindi se ora eseguiamo la stessa trasformazione di coordinate di prima, cioè mappiamo un punto nell’altro, dobbiamo spostare anche il punto di incontro delle geodetiche!

Come vedi ora sia la curvatura dello spaziotempo sia il punto di incontro delle geodetiche sono stati trasportati dal punto A al punto B. Supponiamo di voler rispondere, grazie alle equazioni di Einstein, alla seguente domanda:

“Com’è la curvatura dello spaziotempo nel punto in cui si incontrano le geodetiche delle due particelle?”

Questa domanda, a differenza di prima, è tutta un’altra questione: è ben posta ed ha una soluzione univoca data dalla soluzione delle equazioni di Einstein. Come puoi vedere, sia prima che dopo la trasformazione di coordinate esiste una curvatura nel punto di incontro delle due geodetiche. Lo spaziotempo è curvo nel punto in cui le due geodetiche si incontrano. Questa informazione non dipende da quali coordinate stiamo utilizzando. Quindi è questa la vera domanda da porsi in una situazione simile.

La Relatività Generale ci suggerisce che la griglia immaginaria ha molto meno significato fisico di quello che credevamo: ha poco senso fisico chiedersi quale sia il valore della curvatura dello spaziotempo in un suo specifico punto senza introdurre campi di materia o interazioni tra particelle che possano interagire in quel punto.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Uno spaziotempo senza materia e particelle non ha significato fisico, la realtà non è composta da spaziotempo e campi, ma da campi su campi, secondo Rovelli. Possiamo fare affermazioni fisicamente sensate solo nel momento in cui iniziamo a relazionare campi di materia con altri campi di materia (come l’incrocio delle due geodetiche visto nell’esempio).

Questo punto di vista capovolge ancora una volta il significato che attribuiamo alla Relatività Generale: non è che la gravità non esiste ed è solo lo spaziotempo a farci sembrare che ci sia, sono le interazioni con le particelle che danno un significato fisico allo spaziotempo. Lo spaziotempo emerge grazie alle particelle, e non il contrario. Per la gravità quantistica questa interpretazione è nettamente più favorevole in quanto il mediatore smette di essere indipendente dalla materia che interagisce (vedi lo schema fatto all’inizio).

Gli oggetti non sono immersi nello spazio. Gli oggetti costituiscono lo spazio. Come un matrimonio: non è che marito e moglie “percepiscono il matrimonio”, loro sono il matrimonio, lo costituiscono. […] Allo spazio non rimane nulla se togli tutte le cose che lo abitano. Lo spazio è costituito dalle cose.

Carlo Rovelli

Si nasconde forse qui il segreto per iniziare a conciliare gravità e meccanica quantistica?

Secondo me questo paradosso meriterebbe di essere illustrato maggiormente nei libri di testo introduttivi di Relatività Generale, perché nasconde il cuore concettuale della materia. Per questo motivo ho pensato di portare in superficie l’osservazione di Rovelli, uno dei pochi autori moderni che ha scelto di parlarne a un secolo di distanza.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg
Matteo Parriciatu
Matteo Parriciatu

Dopo aver conseguito la laurea in Fisica nel 2020, studia Fisica Teorica all’Università di Pisa specializzandosi in simmetrie di sapore dei neutrini, teorie oltre il Modello Standard e interessandosi di Relatività Generale.
È autore del libro “L’apprendista teorico” (2021).

Demistificando lo spaziotempo di Minkowski una volta per tutte

Sono trascorsi quasi 117 anni da quando l’umanità ha capito che la nostra realtà è meglio descritta utilizzando una struttura concettuale che lega indissolubilmente spazio e tempo: lo spaziotempo.
Siamo cioè passati da una concezione tridimensionale della nostra realtà a una concezione quadridimensionale.

Infatti, anche se non sappiamo ancora cosa siano oggettivamente spazio e tempo e quindi ne possiamo avere solo un’interpretazione che ci aiuta comunque a fare previsioni molto precise sulla realtà, sappiamo per certo che non sono due entità distinte: spazio e tempo sono malleabili, e dal punto di vista di osservatori diversi possono anche mischiarsi tra loro.

Ritengo che oggi questo argomento debba essere divulgato con la stessa semplicità e chiarezza con cui nelle scuole divulghiamo tanti altri fatti scientifici. Infatti dopo quasi 117 anni non possiamo più catalogare la Relatività Ristretta come “fisica moderna”, proprio allo stesso modo in cui Einstein nel 1905 non si riferiva alla meccanica lagrangiana del 1790 con il nome di “fisica moderna”.

Il modo migliore per spiegare la nostra comprensione dello spaziotempo è quello di fare un passo indietro e studiare come la pensavamo qualche secolo fa.

I quattro numeri della nostra realtà

Un oggetto tridimensionale della nostra realtà.

La nostra intuizione sensoriale ci suggerisce che viviamo in uno spazio tridimensionale, infatti gli oggetti hanno una lunghezza, larghezza e altezza. Per descrivere un oggetto a un’altra persona senza fargli vedere una sua fotografia possiamo misurarlo e poi dirle quanto è lungo, largo e alto: tre numeri, niente di più e niente di meno, perché tre sono le dimensioni che percepiamo dello spazio attorno a noi.

Allo stesso modo, quando vogliamo descrivere i fenomeni che accadono intorno a noi dobbiamo essere in grado di dire dove si sono verificati e in che istante di tempo. Per capirsi tutti al volo sul “dove”, sono state inventate le mappe e i sistemi di coordinate che scandiscono lo spazio intorno a noi con dei numeri ben precisi, mentre per essere tutti d’accordo sul “quando” è stato inventato l’orologio, che scandisce con altri numeri ben precisi lo scorrere di una misteriosa entità che chiamiamo “tempo”.

Un evento è per definizione l’unione tra le tre informazioni spaziali sul “dove” e la singola informazione temporale sul “quando”. Quando diciamo “alle 15:06 di ieri si è rotto il vaso nella veranda di nonna” stiamo assegnando all’evento “Rottura del vaso” le coordinate geografiche “veranda di nonna” e la coordinata temporale “ora locale 15:06″. In totale sono quattro numeri: tre spaziali e uno temporale.

In totale un evento è descritto da quattro numeri: per seguire i fenomeni che accadono intorno a noi non possiamo usare meno di quattro numeri o rischieremmo di non farci comprendere dagli altri.

Lo spazio e il tempo prima del XX secolo

In passato i fisici si fecero guidare dall’intuizione e immaginarono spazio e tempo come due entità separate. Questo perché nulla nell’esperienza di tutti i giorni ci farebbe intuire il contrario. Per quei fisici, l’immagine mentale del “tempo” è proprio la stessa che intuiamo dalla vita di tutti i giorni:

La freccia del tempo.

Il tempo è una retta infinita che si estende dall’infinito passato fino all’infinito futuro, ma che ha un’unica orientazione: scorre solo verso il futuro.

Per i fisici del passato esisteva un’unica freccia del tempo universale: ogni evento dell’universo accadeva in un preciso istante di tempo su cui potenzialmente tutti possono concordare.

Vediamo la conseguenza del ragionamento di quei fisici. Supponiamo che una persona si metta d’accordo con un astronauta prima della sua partenza e che sincronizzino i propri telefoni in modo da far partire una suoneria ogni 8 ore per il resto della loro vita. In questo modo quando l’astronauta si troverà su Marte e sentirà la suoneria del proprio telefono, saprà che in quel preciso istante di tempo il suo amico sulla Terra avrà sentito la stessa suoneria. I due amici potranno quindi definire un istante chiamato “presente”, cioè una nozione di “adesso”.
Se non vedi nulla di strano in questa conseguenza, è perfettamente comprensibile! Siamo abituati a concepire il tempo in questo modo, cioè come un’entità universale che scorre allo stesso modo per tutti, e i fisici del passato non erano comunque scemi nonostante pensassero ciò!

Il moto di una pallina in una sola dimensione può in principio essere studiato con righello e cronometro.

Spazio e tempo non sarebbero comunque granché utili se non li facessimo “cooperare” per provare a fare delle previsioni sul mondo che ci circonda.
Per studiare il moto di una pallina su un tavolo potremmo ad esempio utilizzare un righello per tracciare la sua posizione, e un cronometro per tenere traccia del tempo che passa. Così facendo, finiamo per collezionare un insieme di eventi come “pallina nel punto 2.5 cm all’istante 1.51 s” o “pallina nel punto 4.7 cm all’istante 2.05 s” che messi in successione tra loro costituiscono la traiettoria della pallina.

Usiamo una sola coordinata spaziale per semplicità: il moto si svolge su una sola dimensione spaziale..

Se sei familiare con il concetto di piano cartesiano, possiamo scegliere di rappresentare gli eventi raccolti su di esso, solo che al posto di “y” mettiamo il tempo “t” trascorso. A differenza di un piano geometrico bidimensionale, abbiamo ora davanti un piano spaziotemporale (in gergo “1+1 dimensionale“, cioè una dimensione spaziale, che è la “x”, e una dimensione temporale):

Un diagramma spazio-tempo per il moto di una pallina.

Se collezionassimo tantissimi eventi per il moto della pallina e collegassimo tutti i puntini blu con una linea continua, troveremmo quella che è nota essere la traiettoria della pallina.
Se la pallina fosse ferma in ogni istante di tempo, la sua traiettoria nello spazio-tempo sarebbe la seguente

Il grafico spazio-tempo di una pallina ferma nel punto x=2.5 cm.

Questo perché la coordinata “x“, per definizione di “fermo”, non deve cambiare nel tempo. Il tempo scorre in verticale, e la posizione rimane fissa sul punto x=2.5 cm.
Un pallina che si muove con velocità costante avrebbe invece il seguente grafico:

A parità di intervallo di tempo passato, la pallina percorre sempre porzioni uguali di spazio: la velocità è allora costante.

Potremmo anche non limitarci al moto dei corpi e usare i diagrammi spaziotempo per raccogliere tutti gli eventi della nostra realtà!

Ad esempio tutti gli eventi dello spazio che avvengono allo stesso istante di tempo si ottengono tracciando la retta parallela all’asse “x”. Questa retta è detta “linea di simultaneità

Tutti gli eventi spaziali che avvengono all’istante “t=2 s” fanno parte della linea di simultaneità in arancione.

Scorrendo con il dito lungo la retta arancione, il tempo non cambia, è sempre fisso a “t=2 s”, mentre lo spazio cambia. Stiamo esplorando tutti i punti dello spazio che esistono nel medesimo istante di tempo.

Allo stesso modo possiamo raccogliere tutti gli eventi che avvengono nello stesso punto dello spazio tracciando la retta parallela all’asse “t”, come fatto nel caso della pallina ferma.

Il punto importante da capire però è che lo spaziotempo esiste indipendentemente dal nostro diagramma cartesiano. Il diagramma con cui scegliamo di catalogare gli eventi si chiama “sistema di riferimento” ed è totalmente arbitrario. Decido io quando far iniziare il conteggio del cronometro e decido io dov’è il punto di partenza in cui mettere lo zero del righello. Nonostante ciò, il moto della pallina avviene comunque in uno spaziotempo “invisibile”, e le coordinate che uso per descriverlo non sono altro che una mia personale interpretazione con cui posso fare delle previsioni.

L’evento nello spaziotempo esiste anche se non c’è nessun sistema di riferimento che lo descrive. Lo spaziotempo esiste indipendentemente dai sistemi di riferimento.

Proprio per questo motivo, la Fisica prevede che le sue leggi si mantengano vere indipendentemente dalle coordinate di chi le sta utilizzando. Non avrebbe proprio senso se la realtà dipendesse dal tipo di righello o cronometro che uso!

Le trasformazioni di Galileo

Galileo Galilei, l’ideatore del principio di relatività.

In particolare, come studiato da Galileo, le conclusioni degli esperimenti di Fisica devono essere identiche a seconda che siano studiate su un treno che si muove a velocità costante o che stia fermo rispetto alla stazione. Muoversi a velocità esattamente costante è comunque una cosa rara, concorderai sicuramente che capita spesso di sentirsi “tirati” in una direzione o in un’altra in un viaggio in macchina, o in treno quando frena o fa una curva. In quei frangenti il moto non è a velocità costante, ma trascurandoli possiamo dire che il resto del viaggio si svolge in maniera che se oscurassi i finestrini e mascherassi il suono del motore, non saresti in grado di dire se si è fermi o in movimento. Questa è l’idea di Galileo: il principio di relatività.

Se mettiamo tre persone di tre nazionalità diverse davanti a una mela su un tavolo, ciascuna delle tre persone dirà nella propria lingua “la mela è sul tavolo”. Il fatto che la mela stia sul tavolo è un dato di fatto che non può dipendere dalla particolare lingua che si utilizza per descriverlo.
Siccome l’obbiettivo degli umani è comunicare tra loro, deve esistere una traduzione da un linguaggio all’altro che mantenga intatto il fatto oggettivo che la mela è sul tavolo.

Allo stesso modo, sistemi di riferimento in moto relativo l’uno con l’altro devono poter concordare sui fenomeni che osservano con le proprie coordinate. Deve quindi esistere una traduzione da un set di coordinate all’altro che mantenga intatto il fatto oggettivo di ciò che si manifesta nello spaziotempo.

