Gran parte del lavoro della fisica degli ultimi 70 anni è stato quello di scovare nuove leggi della natura a partire da princìpi di simmetria. Un esempio di questo modo di lavorare può essere fornito andando a re-inventare la ruota, cioè analizzando l’emergere della teoria dell’elettromagnetismo (studiata e compresa da ormai un secolo e mezzo) da un principio di simmetria.

L’identikit di una simmetria

Se mi chiedessero di riassumere ciò che i fisici teorici intendono con la parola magica “simmetria” tramite l’esempio più semplice possibile, userei questo:

Stai osservando un sistema fisico e nel mentre che chiudi gli occhi eseguo una certa trasformazione del sistema in modo che quando li riapri per te non è cambiato nulla: allora quella trasformazione è una simmetria del sistema.

Esistono simmetrie più intuitive e meno astratte di altre, e quelle della meccanica quantistica sono decisamente poco intuitive. Per questo motivo la nostra strategia sarà quella di cercare delle analogie con le simmetrie geometriche, con cui abbiamo più confidenza.

Prima di poter apprezzare il discorso è però necessario passare un piccolo purgatorio di matematica dei numeri complessi, perché è li che si nasconde la simmetria che fa nascere l’elettromagnetismo.

La natura complessa della quantistica

La meccanica quantistica studia il moto delle particelle tramite le funzioni d’onda che “vivono” in uno speciale spazio matematico.
Si scoprì presto che, per riprodurre i risultati sperimentali a partire dalla teoria, tale spazio matematico doveva essere a valori complessi. Perché? Semplicemente è più facile fare i conti con i numeri complessi, ed alcune proprietà fisiche appaiono più evidenti.

In ogni punto dello spazio, il valore della funzione d’onda è rappresentato da un numero complesso: cioè una freccia sul piano di Gauss.

Se non hai molta dimestichezza col concetto di numero complesso, può aiutare un’analogia.
L’essenza matematica è molto simile a quella di un vettore sul piano cartesiano, dove con “vettore” devi sostituire “numero complesso” e con “piano cartesiano” devi sostituire “piano di Gauss”.

Le analogie non finiscono qui!

  • Proprio come un vettore, un numero complesso può allungarsi, accorciarsi, ribaltarsi, e in generale ruotare sul piano di Gauss.
  • La lunghezza di un vettore è un numero reale ed è chiamata in gergo ”modulo”.
  • La “lunghezza“ di un numero complesso è un numero reale ed è chiamata in gergo ”modulo”.

I numeri complessi godono però di alcune proprietà aggiuntive che tornano molto comode nei calcoli, per cui vanno in ogni caso ben distinti dai vettori.

Nota bene: ciò che calcoliamo dalle misure negli esperimenti sono i numeri reali, non i numeri complessi.
Per questo motivo la funzione d’onda di una particella è stata interpretata dai fisici come un numero complesso il cui modulo al quadrato restituisce un numero reale che è la densità di probabilità

La funzione d’onda di una particella è un numero complesso il cui modulo al quadrato (numero reale) viene interpretato come la probabilità di trovarla in un certo punto dello spazio.

dove la probabilità è in un certo senso ciò che si manifesta sperimentalmente, e quindi è la connessione tra mondo teorico e mondo degli esperimenti. Tutti i calcoli della meccanica quantistica hanno lo scopo di arrivare a una stima della probabilità.

La cosa interessante è che la definizione di probabilità come modulo quadro della funzione d’onda ci lascia una certa libertà: potremmo moltiplicare la funziona d’onda per un altro numero complesso “z” avente modulo uguale a uno, e la probabilità rimarrebbe la stessa

Se il numero complesso z ha modulo uguale a uno, la sua moltiplicazione con la funzione d’onda non ha alcun effetto sulla probabilità.

Dal punto di vista del mondo reale non è cambiato nulla (la probabilità è la stessa), ma dal punto di vista matematico la moltiplicazione per il numero “z” ha trasformato, in ogni punto dello spazio, il valore della funzione d’onda.