Se il moto relativo è a velocità costante, la traduzione linguistica è particolarmente semplice e lascia inalterati tutti i risultati della Fisica: si chiama trasformazione di Galileo.

Dati due osservatori che utilizzano due piani cartesiani diversi con coordinate diverse:

Se “v” è la velocità relativa, possiamo ottenere le coordinate di uno in funzione delle coordinate dell’altro con una trasformazione di Galileo:

Una trasformazione di Galileo.

Ovviamente abbiamo assunto che i due osservatori abbiano sincronizzato i propri orologi in un certo istante di tempo precedente, ecco perché le loro coordinate temporali sono identiche: T=t.

Con questa traduzione possiamo descrivere con le coordinate dell’osservatore 2 tutti gli eventi descritti in precedenza con le coordinate dell’osservatore 1.

Una cosa concettualmente molto utile per ciò che faremo dopo è rappresentare i due sistemi di riferimento nello stesso grafico. Rispetto all’osservatore 1, gli assi dell’osservatore 2 si ottengono impostando le loro equazioni T=0 e X=0. Infatti l’asse T è anche noto come “la retta verticale tale che X=0“. Quindi possiamo ricavare l’asse T nelle coordinate (x,t) sostituendo “0” al posto di “X

Nel diagramma spazio-tempo di prima avremo quindi

Una trasformazione di Galileo da coordinate (x,t) a coordinate (X,T).

La cosa più importante da notare è che rispetto all’osservatore di coordinate (x,t), l’asse T del secondo osservatore è geometricamente inclinato: questa inclinazione rappresenta il fatto che il secondo osservatore si sta muovendo rispetto al primo con una certa velocità.

Ora studiamo un po’ come questi osservatori interpretano lo spaziotempo intorno a loro. Le linee di simultaneità sono sempre rette parallele agli assi x e X per definizione:

I punti dello spazio simultanei tra loro secondo l’osservatore (X,T) sono simultanei anche per l’osservatore (x,t). Per verificare, scorri una retta arancione con il dito e verifica che non ti stai spostando né sulla coordinata t, né sulla coordinata T.

Le trasformazioni di Galileo non toccano la simultaneità: il tempo, nella concezione galileiana e newtoniana della fisica classica, è assoluto.

Ovviamente invece il discorso cambia se consideriamo gli eventi che avvengono in un unico punto nello spazio dell’osservatore in movimento. Magari l’osservatore 2 è in auto e sta segnando sul taccuino la posizione di un suo compagno di viaggio che è fermo rispetto a lui in ogni istante di tempo. Tuttavia dal nostro punto di vista in cui osserviamo l’autostrada da un casello, quel compagno di viaggio non è fermo!


Come abbiamo fatto prima, per ottenere le rette degli eventi che avvengono nello stesso punto dello spazio tracciamo le parallele all’asse T, quindi si avrà:

Le rette degli eventi che per l’osservatore (X,T) avvengono tutti in uno specifico punto del suo sistema di riferimento.

Come puoi notare, le rette non sono verticali anche per l’osservatore fermo (x,t), proprio perché dal suo punto di vista tutti quegli eventi che sono fissi nel sistema di riferimento (X,T) si muovono alla stessa velocità di questo. Infatti le rette hanno la stessa inclinazione dell’asse T, che rappresenta, come detto, il moto dell’osservatore 2.

Il tuo occhio potrebbe ora notare un fatto interessante: dal grafico sembra che l’intervallo temporale ∆T tra i due eventi (indicato in rosso), sia maggiore dell’intervallo temporale ∆t, quando invece sappiamo che nelle trasformazioni di Galileo deve essere rigorosamente:

L’intervallo di tempo tra due eventi è un numero su cui tutti gli osservatori connessi da una trasformazione di Galileo devono sempre concordare.

Questo è un dettaglio acutissimo e che potenzialmente potrebbe generare molta confusione. Non se ne parla spesso.

La verità è che quell’asse “T” ruotato non ha la stessa scala di lettura dell’asse originale, proprio per via della rotazione! Una volta tenuto conto di questo fattore di scala, troviamo che anche se visivamente le lunghezze indicate in rosso sembrano diverse, a conti fatti risultano uguali, come ci aspettiamo.

Una dimensione spaziale in più

Ora che abbiamo macinato un po’ di percorso, aggiungiamo una dimensione spaziale in più per divertimento. Assieme alla “x” consideriamo anche la “y” per ottenere il classico, beneamato piano euclideo.
Lo spazio-tempo ha ora dimensione 2+1 (due spaziali e una temporale), e può essere visualizzato nel modo seguente:

La rappresentazione di uno spazio bidimensionale nel tempo, descritta come una sovrapposizione di copie.

Concentriamoci però solo sul piano spaziale senza considerare il tempo, o se preferisci, congeliamo un singolo istante di tempo. Il piano euclideo è proprio quello che ci ha svezzato e ci ha introdotto alla geometria piana, è quel posto magico in cui l’ipotenusa di un triangolo rettangolo è data dal teorema di Pitagora:

Tutti concordano sul teorema di Pitagora, è un fatto matematico che è indipendente dal proprio stato di moto! Se le trasformazioni di Galileo fanno quel che promettono di fare, non dovrebbero mai e poi mai alterare la lunghezza dell’ipotenusa di un triangolo rettangolo! Ci aspettiamo che sia:

Le trasformazioni di Galileo lasciano invariata la geometria euclidea dello spazio.

Effettivamente è così, le trasformazioni di Galileo restituiscono il risultato corretto, lasciando intatto il teorema di Pitagora (non avrebbe proprio senso se dovesse dipendere dallo stato di moto!). Nel caso più semplice in cui il moto relativo è lungo l’asse x dell’osservatore 1 si ha:

Nota che il conto restituisce il risultato che ci aspettiamo solo se poniamo uguale a zero l’intervallo temporale “∆t” tra i due eventi spaziali che specificano i cateti del triangolo rettangolo! Questo passo è fondamentale, le lunghezze spaziali, nello spaziotempo, si calcolano per definizione a tempo fissato. Non avrebbe proprio senso dire “questo oggetto è lungo 3 cm tra gli istanti di tempo 1 e 10 secondi”: un osservatore è in grado di misurare una lunghezza spaziale nel proprio sistema di riferimento solo una volta che individua simultaneamente gli estremi dell’oggetto che vuole misurare.

Ora che abbiamo completato il riscaldamento con la relatività di Galileo, è il momento di passare al succo del discorso, ovvero il motivo per cui sei qui!

Ripensare il principio di relatività

Alla fine del XIX secolo ci si accorse che una serie di argomenti teorici e sperimentali rendevano incompatibili le leggi dell’elettromagnetismo con il principio di relatività, o meglio, con il principio di relatività mediato dalle trasformazioni di Galileo. Siccome l’elettromagnetismo era fondato su radici sperimentali solidissime, e si presumeva che il principio di relatività fosse un qualcosa di irrinunciabile per la Fisica, si spalancarono due possibilità:

  • 1) La teoria dell’elettromagnetismo è falsa e bisogna trovarne una migliore, che sia compatibile con Galileo. Il principio di relatività è irrinunciabile.
  • 2) La teoria dell’elettromagnetismo è vera. Il principio di relatività può essere abbandonato.

Fu quel giovanotto di Einstein a trovare il mix perfetto tra queste due soluzioni molto drastiche, la cosiddetta terza via:

  • 3): La teoria dell’elettromagnetismo è vera. Il principio di relatività è irrinunciabile. Le trasformazioni di Galileo però non sono le trasformazioni corrette per applicare il principio di relatività.

Einstein notò che le trasformazioni di coordinate che lasciavano invariate le leggi dell’elettromagnetismo non erano quelle di Galileo, ma le trasformazioni di Lorentz:

“c” è la velocità della luce: 300.000 km/s. È evidenziato il fattore gamma.

Queste bestiole non sono altro che le trasformazioni di Galileo con un po’ di accorgimenti in più: ad esempio compare a moltiplicare il “fattore gamma: γ” che contiene il rapporto tra la velocità relativa dei due osservatori e la velocità della luce al quadrato. La velocità della luce compare per due motivi, uno storico e uno concettuale:

  • 1): Queste trasformazioni furono trovate tra quelle possibili che lasciavano invariate le leggi elettromagnetiche tra osservatori in moto a velocità costante. Siccome la luce è un’onda elettromagnetica che si propaga nel vuoto con velocità “c”, questa compare direttamente nelle trasformazioni come fattore costante per far sì che l’equazione dell’onda rimanga appunto invariata, come vuole il principio di relatività.
  • 2): Studiando le conseguenze di queste trasformazioni si scoprì che facevano una predizione insolita: la velocità della luce è un vero e proprio limite di velocità: nessuno può raggiungerla e nessuno può superarla. È una conseguenza matematica di queste trasformazioni. (Si nota già dal fatto che il fattore gammaγ” esplode se poniamo la velocità relativa “v” uguale a “c”. Non si può dividere per zero!).
    Come tutti i limiti di velocità, deve essere uguale per ogni “automobilista”: la velocità della luce è una costante che ha lo stesso valore numerico per tutti gli osservatori che si muovono di moto relativo a velocità costante. Questo è anche un fatto rigorosamente verificato sperimentalmente.

Senza soffermarci troppo sulla matematica di queste trasformazioni, osserviamo che la prima differenza importante con quelle di Galileo è il fatto che la coordinata temporale dell’osservatore in moto relativo è ottenuta mischiando coordinate temporali e spaziali dell’osservatore iniziale!

A differenza di Galileo, non è semplicemente “T=t”, ma compare prepotentemente anche lo spazio con la coordinata “x”!


Questo fatto è assolutamente inedito, e dà i natali a una interpretazione completamente rivoluzionaria del concetto di spaziotempo!

Il tempo non è più assoluto e uguale per tutti, ma è una cosa personale per ogni osservatore dell’universo, così come sono personali le proprie coordinate spaziali. L’importante poi è riuscire a tradurre da una lingua all’altra per mettersi tutti d’accordo, ma a questo ci pensano proprio le trasformazioni di Lorentz.

Il problema dell’elettromagnetismo ci ha aiutato a capire che sono in realtà le trasformazioni di Lorentz quelle corrette da introdurre quando si parla di principio di relatività. Le trasformazioni di Lorentz si riducono a quelle di Galileo nel limite in cui la velocità relativa “v” è molto inferiore alla velocità della luce “c” (cosa che ci riguarda in particolar modo, dato che nulla nel nostro mondo viaggia a velocità prossime a 300.000 km/s, eccezion fatta per la luce e alcune particelle subatomiche).

Lo spaziotempo di Minkowski

Ricordi la questione del teorema di Pitagora discussa poco fa? Le trasformazioni di Galileo vanno molto d’accordo con la geometria euclidea dello spazio. Anche le trasformazioni di Lorentz ci vanno d’accordo, ma concentrarsi solo sulla parte spaziale è riduttivo. Si trovò che esiste una nuova quantità spaziotemporale che è lasciata invariata dalle trasformazioni di Lorentz! Tenendoci sempre in dimensioni 2+1, questa quantità è la seguente:

L’intervallo spaziotemporale lasciato invariato

Cioè se prendiamo due eventi separati da una distanza spaziale e da una distanza temporale, la quantità costruita in questo modo assume lo stesso valore per tutti gli osservatori che si muovono con velocità costante:

Questo fatto ci fa capire quanto fosse poco casuale che tempo e spazio si mischiassero nelle trasformazioni di Lorentz. Tempo e spazio si mischiano per un motivo ben preciso: fanno parte di un costrutto più grande dello spazio, lo spaziotempo! In questo spaziotempo la velocità della luce gioca un ruolo così importante da comparire addirittura nella “versione estesa del teorema di Pitagora spaziotemporale”.

L’insegnamento che ne possiamo trarre è il seguente: se lo moltiplichiamo per la velocità della luce, il tempo diventa a tutti gli effetti una nuova dimensione spaziale.

Viviamo quindi in una realtà a quattro dimensioni: tre dimensioni spaziali e una dimensione temporale. A differenza di come la pensavano qualche secolo fa, la dimensione temporale è in grado di mischiarsi con le informazioni spaziali tramite le trasformazioni di Lorentz.

Il teorema di Pitagora spaziotemporale è però particolarmente speciale, perché non possiamo ignorare che il termine temporale presenta un segno negativo!

Tempo e spazio non sono trattati allo stesso modo, c’è un segno meno di differenza!

Cambia proprio il concetto di geometria: la geometria dello spaziotempo non è più euclidea! Hai mai visto un teorema di Pitagora con una differenza al posto di una somma?
È la somma dei quadrati a rendere euclidea la geometria spaziale del teorema di Pitagora.

D’altra parte la geometria dello spaziotempo si dice essere “pseudo-euclidea“. Questo nome potrà essere figo da pronunciare, ma non dice nulla di troppo rilevante per i nostri scopi.

Una cosa ben più rilevante da esplorare invece è il diagramma spaziotempo (detto “di Minkoswki“).
Ricordi i diagrammi che abbiamo studiato nel caso di spazio-tempo classici? Quello spazio-tempo era particolarmente noioso in quanto tempo e spazio non erano in alcun modo connessi reciprocamente da trasformazioni di coordinate rilevanti per la Fisica. Ora si son mischiate un po’ le carte, quindi vediamo cosa bolle in pentola.

Consideriamo di nuovo due osservatori in moto relativo l’uno rispetto all’altro con velocità costante, ed esattamente come prima rappresentiamo i loro sistemi di riferimento in un unico grafico spaziotempo.

Per fare ciò dobbiamo trovare le equazioni degli assi T e X del secondo osservatore in funzione delle coordinate del primo! Con un procedimento identico a prima troviamo le seguenti rette:

Il risultato del mixing tra coordinate spaziali e temporali cambia completamente le regole del gioco: nel caso di Galileo avevamo che solo l’asse temporale dell’osservatore appariva ruotato nello spazio-tempo dell’osservatore fermo. Ora abbiamo una rotazione di entrambi gli assi!

Un diagramma di Minkowski.
Nota che gli assi temporali sono moltiplicati per la velocità della luce.
Come suggeritoci dal “teorema di Pitagora dello spaziotempo”, la dimensione temporale deve comparire moltiplicata per la velocità della luce.

Questo fatto ha delle implicazioni senza precedenti, perché se ora andiamo a chiederci, come fatto prima, quali siano le rette di simultaneità per l’osservatore in movimento, dovremo tracciare nuovamente la parallela all’asse X:

Eventi che giacciono sulle rette di simultaneità, come si vede, sono separati da un intervallo temporale ∆t non nullo per l’altro osservatore.

Il fatto che le rette di simultaneità non siano parallele all’asse “x” del primo osservatore implica che:

Eventi simultanei per un osservatore in moto possono non essere simultanei per un altro osservatore

La simultaneità di due eventi è relativa a chi osserva gli eventi! Se io osservo due eventi A e B accadere allo stesso istante di tempo sul mio orologio, un osservatore che si muove rispetto a me potrebbe veder succedere A prima o dopo B.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo fatto dipende dalla velocità della luce: la velocità della luce è una costante per tutti gli osservatori, e siccome le informazioni sugli eventi possono arrivarci al massimo alla velocità della luce (noi “vediamo” il mondo intorno a noi proprio grazie alla luce) l’unico modo in cui il moto relativo dell’osservatore riesce a non influenzare questi due fatti è proprio mettendo mano alla coordinata temporale.
Concettualmente, è come se la coordinata temporale si fosse “sacrificata” per preservare la velocità della luce.

Ricordi quegli astronauti che sincronizzavano i loro telefoni, convinti di poter definire un unico istante comune di “simultaneità” anche se distanti? Nel contesto dello spaziotempo di Minkowski ha poco senso: non esiste una retta di simultaneità degli eventi comune a tutti gli osservatori!

Se pensi che ciò sia la cosa più strabiliante di tutta questa faccenda, ti consiglio di continuare a leggere la prossima!

Dilatazione temporale

Consideriamo un evento che avviene in una singola posizione spaziale per l’osservatore in moto, e che la durata da lui registrata sia ∆T. Indicando con dei pallini il momento iniziale e il momento finale dell’evento, questi giace sulla retta degli eventi che avvengono in quella posizione, che ricordiamo, si ottiene tracciando la parallela all’asse T.

La durata ∆T dell’evento è indicata dalla striscia rossa sull’asse T. Come si vede graficamente, la durata dell’evento è indicata in rosso anche dal punto di vista dell’osservatore fermo. Secondo le trasformazioni di Galileo avremmo dovuto avere “∆T=∆t“: cioè la durata temporale dell’evento deve essere una cosa su cui è possibile concordare indipendentemente dal proprio stato di moto.

La trasformazione di Lorentz per la coordinata temporale ha tutta l’aria di promettere un po’ meno. Anzi, promette discordia tra gli osservatori a seconda del loro stato di moto.

Quanto è durato lo stesso evento secondo l’osservatore fermo? Per scoprirlo facciamo ricorso al teorema di Pitagora pseudo-euclideo, ovvero l’unica quantità su cui i due osservatori possono concordare di certo.
Consideriamo un’unica dimensione spaziale e ipotizziamo che il moto relativo si svolga sull’asse “x” del primo osservatore.
Per l’osservatore in moto l’evento avviene in un unico punto dello spazio, cioè la sua posizione non cambia, quindi si ha ∆X=0.:

Qui stiamo indicando con ∆t e ∆x la durata e la variazione in posizione dell’evento dal punto di vista dell’osservatore fermo, il quale evidentemente vedrà l’evento muoversi alla stessa velocità dell’osservatore in moto. Non ci resta che eguagliare le due espressioni per l’invarianza di Lorentz citata prima:

Abbiamo l’obbiettivo di isolare ∆t per capire quanto dura l’evento dal punto di vista dell’osservatore fermo. A tale scopo raccogliamo

Siccome l’evento in questione si sposta alla stessa velocità dell’osservatore in moto, chiamiamo proprio “v” il rapporto tra spazio percorso e l’intervallo di durata, dove “v” è proprio la velocità relativa dell’osservatore in moto. A questo punto ricaviamo ∆t dividendo tutto per quella quantità e calcolando la radice quadrata di entrambi i membri

E questa è una delle formule più famose nella storia della Fisica: la dilatazione temporale. La durata di un evento dal punto di vista di un osservatore che vede l’evento muoversi rispetto a lui è sempre maggiore della durata calcolata nel sistema di riferimento solidale a dove l’evento è avvenuto. Perché maggiore? Proprio perché ∆T, qualunque esso sia, è diviso per una quantità che è sempre minore di 1, quindi questa divisione produce un numero più grande di ∆T.

È questa forse la conseguenza più difficile da accettare sullo spaziotempo della nostra realtà, nonostante sia stata verificata sperimentalmente innumerevoli volte nell’ultimo secolo. La durata temporale degli eventi dipende dallo stato di moto dell’osservatore. Lo spaziotempo di Minkowski non è solo un’utile rappresentazione di quello che succede quando usiamo le trasformazioni di Lorentz, ma anche un’ottima intuizione su quale sia la vera natura della nostra realtà.

Ok forse questo è stato più un capitolo di un libro piuttosto che un articolo del blog, ma volevo essere davvero sicuro che ogni pezzo del puzzle del ragionamento cascasse al posto giusto. In futuro parlerò ancora di spaziotempo, quindi userò questo articolo come utile referenza per chi ne avesse bisogno.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Cosa ho imparato da Einstein sul Problem Solving: come si studiano gli argomenti più rognosi?

Non che io sia così intelligente, semplicemente studio i problemi più a lungo

Albert Einstein

Questa citazione è una tra le più famose di Einstein e secondo me evidenzia un punto cruciale del suo modo di lavorare, che lo ha portato a rivoluzionare importanti concetti che altri fisici suoi contemporanei mettevano sotto al tappeto.

Come molti problemi che dobbiamo affrontare nel nostro percorso di studi, quelli che Einstein decise di studiare erano scomodi, fuori dalla zona comfort, non sempre ben posti.

Albert Einstein (1879-1955).

Hai presente quella spiacevole sensazione di inadeguatezza quando ci viene chiesto di risolvere un problema che apparentemente è al di sopra delle nostre capacità? Quella sensazione di avere un muro mentale che ci impedisce anche solo di iniziare a impostare il problema? Ma soprattutto, quel senso di fallimento nel soddisfare le aspettative che abbiamo di noi stessi, e di sentirsi fuori posto: “se non so risolvere questo problema, cosa ci sto a fare qui?”.

Tutte queste emozioni negative sono il pane quotidiano dei ricercatori. Infatti, per definizione, il ricercatore è colui che prova a risolvere problemi mai risolti da nessuno, e nel fare ciò finisce per sbattere continuamente contro quel muro mentale, per cercare di avanzare anche solo di uno 0.1%.

Noto che viene poco enfatizzato il fatto che i ricercatori sono comunque prima di tutto studenti. Questo è un fatto molto importante, perché non stai facendo ricerca se non ti metti a studiare cose che vanno al di là delle tue capacità. Per questo motivo il modus operandi del ricercatore dovrebbe essere preso come modello per gli studenti più giovani.

Gli anni febbrili di Einstein

Dal 1907 al 1915 Einstein lavorò incessantemente alla teoria della Relatività Generale, andando a sbattere la testa contro difficoltà teoriche e matematiche che all’epoca rappresentavano l’apice della Fisica Teorica.

In questo processo Einstein dovette imparare quasi da zero il linguaggio matematico più adatto per formulare le sue idee (la geometria di Riemann e il formalismo di Minkowski per lo spaziotempo), e l’impresa si dimostrò così eccezionale che dovette collaborare continuamente con due amici matematici, Marcel Grossmann e Michele Besso.

Le difficoltà però non erano solo matematiche. Einstein cambiò più di qualche volta le principali strutture concettuali con cui desiderava conciliare la gravità di Newton con la sua relatività ristretta, e fino all’ultimo momento non fu mai esattamente convinto di quali fossero i reali fondamenti teorici.

Per chi mastica un po’ di inglese consiglio il magistrale lavoro dello storico Michel Janssen “No success like failure: Einstein’s quest for General Relativity, 1907-1920“, il quale ha saputo rintracciare tutto il percorso concettuale di quegli anni.

Nelle pagine di Janssen non c’è la moderna figura mitologica dell’Einstein “tutto d’un pezzo”, al quale bastò immaginarsi “una persona in caduta libera” per formulare la nuova teoria della gravitazione. Invece viene fuori l’Einstein ricercatore, pieno di dubbi e ripensamenti, ma che faceva di queste tre qualità principali le sue armi di battaglia:

  • Lungimiranza. Einstein era di sicuro un visionario perché era capace di sintetizzare tutte le difficoltà teoriche in pochissimi punti cardine: se doveva esistere una teoria della gravità compatibile con la relatività, allora doveva rispettare un principio di covarianza delle leggi della fisica sotto qualsiasi trasformazione di coordinate. La visione di Einstein era ben delineata: credeva ciecamente nel principio di Galileo e sapeva che in un modo o nell’altro la teoria corretta doveva racchiuderlo in una nuova veste.
  • Umiltà intellettuale. La storia è cosparsa di ricercatori che hanno dedicato gran parte della loro carriera a teorie che si dimostravano fallaci e inconcludenti. Il loro principale nemico era il proprio ego, che non gli permetteva di ammettere di essere stati nel torto tutto il tempo.
    Al contrario, Einstein era capace anche di pubblicare un articolo al mese in cui nel successivo smontava la maggior parte delle cose dette nel precedente. Continuò a ripetere questo processo di “avanzamento-smentita” per almeno 3 anni, dal 1913 al 1915.
  • Perseveranza. Einstein era un lavoratore incallito, disposto a dedicare tutto il tempo che riteneva necessario per la risoluzione di un problema. Laddove i suoi colleghi mollavano, lui continuava. Aveva capito che la mente è in grado di fare avanzamenti importanti solo quando le si dà tempo sufficiente.
La famosa foto della scrivania di Einstein nel suo ufficio a Princeton.

Gli ultimi anni di gestazione della Relatività Generale furono intensissimi, specialmente l’ultimo anno in cui Einstein si ritrovò a rivaleggiare con nientemeno che David Hilbert (il più grande matematico del suo tempo), il quale aveva fiutato la possibilità di trovare le equazioni corrette prima di Einstein. Proprio a questo punto (inverno del 1915) il lavoro di Einstein divenne febbrile: si lasciò assorbire completamente dal proprio obbiettivo, dimenticandosi persino di scrivere agli amici. Oggi il suo stato mentale sarebbe probabilmente classificato in psicologia come “flusso”.

Spesso sono così assorbito dal lavoro che mi dimentico di pranzare.

Albert Einstein in una lettera a suo figlio Hans, 1915.

Lo stato mentale di “flusso” è comune a tantissimi artisti, ed è spesso descritto come uno degli stati di coscienza più sereni dell’esistenza, in quanto il cervello ha piena libertà espressiva e lavora all’unisono con emozioni e corpo.

In ogni caso, ciò che condusse Einstein a risolvere il problema più difficile della sua carriera fu un mix di qualità da cui tutti possiamo trarre ispirazione per migliorare il nostro problem solving in generale.

In fondo, i principali nemici di Einstein erano quelli che accomunano tutti i noi: dubbio, insicurezza, ripensamento, il non sentirsi all’altezza. Queste sanguisughe emotive tolgono energia preziosa che invece occorrerebbe investire nel cercare di risolvere il problema in sé.

Come vanno approcciati gli argomenti più rognosi

La mente è capace di produrre i più grandi successi, ma anche di condizionare i più grandi fallimenti. Dipende tutto da come la si usa, e forse la nostra società dedica troppo poco tempo all’educazione sul suo corretto utilizzo.
Come sosteneva David J. Schwartz, professore alla Georgia State University, davanti a un problema molto rognoso le persone solitamente scelgono di investire le energie mentali in uno tra due modi:

  • Distruttivo. La maggior parte delle energie mentali vengono spese per ricercare tutte le buone ragioni per cui non siamo in grado di risolvere il problema che ci è stato posto di fronte.
  • Creativo. La maggior parte delle energie mentali vengono spese cercando di capire come possiamo fare anche solamente un piccolo avanzamento verso la soluzione.