“Trasformato? Che vuol dire? Non è un semplice prodotto algebrico quello che abbiamo appena visto?"

Lo sarebbe se stessimo parlando di numeri reali. Tuttavia una proprietà molto interessante dei numeri complessi è che quando li moltiplichiamo tra loro otteniamo una rotazione sul piano di Gauss.
La trasformazione prende il nome gergale “trasformazione di fase”.

Il numero complesso A viene ruotato di un angolo pari all’inclinazione del numero complesso B. Il risultato è un numero complesso AB ruotato.

La matematica della meccanica quantistica ci dà la libertà di trasformare il valore complesso delle funzioni d’onda in ogni punto dello spazio, senza intaccare la probabilità di osservazione che esse descrivono.

L’atto di trasformare un oggetto con il risultato di lasciare intatta una certa quantità (come la probabilità che osserviamo) corrisponde proprio all’identikit di una simmetria.

“Non mi convincono troppo queste parole altisonanti. “Simmetria" mi fa pensare più a una cosa geometrica, mentre mi pare di capire che qui siano solo astrazioni matematiche..."

Però abbiamo appena visto che la trasformazione di fase è parecchio analoga a una rotazione!

“Vorrai mica dire che c'è un modo per rendere più intuitive tutte queste astrazioni?"

Le interpretazioni di una simmetria: la teoria dei gruppi

Considera un quadrato disteso su un piano e immagina di chiudere gli occhi mentre io ruoto il quadrato di 5 gradi. Quando riapri gli occhi sei in grado di capire se ho eseguito una rotazione o meno?

Il quadrato iniziale (linea tratteggiata), e il quadrato dopo la rotazione di 5 gradi (linea continua).
“Mi prendi per uno stolto? Il quadrato ora è diverso da prima, è un po' più storto! Come fai a pretendere che non mi accorga della trasformazione?"

Ciò è successo perché la trasformazione “rotazione di 5 gradi” non è una simmetria del quadrato. Il quadrato non è rimasto identico a se stesso.

Un quadrato rimane identico a se stesso se invece lo ruotiamo per alcuni angoli speciali:

  • Possiamo non fare nulla, cioè ruotarlo di 0 gradi, e il quadrato rimane identico a se stesso.
  • Possiamo ruotarlo di 90 gradi e il quadrato rimane identico a se stesso.
  • Possiamo ruotarlo di 180 gradi e il quadrato rimane identico a se stesso.
  • Possiamo ruotarlo di 270 gradi e il quadrato rimane identico a se stesso.

In sostanza se io avessi eseguito una qualsiasi delle suddette rotazioni mentre tenevi gli occhi chiusi, dopo non saresti in grado di dirmi se io abbia trasformato il quadrato o meno.
In gergo gli angoli {90, 180, 270, 0} formano un gruppo: il gruppo di simmetria del quadrato.

Una rotazione di 90 gradi lascia il quadrato identico a se stesso.

Il nome “gruppo” si riferisce al fatto che se eseguissi due trasformazioni consecutive usando gli elementi del gruppo {90, 180, 270, 0} otterrei comunque una trasformazione che lascia invariato il quadrato, e quindi tale trasformazione deve fare anche lei parte del gruppo {90, 180, 270, 0}.
Ad esempio se ruoto di 90 e poi ruoto di 180, ottengo una rotazione totale di 270, che è un elemento del gruppo. Se ruoto di 270 e poi ruoto di 180 ottengo una rotazione di 450 gradi, che equivale a 90 gradi. Il gruppo è una “società chiusa“.

Spingendoci un po’ più sull’astratto desideriamo che un gruppo di simmetria, per ritenersi tale ai nostri occhi, abbia queste proprietà importanti:

  • Chiusura: se due elementi appartengono al gruppo, allora anche la loro composizione (cioè applico prima l’uno e poi l’altro) appartiene al gruppo. Lo abbiamo appena visto con le rotazioni.
  • Esistenza dell’identità: anche la trasformazione “non faccio nulla” deve appartenere al gruppo. Come ben sai, il “fare nulla” lascia le