Questo è ciò che ho imparato anche nella mia esperienza universitaria. È capitato spesso agli esami che tra due persone ugualmente preparate solo la più intraprendente delle due riuscisse a strappare un voto più alto, tentando di rispondere alla “domanda bonus” dell’esame. Questo perché, a differenza del collega, riusciva a investire le proprie energie mentali concentrandosi solo sul problema, senza ascoltare le sanguisughe emotive. Mentre uno dei due cercava la soluzione, l’altro cercava delle scuse per autoconvincersi di non essere in grado.

Una pagina degli appunti di Einstein sulla sua teoria della gravitazione.

Io stesso mi sono accorto di aver fatto questo errore specialmente il primo anno di università.
Nel momento in cui mi sono accorto di questo cattivo approccio mentale ho cercato di non ripeterlo più, e i risultati sono arrivati subito.

In generale nel momento in cui dobbiamo studiare qualsiasi argomento particolarmente rognoso, mal posto o semplicemente noioso, l’approccio corretto è quello creativo: bisogna cercare di trovare la volontà di concentrarsi solo sull’argomento, aprendo una bolla intellettuale in cui eliminiamo tutte le interferenze della nostra vita. Occorre mettere via smartphone e social media ed entrare dentro la materia.

Ho notato che il modo più rapido che ho di farmi piacere qualcosa è leggere ciò che ha entusiasmato altre persone di quell’argomento. Spesso non ci piace qualcosa solo perché ne sappiamo troppo poco, o perché chi ce l’ha presentata non è riuscito a trasmetterci il motivo per cui dovremmo studiarla. Internet è un posto fantastico proprio per questo motivo: con pochi click puoi avere accesse alla vita e alle opinioni di migliaia di persone che hanno studiato la nostra stessa cosa.

Sii come Einstein, immergiti dentro al tuo lavoro. Solo dopo esserti immerso saprai se quell’argomento ti piace o meno. Se stai risolvendo un problema: cerca soluzioni, non scuse. Se proprio non trovi nessun indizio per riuscire a risolverlo: informati su come le persone hanno risolto problemi simili, e magari torna sul libro per approfondire il capitolo riguardante quel problema. L’approccio attivo batte sempre l’approccio passivo.

Un’altra cosa che ha funzionato nel mio caso quando mi sono confrontato con argomenti piuttosto noiosi o problemi apparentemente insormontabili è quella di “renderli memorabili”. Mi convincevo che quello che stavo facendo era davvero importante, e davo un tono solenne alla mia impostazione del problema, fingendomi un ricercatore. Spesso sono arrivato anche a scrivere degli articoli in PDF in cui proponevo la mia soluzione: l’atto di scrivere quei PDF mi motivava a concentrarmi solennemente sul problema. Questo piccolo accorgimento riusciva a fregare il cervello, spazzare via quell’apatia che crea il mindset distruttivo per lasciare spazio alla creatività.
Anche quando stai risolvendo esercizi apparentemente banali o che i tuoi colleghi ritengono semplici (triviali), continua comunque a darti quell’aria solenne per motivarti ad andare avanti. Prima o poi gli altri si lasceranno ingoiare dall’apatia e presto smetteranno di confrontarsi con i problemi più complessi.

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Infine, un’ultima nota sul concetto di “esaurimento”, o come va di moda dire oggi “burnout“.

Risolvere problemi o studiare materie molto complesse porta via tanta energia. Nonostante ci siano comunque tanti modi di ottimizzare l’energia giornaliera, ad esempio eliminando le distrazioni, pianificando le cose da fare, ed eliminando la mentalità distruttiva (cioè non sprecare energia mentale per trovare scuse o motivi per cui fallirai in ciò che stai per fare), in ogni caso è facile arrivare a un punto in cui si è semplicemente esaurita tutta l’energia.

Cosa possiamo fare quando ci sentiamo completamente esausti riguardo lo studio, nonostante ci siamo riposati e ricaricati in altri modi? Mi è rimasto impresso il suggerimento del monaco benedettino David Steindl-Rast, secondo il quale:
il rimedio all’esaurimento non è smettere di fare ciò che stiamo facendo, ma iniziare a farlo mettendoci tutto ciò che abbiamo, anima e corpo, il 100% della nostra dedizione e concentrazione.

Secondo Steindl-Rast, l’energia che cercavamo era già dentro di noi, soppressa dal fatto che non stavamo lavorando al 100% della nostra concentrazione, ma magari al 60-70%. Quante volte ci siamo dedicati a un argomento, o a un problema, avendo però la testa rivolta verso altri argomenti o altri problemi? O magari avendo la testa occupata dalle sanguisughe emotive? Questo multitasking mentale comporta un consumo energetico molto più elevato del “dedicarsi al 100%”.

Sii come Einstein, dedicati a un argomento o un problema alla volta, organizzandoti il tempo. Pensa in grande e solennemente, non togliere importanza al lavoro che fai. Solo questo è in grado di scacciare l’apatia e le sanguisughe emotive che ti trattengono dall’imparare cose nuove o dal risolvere i problemi più complessi.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Come ho imparato ad amare i numeri immaginari

Ho molta difficoltà nel visualizzare cosa sarebbe la Fisica teorica, o la Scienza in generale, senza i numeri immaginari. Non fraintendermi, il mondo esisterebbe lo stesso e la Terra continuerebbe a girare attorno al Sole. Dico solo che senza l’ausilio dei numeri immaginari faremmo molta più fatica nella costruzione di tantissime teorie della Fisica.
Ma il vantaggio non è solo teorico, questi speciali numeri sono così utili che anche gli ingegneri non saprebbero proprio farne a meno, dalla fluidodinamica fino alla teoria dei segnali elettrici.

Cosa c’è di immaginario nei numeri immaginari?

Alla fine ha poco senso definire un numero “immaginario” o reale, in quanto la matematica è di fatto un’invenzione umana e possiamo decidere a piacere cosa sia “reale” o meno.

Invece mi piace pensare che l’aggettivo “immaginario” si riferisca piuttosto a una qualità particolare di chi li ha pensati per la prima volta. Chi ha scoperto questi numeri era una persona ricca di immaginazione, disposta a fare quel passo in più e a sfidare lo status quo. Una persona che ha saputo sfruttare il potere del pensare in grande, del “e se fosse..?“. Alla fine questa è la storia di un “bighellonare produttivo”.

Il bighellonare produttivo

I matematici del XVI secolo erano maggiormente indaffarati con la fondazione dell’algebra e della geometria analitica. Nel frattempo si divertivano a risolvere alcuni “cruciverba“ come: “trova le radici dell’equazione polinomiale x2+3x-4=0 usando gli assiomi dell’algebra”. Era importante specificare “usando gli assiomi dell’algebra” perché, come ogni gioco, anche la matematica ha le sue regole. Ad esempio sarebbe facile, in una partita di calcio, prendere la palla con le mani e lanciarla verso la porta per fare gol, ma a quel punto staremmo parlando proprio di un altro sport. La matematica è tale proprio per via delle sue regole.

Le regole del gioco della matematica di allora prevedevano che fosse proibito affermare che il quadrato di un numero potesse essere un numero negativo: “meno per meno fa più, e più per più fa più“. Se così non fosse, romperemmo ogni logica del gioco. Queste regole impedivano che alcune equazioni polinomiali avessero una soluzione. Ad esempio x2-2x+2=0 non ammette soluzioni: non esiste un numero “x” che inserito in quella equazione dia zero come risultato. Graficamente stiamo parlando di una parabola che non tocca mai l’asse y=0

Un modo semplice di vedere perché l’equazione non ha soluzioni è con un cambio di variabile:

Cioè, definendo t=x-1, risolvere x2-2x+2=0 equivale a risolvere:

È quindi chiaro perché quella parabola non tocca mai lo zero! Se lo facesse staremmo rompendo le regole del gioco: il quadrato di un numero non può mai essere negativo.

Il matematico italiano Gerolamo Cardano sapeva bene che qualcosa come x2-2x+2=0 non ammette soluzioni, eppure decise di bighellonarci attorno. Cardano fece finta che in qualche modo fosse possibile che un numero al quadrato potesse essere negativo. Possiamo immaginare che forse lo fece per gioco, o magari per puro sfizio, in ogni caso si divertì a scrivere la radice quadrata di -1:

La radice quadrata di un numero negativo è l’unico numero che moltiplicato per se stesso ha come risultato un numero negativo.

Et voilà, ora anche x2+1=0 ammette due soluzioni come moltissime altre equazioni di secondo grado.
Questa soluzione non fu presa sul serio dai matematici dell’epoca. Rafael Bombelli, altro matematico italiano che osò bighellonare su queste questioni, definiva queste soluzioni “quantità silvestri“.


Questo piccolo passo segnò però l’inizio di una nuova comprensione della matematica: si possono modificare le regole del gioco e riuscire comunque a creare dei costrutti logici autoconsistenti.

Chiaramente la radice quadrata di un numero negativo non può essere rappresentata sul piano cartesiano, perché è un numero che rompe le regole dei numeri cartesiani di tutti i giorni. Ma per questo motivo non è un numero che ha meno diritti degli altri, è semplicemente un numero diverso che merita il proprio “asse cartesiano”, magari con un nome diverso. I matematici dei secoli successivi definirono quindi i numeri immaginari come un’estensione dei numeri reali, aventi la loro algebra e i loro assiomi.

Torniamo però un attimo alla soluzione di x2-2x+2=0. Avevamo visto che questa era equivalente a risolvere t2=-1 che ha due soluzioni immaginarie date dalla radice di -1. Avevamo definito t=x-1, quindi possiamo scrivere la soluzione con la variabile originale

Puoi verificare che inserendo queste soluzioni nell’equazione di partenza ottieni zero. Clever trick!

Quindi la soluzione non è un numero puramente immaginario: il numero “1″ è un numero “normalissimo”, reale, che rispetta gli assiomi dei numeri reali. Tuttavia è sommato (o sottratto) con un numero immaginario (la radice di -1). Che senso ha, e come può essere rappresentato questo numero? I matematici lo definirono numero complesso, cioè un ibrido tra numero reale e numero immaginario.

Un numero complesso venne definito come un oggetto costituito da due parti: una parte reale e una parte immaginaria. La parte reale e la parte immaginaria sono rappresentate comunque da numeri reali, quindi in un certo senso un numero complesso non è altro che una coppia di numeri reali che soddisfa alcune proprietà speciali. Vedremo tra poco il senso di questa affermazione.
Per comodità di notazione fu definito un simbolo speciale per l’unità immaginaria, “i“, in modo che ogni numero immaginario sia un suo multiplo:

L’unità immaginaria “i”.

Un numero complesso “z” può essere espresso con più notazioni equivalenti:

Un numero complesso è costituito da una parte reale e da una parte immaginaria.


La cosa curiosa è che la notazione con le parentesi (parte reale, parte immaginaria) ricorda quella utilizzata per rappresentare i vettori in due dimensioni (componente x, componente y). Questa cosa è del tutto intenzionale, come vedremo tra poco.

Dal XVIII secolo in poi i numeri complessi vennero considerati un’estensione dei numeri reali, nel senso che un numero reale non è altro che un numero complesso con parte immaginaria nulla.

Diagramma di Venn per i campi dell’algebra.

Con molta astuzia, furono identificate delle operazioni di somma e prodotto di numeri complessi che rendessero tutto autoconsistente.

La somma di due numeri complessi è un altro numero complesso con parte reale data dalla somma delle parti reali e con parte immaginaria data dalla somma delle parti immaginarie.
Il prodotto di due numeri complessi è un altro numero complesso, le sue parti reale e immaginaria non sono però semplicemente il prodotto delle parti reali e immaginarie. Questa particolarità è necessaria per avere un’algebra autoconsistente nel campo dei numeri complessi.

Cosa mi ha fatto amare i numeri immaginari

I matematici capirono presto che per i numeri complessi esisteva un’interpretazione geometrica piuttosto semplice, ed è per questo motivo che scelsero di rappresentarli con una notazione simile a quella usata per i vettori in due dimensioni.

La volta che mi affezionai ai numeri immaginari fu quando realizzai quanto fossero utili in un contesto geometrico. A un certo punto mi si sbloccò il seguente ragionamento.
Prendiamo un vettore a componenti reali, innocentissimo, bidimensionale: una freccia. Se moltiplichiamo il vettore per il numero “-1” ne invertiamo la direzione:

Siccome i vettori possono essere ruotati sul piano, possiamo interpretare l’inversione come una rotazione di un angolo piatto!

La rotazione di 180 gradi di un vettore restituisce il suo inverso.

Quindi il numero -1 è un numero molto speciale perché esegue la stessa mansione di una rotazione di 180 gradi.

Il punto è che potremmo anche arbitrariamente pensare che la rotazione di 180 gradi sia un processo a due step, una composizione di due rotazioni di 90 gradi:

Due rotazioni consecutive di 90 gradi generano una rotazione di 180 gradi.

Uno può quindi chiedersi: esiste un numero speciale in grado di ruotare un vettore di 90 gradi moltiplicando entrambe le sue componenti per esso?
Assumiamo che esista, a quel punto dobbiamo riconoscere che moltiplicare il vettore due volte consecutive per questo numero equivale a ruotare il vettore di 180 gradi, e quindi questo numero deve avere a che fare con “-1″, perché esegue la stessa azione

Applicare due volte la moltiplicazione per un numero speciale “a” equivale a ruotare il vettore di 180 gradi.

Quindi se il vettore è ruotato di 180 gradi deve valere

Quindi il quadrato di questo numero deve dare -1: deduciamo che “a=i”, cioè proprio l’unità immaginaria.

Questa è stata la connessione che mi ha fatto apprezzare i numeri complessi: possono essere utilizzati per ruotare degli oggetti! Per questo motivo i matematici inventarono un piano cartesiano dedicato ai numeri complessi, il piano di Gauss!

In questo piano abbiamo due assi: l’asse reale e l’asse immaginario. Un numero complesso è “molto simile” a un vettore, perché ha una componente reale a una componente immaginaria date dalle proiezioni su questi assi ortogonali:

Il piano di Gauss dei numeri complessi.

Il vantaggio algebrico di avere un numero che moltiplicato per se stesso dà “-1” è il potere di ruotare degli oggetti moltiplicandoli tra loro!

Se prendiamo come riferimento l’angolo tra il numero complesso e l’asse reale, la moltiplicazione di due numeri complessi ha l’effetto di produrre un nuovo numero complesso avente come nuovo angolo la somma degli angoli iniziali, come mostrato in figura:

La moltiplicazione di due numeri complessi ha restituito un numero complesso la cui angolazione è data dalla somma dei due angoli iniziali: abbiamo quindi eseguito una rotazione usando la moltiplicazione.

Infatti si ha, per le regole stabilite sopra:

E questa è secondo me la principale utilità dei numeri complessi: ci permettono di trasformare oggetti usando la notazione più compatta possibile.

Infatti se “ρ” è il modulo del numero complesso (definito proprio come il modulo dei vettori):

Il modulo di un numero complesso si ottiene facendo la radice della somma dei quadrati delle parti reale e immaginaria (esclusa la “i” ovviamente).

Allora possiamo scrivere le componenti reale e immaginaria usando la trigonometria proprio come si fa per i vettori in notazione polare. Se θ è l’angolo formato con l’asse reale si ha

La quantità tra parentesi (che ha modulo unitario per via della relazione trigonometrica fondamentale) può essere semplificata usando una relazione utilissima dimostrabile in analisi matematica, la quale lega il numero di Eulero con i numeri complessi:

La famosa relazione di Eulero. Può essere dimostrata sviluppando in serie di Taylor entrambi i membri dell’equazione.

Quindi un numero complesso può essere espresso con la elegantissima notazione

Un numero complesso in notazione polare.

La moltiplicazione di due numeri complessi ha quindi il seguente effetto:

Con questa notazione è anche più facile vedere che gli angoli si sommano, grazie alla proprietà degli esponenziali.

In sostanza, i numeri complessi sono davvero uno spasso (di sicuro sono meno monotoni dei numeri reali), ma prima di tutto sono i numeri più popolari della Scienza:

Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.
  • Moltissime trasformazioni nella fisica teorica sono generate da operatori complessi. Alcune tra le più importanti equazioni del Modello Standard sono scritte in notazione complessa.
  • In ingegneria, la teoria dei segnali è fondata sull’utilizzo dei numeri complessi.
  • In aerodinamica, l’analisi complessa è utilizzata per mappare il flusso dei fluidi attorno ad alcuni oggetti.
  • ….

Di sicuro potremmo fare tutte queste cose anche senza i numeri complessi, solo che faremmo molta più fatica! I numeri complessi sono una short-cut, ci semplificano la vita ogni giorno, e per questo dovremmo amarli.

Tuttavia a volte non si tratta solo di semplificare la vita. Di recente ho incrociato un articolo su Physics Today che parlava della necessità dei numeri complessi nella meccanica quantistica.
In sostanza, non solo non esiste un modo semplice per formulare la meccanica quantistica usando solo variabili reali, ma la versione della teoria senza numeri complessi non è in grado di replicare le previsioni sperimentali della teoria complessa. Questa conclusione mi ha lasciato un po’ sorpreso, dato che implicherebbe una supremazia quasi metafisica dei numeri complessi. Ho quindi intenzione di approfondirla in un prossimo articolo, dopo che mi sarò informato adeguatamente.

  • Esercizio: come ultima chicca ti sfido a scoprire una cosa che ritengo molto carina. Prendi la relazione di Eulero:

Questa è un’identità, quindi l’uguaglianza vale per qualsiasi valore di θ. Ti invito a inserirci θ=π/2 e usare quanto sai sul valore di seno e coseno per l’angolo retto. Dopodiché eleva entrambi i membri per “i”, cosa ottieni?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Demistificando il Principio di Heisenberg

Il principio di indeterminazione di Heisenberg è considerato l’essenza della meccanica quantistica. Per questo motivo è uno degli argomenti più chiacchierati a livello divulgativo. Persino l’enunciato è celebre:

È impossibile misurare con precisione arbitraria la quantità di moto e al contempo la posizione di una particella

Enunciato del principio di Heisenberg

Anche la versione matematica dell’enunciato è piuttosto celebre: se indichiamo con “∆x” e “∆p” le incertezze sulla posizione e sulla quantità di moto, vale la disuguaglianza

Se rendiamo piccolo “∆p“, cioè se riduciamo l’incertezza sulla quantità di moto, per far valere ancora la disuguaglianza dobbiamo aumentare “∆x“.
ℏ è la costante di Planck divisa per 2π.

Negli anni ho notato alcune imprecisioni concettuali nelle analisi di questo principio, per cui ho deciso di rifletterci un po’ e dare il mio contributo. Ho trovato che il modo migliore per demistificarlo è il seguente:

Il principio di indeterminazione può essere compreso matematicamente una volta accettati i postulati della meccanica quantistica, tramite l’analisi di Fourier.

Lo scopo di questo articolo è quello di aiutarti ad apprezzare come la matematica della meccanica quantistica ci faccia comprendere meglio il principio di indeterminazione.

Non preoccuparti, non è una matematica di alto livello, useremo al massimo le funzioni trigonometriche (seni e coseni), e magari qualche integrale. È davvero tutto ciò che serve per apprezzare il discorso.

Teoria ed esperimento

Quando si costruisce una teoria fisica si cercano delle strutture concettuali che siano in grado di produrre dei risultati misurabili e in grado di giustificare i dati sperimentali. La meccanica quantistica è l’unica teoria in grado di spiegare accuratamente i risultati sperimentali dei fenomeni atomici, e ogni struttura concettuale della teoria ci aiuta a comprendere anche i risultati stessi, grazie alla matematica.

Ogni teoria presuppone dei postulati fondamentali (essenzialmente delle proposizioni che vengono assunte vere, senza necessità di dimostrazione). Ciò che ci servirà oggi è il postulato di De Broglie della meccanica quantistica. Infatti, una volta accettato questo postulato, la matematica parlerà da sola e ci aiuterà a capire il principio di Heisenberg.

“Scusa, ma non è un ragionamento circolare? Se devo accettare acriticamente un postulato, allora è possibile dimostrare tutto e il contrario di tutto. Io mi aspettavo che mi illustrassi il motivo metafisico per il quale non posso misurare contemporaneamente impulso e posizione di una particella!"

Il punto è che la Scienza funziona proprio così, dobbiamo accettare dei postulati se vogliamo fare delle previsioni verificabili. Se le previsioni sono verificate, allora la teoria può essere utilizzata anche come guida matematica alla comprensione dei risultati stessi. Funziona così da sempre. Senza la matematica saremmo scientificamente analfabeti.

Lo schema gerarchico per teoria ed esperimenti.

Uno dei postulati fondamentali della meccanica quantistica è quello di De Broglie: “le particelle sono descritte da funzioni d’onda ψ(x,t) dipendenti da tempo e spazio“, il cui modulo al quadrato rappresenta la densità di probabilità di trovare la particella in un certo punto dello spazio.

La teoria delle onde

La parola fondamentale su cui devi concentrarti è “funzione d’onda“. L’utilizzo di questa parola ha delle conseguenze molto pesanti, perché le onde hanno un comportamento speciale.
Nei prossimi paragrafi ti aspetta una carrellata di nozioni matematiche, ma ti assicuro che sono tutte essenziali per apprezzare meglio il principio di Heisenberg. Dagli una chance, ripaga bene!

Le onde sono perturbazioni nello spazio e nel tempo che possono essere più o meno regolari nella loro forma. Le “onde semplici” sono caratterizzate da una certa ampiezza e una frequenza di oscillazione costanti nel tempo, e ci piace chiamarle onde sinusoidali. Non tutte le onde sono semplici! Le sinusoidi sono matematicamente semplici da descrivere (probabilmente hai già incontrato seni e coseni da qualche parte), ma il mondo reale ha ben poco a che fare con le onde semplici. Purtroppo, la maggior parte dei segnali oscillanti nel tempo sono molto complessi:

Un’onda sinusoidale è caratterizzata dal fatto che la sua ampiezza e la sua frequenza non cambiano nel tempo, restano inalterate, preservando la forma ondulatoria.

Quindi non abbiamo speranza di descrivere matematicamente delle funzioni d’onda molto complesse? Fortunatamente entra in gioco uno dei risultati che a me piace definire come una delle pietre miliari nella storia della Scienza:

Qualsiasi segnale nel tempo può essere costruito sovrapponendo delle onde sinusoidali

È un po’ come se le onde sinusoidali fossero gli atomi elementari della teoria dei segnali: così come i corpi complessi sono composti da più atomi, i segnali complessi sono composti da onde sinusoidali.

In una notazione abbastanza simbolica e approssimativa, l’idea è la seguente: per ottenere il segnale desiderato basta sommare tante onde sinusoidali, pesate ciascuna con un certo coefficiente detto “di Fourier” (il quale dipenderà dal particolare segnale):

Cosa significa “sovrapporre onde sinusoidali”?

Qui entra in gioco la cara vecchia trigonometria. Un “atomo di segnale”, cioè un’onda sinusoidale, ha la seguente struttura:

Un’oscillazione dipendente dal tempo, y(t), è caratterizzata da una certa ampiezza “A” e da una certa frequenza “f“.

La magia si manifesta quando sommiamo due onde sinusoidali di ampiezze e frequenze diverse. Consideriamo ad esempio la somma delle seguenti onde:

Due sinusoidi, la prima di frequenza f=1 Hz, e la seconda di frequenza f=3/2 Hz. La seconda ha anche un’ampiezza doppia della prima.

Il risultato è il seguente: l’onda risultante dalla somma non è più un’onda semplice!

La somma di due onde semplici non è più un’onda semplice.

La spiegazione è puramente geometrica, ed è riassunta nelle formule di prostaferesi che si imparano a scuola. Infatti in generale:

L’applicazione delle formule di composizione di seni e coseni ci fa capire cosa succede quando sommiamo delle sinusoidi.

Lo so, non è molto carina da vedere, infatti non preoccuparti di leggerla tutta, è solo una giustificazione del perché la somma di due sinusoidi non è sempre una sinusoide: quei prodotti di seni modificano l’ampiezza dell’onda risultante nel tempo!

Alla fine questo è un concetto che caratterizza la vita di tutti giorni: anche una nota di un violino è una sovrapposizione di armoniche (onde sinusoidali di diverse frequenze), delle quali sentiamo maggiormente la dominante.

L’analisi di Fourier

Quel segnale complicato che abbiamo ottenuto sopra potrebbe sembrare irrilevante per il nostro discorso: sapendo quali sono gli atomi di partenza, è piuttosto facile costruire il segnale più complicato.
Il divertimento inizia quando decidiamo di invertire il problema di prima:

Dato un segnale complicato, è possibile capire la sua composizione in onde sinusoidali?

Questa è la domanda a cui vuole rispondere l’analisi di Fourier.

L’analisi di Fourier ci dice che esiste un altro modo di osservare un segnale. Quello che abbiamo illustrato prima è l’analisi temporale: cioè osserviamo il profilo dell’onda in funzione del tempo.

Ma l’analisi nel tempo è solo uno dei due modi. Possiamo anche studiare il segnale risultante andando a cercare le frequenze principali che lo costituiscono: stiamo facendo una radiografia del segnale per capire di quali atomi elementari è composto!

La descrizione temporale e la descrizione in frequenza sono due modi diversi di osservare lo stesso segnale, e il passaggio da una descrizione all’altra è garantito da un’operazione chiamata trasformata di Fourier.
Come illustrato nella figura, la trasformata di Fourier prende in pasto una funzione nel tempo e restituisce una nuova funzione, stavolta nella frequenza:

L’espressione matematica è la seguente:

L’integrale contiene l’unità immaginaria “i” nell’esponenziale.

Se non hai mai visto un integrale non lasciarti intimorire: questi simboli sono solo un modo intimidatorio per esprimere che stiamo sommando infiniti prodotti tra sinusoidi e il segnale in input “h(t)”. Le sinusoidi sono nascoste nell’esponenziale tramite la relazione di Eulero

La relazione di Eulero che lega l’esponenziale complesso con le funzioni trigonometriche.

Se questa relazione ti crea disagio fai finta che non ci sia. L’ho tirata fuori solo per dimostrarti che sono coinvolti, come promesso, dei seni e dei coseni. Queste sinusoidi vanno a moltiplicare il segnale in input “h(t)” in ogni istante di tempo, e la somma infinita produce una distribuzione del segnale nella frequenza “f“.
Ovviamente se partiamo dalla distribuzione in frequenza, esiste anche un’anti-trasformata di Fourier che ci riporta alla funzione nel tempo. Il cerchio si chiude.

Un esempio

Per dimostrarti che la trasformata di Fourier fa quanto promesso, consideriamo la somma delle sinusoidi che ti ho proposto prima.

Il segnale risultante, come abbiamo visto graficamente, non è una sinusoide semplice:

In blu e rosso le sinusoidi costituenti, in verde il segnale risultante.

Tiriamo fuori il problema inverso:
Supponiamo ora che qualcuno ci dia solo il segnale risultante come input e ci chieda di capire di quali “atomi sinusoidali” è composto. Questo è un lavoro per la trasformata di Fourier!

Il risultato è il seguente grafico nelle frequenze:

Cosa sono questi due picchi intimidatori? È il risultato di quell’integrale altrettanto intimidatorio. Osserva dove sono collocati i picchi: il primo picco è a “f=1” e il secondo picco a “f=3/2“. Quali erano le frequenze delle due sinusoidi iniziali? Esattamente “f1=1 Hz” e “f2=3/2 Hz”.

Questi due “picchi” ci stanno dicendo:
“Ehi, con la trasformata ho individuato due grosse frequenze costituenti, cioè il segnale che mi hai dato in pasto era costituito da due sinusoidi elementari di frequenze “f1=1 Hz” e “f2=3/2 Hz”.

Ovviamente noi sapevamo già che il segnale era composto da queste due sinusoidi, quindi il risultato non ci sorprende. Semmai ci rassicura su una cosa: la trasformata di Fourier funziona, ed è un ottimo modo per analizzare le componenti delle onde che usiamo nella Fisica.

Il cuore del principio di indeterminazione: gli spazi duali

Veniamo ora alla questione centrale. Voglio che noti una particolarità interessante della trasformata di Fourier. Supponiamo di dilatare la variabile temporale del segnale in input, cioè

Se b>1, è una dilatazione del tempo, se b<1 è una contrazione.

Questa è un’operazione matematica che ho scelto di fare: voglio modificare temporalmente il segnale in ingresso tramite una certa costante “b”. Che succede al segnale in frequenza? Per saperlo dobbiamo fare la trasformata di Fourier e fare un cambio di variabile:

Che è successo? Tra il passaggio (1) e il passaggio (2) ho cambiato variabile per ricondurmi alla forma standard della trasformata di Fourier. Questo passaggio ha generato il termine 1/b moltiplicativo, e mi ha portato a definire una nuova frequenza “f’=f/b” nel passaggio (3). Nel passaggio (3) abbiamo tra le mani la definizione di trasformata di Fourier del segnale con il tempo dilatato. Rispetto alla funzione in frequenza di prima, ora si ha:

Il risultato della dilatazione temporale sulla controparte in frequenza.

Quel “f/b” è davvero il succo del discorso, perché stiamo dividendo la variabile frequenza per un numero “b“. Se b>1, cioè se dilatiamo il tempo, otteniamo un restringimento delle frequenze. Viceversa, se b<1 cioè se contraiamo il tempo, otteniamo una dilatazione delle frequenze.
Il dominio temporale e il dominio delle frequenze si chiamano in gergo “spazi duali” , proprio perché hanno questo comportamento. Tempo e frequenza sono “variabili duali”.
A livello intuitivo potevamo aspettarcelo anche senza fare macello, basta ricordarsi che per definizione

cioè la frequenza è l’inverso del periodo di oscillazione, per cui se dilatiamo una delle due, l’altra si restringe.

Se restringiamo la durata del segnale, aumentiamo il suo contenuto in frequenza. Viceversa se estendiamo la durata del segnale, diminuiamo il suo contenuto in frequenza.

Possiamo spiegare questo comportamento intuitivamente:

  • Per creare un segnale corto nel tempo sono necessarie tantissime onde elementari per cancellare l’ampiezza di oscillazione al di fuori dell’intervallo di durata del segnale. Maggiore è il numero di onde elementari di varie frequenze che costituiscono il segnale, maggiore sarà il contenuto in frequenza del grafico della trasformata.

Per fare un esempio concreto, consideriamo il segnale in figura, che è quanto di meno sinusoidale si possa chiedere: un gradino di segnale tra i tempi t=-T e t=+T e zero altrove

La sua trasformata di Fourier nel dominio delle frequenze è illustrata sotto.
Ho assemblato diversi casi di durata del segnale da T=0.1 s a T=5 s per evidenziare l’effetto della dilatazione della durata temporale sul dominio delle frequenze. Per un segnale molto corto vengono coinvolte tantissime frequenze (quindi il grafico della trasformata è praticamente quasi piatto, vedi il caso T = 0.1 s).

La trasformata di Fourier di un segnale di durata 2T. Al crescere della durata del segnale, la controparte in frequenza si comprime.

L’analisi di Fourier sugli spazi duali apre le porte a una miriade di teoremi che portano a dimostrare le cosiddette “relazioni di incertezza“. In particolare ogni coppia di variabili duali è caratterizzata da una relazione di incertezza. Nel caso di tempo e frequenza abbiamo:

Questa è esattamente la forma matematica assunta dal principio di Heisenberg! Il prossimo passo sarà quindi tradurre quanto abbiamo appena detto nel regime di posizione “x” e quantità di moto “p“.

Posizione e impulso: altre variabili duali

Una volta accettato il postulato che le particelle sono descritte da una funzione d’onda spaziale, non è difficile accettare che la quantità di moto di una particella abbia qualcosa a che fare con la frequenza. Ce lo disse De Broglie! Ad esempio anche la luce (che è un’onda elettromagnetica) trasporta una quantità di moto, e per De Broglie questa quantità è data da:

“c” è la velocità della luce. La quantità di moto dell’onda è proporzionale alla frequenza dell’onda.

In generale a una particella non è assegnata una quantità di moto precisa, ma una distribuzione di quantità di moto, che vanno a comporre un certo “pacchetto d’onda”. Anche questa è una conseguenza del postulato fondamentale: la posizione della particella non è assegnata in ogni momento, ma è distribuita tramite la funzione d’onda della posizione. I picchi della funzione d’onda corrispondono ai punti dello spazio in cui è più probabile rivelare la particella:

Una generica funzione d’onda quantistica. I “picchi” sono punti in cui è più probabile trovare la particella. I punti in cui Ψ(x)=0 sono punti in cui la probabilità di trovare la particella è nulla.

Per rafforzare l’analogia con quanto discusso all’inizio ti basta realizzare che, come ogni onda, anche la funzione d’onda Ψ(x) è costituita da numerosi “atomi elementari” sinusoidali.

Siccome ora parliamo di particelle massive cambierà solo il linguaggio: ciò che prima era frequenza ora diventa quantità di moto, e ciò che prima era il tempo ora diventa lo spazio:

Il passaggio dalle onde sinusoidali nel tempo alle sinusoidi della meccanica quantistica.

È proprio ora che tutto inizia a fare “clic”. Basta tenere a mente questi due passaggi fondamentali:

  • 1) I picchi della funzione d’onda corrispondono ai punti dello spazio in cui è più probabile rivelare la particella.
  • 2) Per ottenere un picco della funzione d’onda è necessario sommare tante sinusoidi di “frequenze” diverse (cioè tante quantità di moto “p” diverse), come illustrato nell’animazione seguente:
Aggiungiamo tante sinusoidi di quantità di moto diverse per ottenere una funzione d’onda sempre più “piccata” in un certo punto dello spazio.

Questa animazione sta esattamente alla base del principio di indeterminazione: per ottenere la massima probabilità di trovare la particella in un punto (quindi rivelarla con precisione) è necessario che la sua quantità di moto diventi una sovrapposizione di numerosissime quantità di moto (che quindi si misurerà meno precisamente). È poco intuitivo? Le onde funzionano proprio così, non sono nate per soddisfare la nostra intuizione!

Analogamente a quanto discusso per i segnali nel tempo, la funzione d’onda della posizione può essere analizzata sia nel dominio dello spazio (dandoci informazioni sulla probabilità di trovare la particella nello spazio), sia nel dominio delle quantità di moto (dandoci informazioni su quale sia la probabilità di trovare la particella in un certo stato dinamico).

Il messaggio da portare a casa è questo:

La quantità di moto gioca lo stesso ruolo della frequenza, e la posizione gioca lo stesso ruolo del tempo: sono anche loro variabili duali.

La trasformata di Fourier della funzione d’onda Ψ(x) è una funzione dell’impulso ed è data da:

A parte l’integrale intimidatorio, la relazione che devi tenere a mente è la seguente:

Il principio di indeterminazione di Heisenberg è racchiuso nella definizione di trasformata di Fourier: se estendiamo la funzione d’onda nello spazio, stiamo restringendo la funzione d’onda nella quantità di moto: per descrivere una particella la cui funzione d’onda ha un’estensione infinita è sufficiente una sola quantità di moto, mentre per descrivere una particella la cui funzione d’onda ha un’estensione limitata, sono necessarie più sinusoidi diverse per cancellare i contributi nella regione in cui la funzione d’onda non esiste.
Se dilatiamo la variabile spaziale, l’effetto sulla trasformata nello spazio degli impulsi è:

Come ti accorgerai facendo avanti e indietro su questa pagina, il discorso è esattamente analogo al caso della frequenza-tempo. Anche qui i teoremi sull’analisi di Fourier determineranno quindi la famosa relazione:

Il principio di indeterminazione di Heisenberg
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Intuizione fisica

Il fatto che le variabili posizione e quantità di moto siano duali e rispettino un principio di indeterminazione è un limite invalicabile della natura. Non dipende dal fatto che la nostra strumentazione non è adeguatamente precisa.

Di certo è vero il fatto che se vogliamo seguire la traiettoria di una particella quantistica è necessario perturbare il suo moto (se voglio tracciare un elettrone devo ad esempio illuminarlo, ma nel fare ciò trasferisco quantità di moto sotto forma di radiazione luminosa, perturbando la misura), ma il motivo del principio di indeterminazione rimane insito nella natura degli oggetti quantistici, e il postulato sulla funzione d’onda di De Broglie ci aiuta a capirlo matematicamente.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Il bosone di Rubbia ha una massa leggermente diversa: cedimento del Modello Standard?

Dopo decenni di stagnazione, il Modello Standard mostra i primi segni di cedimento?

È di ieri (7 aprile) la notizia pubblicata su Science: è stata trovata una differenza tra predizione teorica e misura sperimentale per la massa del bosone W. Una differenza piccola (0.09%) ma superiore ai margini di errore (0.01%) e quindi assolutamente degna di nota.

Il bosone W è proprio il famoso bosone scoperto dal team di Carlo Rubbia nell’ormai lontano 1983 (scoperta che valse il premio Nobel al fisico italiano).

Dopo vari decenni dalla sua scoperta, il bosone W può dare indicazioni di Fisica oltre il Modello Standard, ed è facile immaginare l’entusiasmo nella comunità dei Fisici del Fermilab, dove è avvenuta la scoperta:

La misura è estremamente eccitante e davvero un risultato monumentale nel nostro campo.

Florencia Canelli, fisica sperimentale dell’Università di Zurigo

Ci sono però quelli che domandano un po’ di cautela:

Userei cautela nell’interpretare questo risultato come il segno di nuova Fisica oltre il Modello Standard. I fisici dovrebbero concentrarsi sul capire come mai questo valore differisce da altri risultati anche recenti.

Matthias Schott, fisico dell’Università di Gutenberg

Perché ce ne siamo accorti solo ora?

La risposta è particolarmente semplice: siamo diventati più bravi nell’analisi dei dati. Il team di ricerca è stato capace, grazie a nuove tecniche, di manipolare un campione statistico di 4 milioni di bosoni W prodotti all’interno del detector, tra il 2002 e il 2011. Questi bosoni sono decaduti producendo degli elettroni, dei quali è stata misurata l’energia osservando la loro traiettoria in un campo magnetico.
A differenza del passato, è stato possibile misurare molto meglio la traiettoria degli elettroni, migliorando quindi la precisione di quanta energia si sono portati via.

La misura dell’energia degli elettroni permette di ricondursi alla massa del bosone W (il cui decadimento ha concesso agli elettroni di avere questa energia in primo luogo).

Perché il bosone W è importante?

Ad oggi conosciamo quattro forze fondamentali della Natura, meglio note come interazioni fondamentali.
Il modo in cui studiamo queste interazioni su basa sull’analisi di alcuni processi che coinvolgono le particelle. Tali processi possono essere studiati a differenti scale di energia in cui vengono rappresentati con diverse schematizzazioni, le quali ci danno un’idea di quello che sta succedendo.

Da questi schemi teorici emerge che un’interazione tra particelle deve essere mediata da una particella speciale chiamata bosone.
Il modo più diretto per avere l’identikit di questa particella è conoscere la sua massa.

Prima di ricavare una stima di queste masse, facciamo il punto della situazione sulle interazioni fondamentali in gioco:

  • Gravità: interazione tra tutti i corpi con massa. In una teoria di gravità quantistica (ancora solo ipotizzata a stento) deve essere mediata da un bosone chiamato gravitone.
  • Elettromagnetismo: interazione tra tutti i corpi con carica elettrica. Mediata da un bosone chiamato fotone.
  • Forza forte: interazione che tiene assieme i nuclei degli atomi. Ad alte energie si manifesta come un’interazione mediata dai gluoni dei quark, a basse energie ha invece come mediatore il bosone pione.
  • Forza debole: interazione che permette i decadimenti di alcuni nuclei. Mediata da tre bosoni, chiamati W+,W- e Z.

La prima distinzione interessante tra queste quattro forze è il loro raggio di interazione. Sono infatti tutte forze che agiscono a distanza, e due tra queste, cioè gravità ed elettromagnetismo, hanno un raggio di interazione infinito. Ciò significa che la forza gravitazionale tra due masse agli antipodi dell’universo è sempre teoricamente diversa da zero. Nella realtà, ovviamente, tale valore è così piccolo da poter essere considerato irrilevante per lo stato di moto delle due masse. Lo stesso discorso si applica all’elettromagnetismo. Questo raggio di interazione si dice asintoticamente infinito nel senso che la forza può essere considerata “matematicamente” nulla solo all’infinito (cioè un punto irraggiungibile).

Le altre due forze, quella nucleare forte e quella debole, hanno invece a che fare con il mondo dell’infinitamente piccolo, cioè i nuclei degli atomi.
La scala di distanza nucleare è completamente fuori dagli schemi della quotidianità: parliamo di qualche milionesimo di miliardesimo di metro. Questo numero è così difficile da scrivere e pensare che è stata creata direttamente una nuova unità di misura: il fermi (in onore di Enrico Fermi).

Come informazione di orientamento, diremo che il raggio di un nucleo è del valore di qualche fermi.

Siccome l’interazione forte si occupa di tenere assieme i nuclei, composti da tanti protoni e neutroni (protoni che altrimenti si respingerebbero per via dell’interazione elettromagnetica), il suo raggio di interazione è proprio dell’ordine di qualche fermi. L’interazione debole è ancora più a corto raggio, perché agisce su una scala che è un millesimo di quella nucleare.

In che modo vengono interpretati questi differenti raggi di azione delle forze fondamentali dalla fisica teorica?

Livello intuitivo: il diagramma di bassa energia

Un’interazione in un certo intervallo di bassa energia può essere schematizzata da un diagramma tipo questo

Nel quale viene riportato un processo di repulsione elettromagnetica tra due elettroni. Matematicamente questa repulsione viene comunicata da un fotone virtuale “γ” che viene creato con una certa energia per un certo intervallo di tempo. L’informazione elettromagnetica si propaga tra due punti dello spaziotempo diversi e non può essere istantanea (per non contraddire la relatività ristretta), ma può propagarsi, al massimo, alla velocità della luce.

Con poche differenze, i diagrammi delle altre interazioni alle basse energie hanno una struttura molto simile (fatta eccezione per la gravità, per la quale non esiste ancora una teoria quantistica soddisfacente). Ciascun diagramma è caratterizzato dal proprio personalissimo bosone di interazione, che sia il fotone (elettromagnetismo), il pione (forze nucleari forti), o i W e Z (interazione debole).

Lo scambio di un oggetto tra due persone su due barche genera un allontanamento per via della conservazione della quantità di moto totale.

Esiste un esempio intuitivo, seppur da prendere con le pinze perché serve solo a darci un’intuizione fisica, del perché lo scambio di un mediatore produca una forza di interazione. L’esempio viene dalla fisica classica ed è illustrato in figura.

Il principio di Heisenberg in una forma speciale

Vogliamo studiare in maniera intuitiva quali siano le grandezze in gioco nella propagazione dei bosoni mediatori. Sappiamo dalla fisica teorica che possiamo interpretarli come particelle create e riassorbite durante l’interazione, e che esistono per un certo intervallo di tempo che consente la loro propagazione.

“Aspetta, mi stai dicendo che viene creata una particella dal niente? Ma questo non viola il principio di conservazione dell'energia?"

Una forma molto speciale del principio di indeterminazione di Heisenberg riguarda proprio l’energia e il tempo. Una particella può essere creata con una certa energia per un certo intervallo di tempo, senza violare il principio di conservazione, a patto però che valga

Il simbolo “~” indica un’uguaglianza approssimata. A destra, la costante di Planck divisa per 2π.

Per la creazione di un bosone mediatore di massa “m” richiediamo che questi esista per un tempo sufficiente per propagarsi di una distanza “R” (che è proprio il raggio di azione dell’interazione) a una velocità che è dello stesso ordine (ma MAI uguale) a quella della luce “c“. In sintesi:

Il simbolo “~” sta proprio a indicare che la relazione vale solo come ordine di grandezza: non stiamo dicendo in nessun modo che un corpo di massa “m” possa viaggiare alla velocità della luce, ma solo a una velocità comparabile e ad essa inferiore.

Un gioco poco rigoroso, che ci azzecca molto bene

Sfruttando una possibile interpretazione dei diagrammi sulle interazioni, immaginiamo che i bosoni mediatori vengano creati nei processi e che si propaghino per una distanza “R” che è proprio il raggio di azione.

Come facciamo a capire se tali bosoni esistano davvero o se siano solo costrutti teorici?
Dobbiamo rivelarli sperimentalmente, ma per rivelarli sperimentalmente dobbiamo prima sapere che tipo di massa possiamo aspettarci per queste particelle.

Un giochino poco rigoroso è quello di usare il principio di Heisenberg esposto sopra, perché a quel punto l’energia di massa dei bosoni si ottiene dividendo per “∆t

L’energia di massa dei bosoni in funzione del raggio di interazione

Applichiamo ora questa formula ai bosoni delle interazioni: fotone, gravitone, pione e bosoni W,Z.

  • Fotone: l’interazione elettromagnetica ha un raggio di azione infinito. Se diamo a “R” un valore molto grande nella formula troviamo che la massa tende a zero. I fotoni, come si sa comunemente, hanno massa nulla, e quindi sono capaci di viaggiare alla massima velocità dell’universo, cioè la velocità della luce. Non una grandissima notizia, dato che i fotoni sono proprio la luce stessa.
  • Gravitone: l’interazione gravitazionale è sorella (molto più debole a parità di distanza) della forza elettromagnetica, e ha anche lei un raggio di azione infinito. Troviamo quindi una massa nulla anche per il fantomatico bosone dell’interazione gravitazionale: se mai troveremo una teoria quantistica della gravità, il suo bosone si propagherà alla velocità della luce.

Per discutere del pione (mediatore della forza nucleare forte a bassa energia) e dei bosoni della forza debole, diamo prima una formula numerica utile

Con “fm” intendiamo “fermi”, cioè l’unità di misura delle lunghezze nucleari.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

L’energia delle particelle atomiche si misura infatti con una scala energetica chiamata MeV.
Come per tutte le unità di misura, fatti bastare solo qualche numero di orientamento: l’energia di massa dei neutroni e dei protoni è di circa 1000 MeV, mentre l’elettrone “pesa” solo 0.5 MeV. Le energie dei legami nucleari sono invece dell’ordine di qualche MeV.

Per quanto riguarda il bosone W dell’interazione debole, per la quale il raggio di azione è dell’ordine di 0.0025 fermi

Questo era il valore appunto trovato nel 1983! Per la precisione parliamo di 80,379 migliaia di MeV. Oggi questo valore è in discordanza dello 0.09% con quello misurato al Fermilab.

Se il risultato verrà confermato da ulteriori esperimenti, siamo davanti al primo reale superamento del Modello Standard.

È un arrivo una nuova stagione eccitante per i fisici teorici?


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

La Matematica di come diventiamo bravi in qualcosa

Spesso mi viene chiesto se la Fisica possa essere imparata da tutti, e quasi sempre ho la stessa difficoltà nel formulare una risposta.

Ovviamente mi viene da dire “Certo che sì, non c’è nulla di speciale, basta applicarsi con costanza“, ma dentro di me so che la parola cruciale è “costanza“: come per tutte le discipline la differenza sta nel reale interesse. Tutti possiamo imparare tutto, il punto è che tutti (com’è naturale) prima o poi scegliamo solo una tra le tante possibilità. La vita è una sola e quindi sarebbe poco pratico investire energie in più interessi.

La formulazione più corretta della mia risposta sarebbe quindi “Basta avere l’interesse, dopodiché bisogna riporre fiducia nella costanza della pratica”. Qui molti storcono il naso: “Devi esserci nato con la passione per la Fisica, non è per tutti, è roba poco accessibile”.

Quello della passione è in realtà un falso mito, e il discorso può essere applicato non solo alla Fisica, ma a tutte le discipline e tutti gli hobby che cerchiamo di imparare: sono infatti convinto che per diventare bravi in qualcosa bastino due ingredienti:

  • L’interesse.
  • La fiducia nella costanza.

L’autosabotaggio del cervello

Capita a tutti di avere, in qualcosa di specifico, abbastanza interesse da volerne sapere di più e imparare. Non sempre riusciamo a trovare la motivazione per dedicarci a questo interesse, semplicemente perché il cervello si lascia spaventare dalla mole necessaria di lavoro.
In sostanza ho imparato che in questi casi il cervello individua due macro-stati di esistenza:

  • 1) Ciò che so ora
  • 2) Ciò che saprò quando avrò “finito” di imparare

questa suddivisione innaturale elimina tutto quello che sta in mezzo, e cioè il processo stesso dell’imparare.
Il cervello si spaventa perché “imparare a fare quella cosa” diventa all’improvviso una montagna da scalare e non un semplice sentiero da percorrere in leggera pendenza. Diversamente, l’arte dell’apprendimento segue la stessa filosofia degli scalatori: guarda il sentiero, non la cima della montagna!

Inoltre la suddivisione elimina un prerequisito fondamentale dell’animo dello studente: non c’è mai fine all’apprendimento, e “imparare a fare qualcosa” non è un obbiettivo, ma un percorso, uno stato dell’esistenza.

Ho letto in giro che il primo passo per imparare qualcosa è togliere pressione da se stessi.
Bisogna cioè trasformare il nostro modo di formulare gli obbiettivi: passare da questa affermazione: “imparerò a suonare la chitarra” a quest’altra: “dedicherò qualche ora alla chitarra, perché mi piace”.
Questa trasformazione fa la differenza perché toglie tanta pressione al cervello.
Rimane però la questione annosa a cui siamo ben familiari: ma quanta fatica devo fare prima di vedere progressi in ciò che imparo?

Perché non faccio progressi?

Chiaro che non si possa ignorare il fatto che ci piace praticare solo ciò che ci dà un minimo di soddisfazione. Come si fa a “guardare solo il percorso” se non si vedono progressi immediati? È chiaro che si arrivi a credere di non essere portati se si osserva solo una minima percentuale di miglioramento.
Siamo campioni del mollare appena le cose non procedono come ci aspettiamo.

Il punto è che bisogna “imparare anche come impariamo”.

Ho preso ispirazione da un articolo di James Clear, in cui si evidenziava come le nostre aspettative sull’apprendimento siano completamente irrealistiche. Provo a riformulare il ragionamento nello stile che preferisco io. Iniziamo con un’affermazione su cui penso si possa concordare facilmente:

Ogni volta che facciamo pratica, miglioriamo dell’1% rispetto a prima.

Questa dell’1% è la nostra assunzione fondamentale su un modello dell’apprendimento molto semplificativo, non per forza realistico, ma che rende l’idea degli ordini di grandezza (è il modus operandi dei fisici).

Il punto è che è proprio quel 1% che ci scoraggia: ai nostri occhi è troppo poco!

Immaginiamo però di fare pratica “n“-volte su qualcosa che vogliamo imparare, e indichiamo con “Bi” la nostra bravura al tentativo “i“-esimo. All’inizio siamo completamente ignoranti perché abbiamo fatto zero tentativi, quindi la nostra bravura sarà indicata con “B0“. Dopo un tentativo, siamo migliorati solo dell’1% rispetto a prima. In formule ciò significa che la nostra bravura “B1” dopo il “tentativo 1″ sarà

Dopo 1 tentativo saremo l’1% più bravi di prima

Ora la nostra bravura è “B1“, per cui la prossima volta che faremo pratica miglioreremo ancora dell’1%, ma stavolta la nostra base di partenza è “B1” quindi al tentativo “2″ la nostra bravura “B2” sarà

Dopo 2 tentativi saremo l’1% più bravi di prima, ma ora non stiamo partendo da zero!

Detta così non sembra chissà cosa, ma ricordiamoci da dove siamo partiti: bisogna confrontarsi con la propria bravura di partenza “B0” inserendo l’espressione di “B1” nell’equazione precedente:

Al secondo tentativo siamo più bravi di un fattore (1.01)2=1.0201

Al secondo tentativo saremo un fattore (1.01)2=1.0201 più bravi del nostro stato iniziale, cioè un miglioramento del 2.01%.
D’altronde che ci aspettavamo? Se migliori dell’1% a ogni tentativo, è chiaro che dopo due tentativi sarai migliorato del 2%! Invece è proprio qui che la matematica degli esponenziali prende il sopravvento: nota che non siamo migliorati del 2%, ma del 2.01%, quel 0.1% in più fa tutta la differenza del mondo.

Magia esponenziale

Applicando “x“-volte lo stesso ragionamento, dopo “x“-tentativi saremo più bravi di un fattore:

Ad esempio al decimo tentativo non saremo migliorati del 10%, ma un po’ di più, perché (1.01)10 rappresenta invece un miglioramento del 10.46%. Sembra ancora molto poco, eppure le cifre decimali stanno crescendo abbastanza in fretta grazie al modello esponenziale.
Tuttavia il nostro cervello penserà di aver capito la matematica: “sì va bene, la nostra bravura crescerà, ma crescerà sempre molto poco, è intuitivo”. Il cervello ha un modo di ragionare lineare: “se sono migliorato di poco le prime volte, allora migliorerò di poco anche tutte le volte successive!”. In questo ragionamento si trascura però un punto fondamentale: ogni volta che facciamo un nuovo tentativo non stiamo più partendo da zero, ma stiamo accumulando esperienza dai tentativi precedenti. Il cervello non è bravo a capire questo dettaglio.
Per questo motivo ci immaginiamo che il grafico del progresso sia una retta y=mx:

Quello che ci immaginiamo quando stiamo imparando qualcosa di nuovo: il nostro cervello ragiona in maniera lineare.

Quindi il cervello si immagina che la differenza tra i nostri stati di bravura finale e iniziale stia in proporzionalità diretta con il numero di tentativi “x“, cioè “Bx-B0=0.01x”, (dove 0.01 è il miglioramento del 1%) che ha il seguente grafico:

Il grafico “mentale” che ci suggerisce di smettere di imparare: meglio lasciar stare, non si migliorerà mai.

Il punto cruciale è che questo grafico non è un modello sufficientemente realistico dell’apprendimento: ogni volta che impari un po’ di più, non stai partendo da capo! Un modello più realistico che tiene conto di ciò è invece quello esponenziale che abbiamo visto sopra, anche se è difficile accorgersi della differenza almeno all’inizio. Ciò è evidenziato nel seguente grafico in cui confronto i due modelli di crescita (esponenziale e lineare) fino a un numero 70 di tentativi:

I due andamenti (quello mentale e quello reale) sono quasi indistinguibili nei primi 70 tentativi. Il nostro cervello è bravo ad approssimare la realtà, ma qualcosa succede dopo il numero 70…

Anche se teniamo in conto di “non partire sempre da zero” e usiamo il modello di crescita esponenziale, i progressi che facciamo sono abbastanza trascurabili, almeno fino al tentativo 70, dopodiché entra in gioco la magia dell’esponenziale! Il grafico in rosso inizia a crescere leggermente di più del grafico in blu. Se aumentiamo ancora il numero di tentativi, arriviamo a questo risultato spettacolare:

Dopo tantissimi tentativi, i miglioramenti rispetto al nostro stato iniziale schizzano alle stelle. L’andamento è esattamente analogo a quello dell’interesse composto.

Riflettiamo un attimo davanti a questo grafico: noi tutti siamo soliti mollare la pratica ben prima del settantesimo tentativo, proprio perché osserviamo pochissimi progressi rispetto al nostro stato iniziale. Spesso ci sembra anzi di fare passi indietro, vuoi per via della scarsa memoria, vuoi perché semplicemente abbiamo capito male qualcosa che pensavamo di aver capito. Il punto è che i miglioramenti arrivano solo dopo centinaia e centinaia di tentativi: ad esempio dopo aver praticato qualcosa 300 volte, migliorando dell’1% ogni volta, arriviamo a diventare più bravi circa del 1878%!

Ne deduciamo che in molte cose della vita non è solo il talento innato che ci permette di fare progressi.
Ovviamente se uno ha un talento innato non migliorerà dell’1% ogni volta, ma magari del 3%. Poco importa, vorrà dire che per diventare eccellente farà 200-300 tentativi in meno di noi, il punto è che compararsi con gli altri ha poco valore nel momento in cui ci concentriamo nel percorso dello scalatore: il fine non è imparare “la cosa” in particolare, ma godersi il sentiero.

In verde: una persona che migliora del 3% ogni tentativo. In rosso: una persona che migliora del 1% ogni tentativo.
Se ti interessa la Fisica, iscriviti alla newsletter mensile! Ho pensato di scrivere una guida-concettuale di orientamento per aiutarti a capire da dove studiare.

Questo discorso mi ha portato a ragionare su un aspetto importante: nella vita possiamo potenzialmente scegliere qualunque lavoro vogliamo, indipendentemente dai nostri talenti (a meno che quel lavoro non ci faccia proprio ribrezzo). Il punto sta nel capire quanti tentativi siamo disposti a fare prima di raggiungere un livello che pensiamo possa essere redditizio.
La volontà, dopo un lungo cammino, ci porta dovunque. Il talento ci porta dovunque, in aereo.

Per quanto riguarda ciò di cui mi occupo io, mi verrebbe da dare proprio questa risposta:
“Ok, ti piace la Fisica e vorresti impararla come hobby, ma quanti tentativi saresti disposto a fare? Pensi che se non migliorerai subito entro qualche mese sarà il caso di mollare? Pensi che sia necessario passare notte e giorno sui libri per tutto il resto della tua vita per vedere un miglioramento del 30%?”

Siamo ossessionati dal successo immediato, quindi l’idea di studiare una materia complicata si trasforma subito in una questione di vita o di morte: “Non ho il talento, per capirci qualcosa dovrei dedicarci il 90% della mia giornata!”, la mia risposta invece è “Non è umanamente possibile pretendere di dedicare a un hobby una percentuale così grossa dell’esistenza quotidiana, ma è certamente possibile migliorare di una percentuale insignificante, tipo l’1%, ogni mese per tutto il resto della propria vita”.
L’elefante si mangia a pezzetti.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

Cosa possiamo imparare dal diario degli appunti di Feynman

Richard P. Feynman (1918-1988)

Fin da quando ho iniziato il mio percorso nella Fisica sono stato affascinato tanto dalla materia quanto dalle personalità che l’hanno costruita. Anzi, ripensandoci devo ammettere che traevo ispirazione dalle azioni quotidiane, dalle abitudini o dai modi di ragionare dei grandi fisici del passato. Non che volessi “emularli” , semplicemente li ammiravo così tanto da voler portare dei pezzi di loro dentro di me, per sentirli più vicini, per guidarmi nelle decisioni e nella motivazione.

Una parte che trovo estremamente interessante della storia di ogni fisico è il suo metodo di studio, e non di quando era già grande e formato, ma di quando era giusto agli inizi.

Un filo conduttore che ho notato è il seguente: per capire a fondo una materia, devi farla tua. Per fare ciò servono due step fondamentali:

  • Bisogna essere autodidatti per una buona percentuale del tempo. Il professore ha il ruolo di mostrare la via più proficua e fornire gli schemi per aiutarti a non perderti, il resto devi coltivarlo da solo usando dei libri adeguati allo scopo.
  • Dopo aver letto il libro devi estrapolare le tue visioni e i tuoi schemi per poi riorganizzarli come preferisci in forma scritta, su diari o quadernini personali.
Il diario di Feynman: “The Calculus”, in italiano “Il calcolo infinitesimale”.

Uno dei più grandi che seguiva questo metodo era Richard Feynman, celebre fisico teorico americano (Nobel 1965). Ne sono venuto a conoscenza perché sono incappato di recente in un articolo di Physics Today in cui è stato riesumato da un archivio il “diario degli appunti” di quando Feynman decise di imparare il calcolo infinitesimale da autodidatta quando era ancora al liceo.

Il giovane Feynman decise che il curriculum di matematica liceale (che arrivava a stento alla trigonometria) non era abbastanza per chi volesse iniziare ad interessarsi di Fisica. Per sua fortuna il matematico Edgar Thompson decise di scrivere una serie di libri con l’intento di rendere più accessibili alcune tecniche matematiche che all’epoca erano ancora trattate in maniera piuttosto “aulica”. Feynman trovò particolarmente utile il libro di Thompson “Il calcolo infinitesimale reso facile” del 1923, su cui decise di basare tutta la sua preparazione (introduttiva) alla matematica universitaria.

Trovo giusto rimarcare un attimo l’importanza dell’opera di personaggi come Thompson: se Feynman non avesse potuto sviluppare da solo certe attitudini grazie a libri così accessibili, avrebbe magari avuto più dubbi nel suo percorso, e chissà magari non avremmo mai sentito parlare dei “diagrammi di Feynman”.

Cosa possiamo imparare?

Ci sono poche immagini condivise in rete sul diario di Feynman. Tuttavia da quel poco che abbiamo possiamo comunque trarre alcuni spunti interessanti, oltre ad evidenziare alcuni tratti fondamentali che per Feynman diventeranno caratteristici del suo metodo di lavoro.

L’importanza della schematicitià

La cosa che mi ha sorpreso di più di questo diario è anzitutto la presenza di un indice.

L’indice del diario di Feynman. I capitoli sono organizzati in una maniera molto simile a quella del libro di Thompson.

Uno degli ingredienti fondamentali per imparare una materia nuova e complessa è infatti quello di riuscire a organizzare le informazioni in maniera che siano rapidamente accessibili. L’indice è probabilmente il modo migliore per visualizzare graficamente tutti gli aspetti di una materia, e non parlo dell’indice di un libro, ma dell’indice dei propri appunti. Nel mio caso, se i tuoi appunti non hanno un indice è più facile provare un senso di confusione generale quando scorri le pagine. Questo piccolo dettaglio può trasformare una “confusa raccolta” in un serio “arsenale di conoscenze”.
Feynman conservò tutta la vita questa propensione per la schematicità. James Gleick riporta un aneddoto di quando Feynman era ancora studente a Princeton:

[…] Aprì un quaderno degli appunti. Il titolo era “DIARIO DELLE COSE CHE NON SO”. […] Lavorava per settimane per disassemblare ogni branca della Fisica, semplificandone le parti e mettendo tutto assieme, cercando nel mentre inconsistenze e punti spigolosi. Provava a trovare il cuore essenziale di ogni argomento.

James Gleick

Qui non siamo solo davanti a un esercizio “di umiltà” che consiste nel cercare di perfezionare le proprie lacune, ma a una ricerca sistematica, ottimizzata.

Quando Feynman aveva finito il lavoro, si ritrovava con un diario degli appunti di cui andava particolarmente orgoglioso.

James Gleick

La schematicità di questo lavoro permetteva a Feynman di accedere rapidamente a tutti gli argomenti che lui riteneva più importanti, nella grafia e nello stile di presentazione che a lui era più congeniale: il suo.

Da questa lezione possiamo imparare l’importanza della rielaborazione e della schematicità: non solo bisogna far proprio un argomento, ma bisogna organizzare le proprie note in modo che siano accessibili con il minor sforzo possibile, solo così si può andare avanti con una mente abbastanza lucida, pronta ad imparare cose ancora più difficili.

Prendersi un po’ più sul serio

Il secondo aspetto su cui voglio soffermarmi riguarda queste due pagine di appunti:

L’argomento riguarda l’analisi matematica ordinaria: l’angolo iperbolico e le funzioni iperboliche, ma non è questa la cosa interessante, bensì è l’utilizzo di intermezzi stilistici del tipo: “come abbiamo visto”, “se dividiamo…” tutti rivolti al plurale, proprio come farebbe un professore che sta spiegando un argomento in un’aula. Feynman si prendeva sul serio. Questo prendersi sul serio lo portava a redigere gli appunti con uno stile che poteva essere letto da tutti, aumentandone la facilità di lettura e senza sacrificare la rigorosa riorganizzazione delle informazioni.
Ricordiamo: Feynman era appena un adolescente mentre scriveva questo diario, non stiamo parlando di uno studente universitario che si suppone abbia già consolidato certi metodi di studio. Qui sta la precoce genialità di Feynman.

Il diario degli appunti di Enrico Fermi.

Se si vogliono scrivere degli appunti che ci potrebbero essere utili in futuro, bisogna farlo prendendosi sul serio, scrivendo come se dovessimo esporre in un’aula con persone che su quell’argomento non sanno nulla.
Se non si fa ciò, si rischia di ritrovarsi con degli appunti illeggibili presi distrattamente qualche anno prima, con il risultato di aver sprecato ore di studio senza poter riacquisire in maniera rapida le conoscenze dimenticate.

Anche uno dei più grandi fisici del novecento, Enrico Fermi, usò la tecnica del diario degli appunti fin da quando era al liceo. Proprio come Feynman, Fermi era ossessivo nel redigere i propri appunti, dedicandovi una meticolosa attenzione, fin dalla stesura dell’indice:

L’indice di un quaderno di Fermi.

Come testimoniarono i suoi colleghi e amici, Fermi riutilizzava spesso i propri quadernini anche in età adulta, proprio perché gli consentivano l’accesso immediato a numerose branche del sapere, diventando quasi “un’estensione” del proprio cervello.
Di nuovo, la loro efficacia stava probabilmente nel fatto di essere stati scritti in uno stile a lui più congeniale, usando schemi con cui aveva maggiore confidenza. Qualcuno disse che Fermi aveva fatto sua tutta la Fisica, tanto da definirlo “l’ultimo uomo che sapeva tutto“.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg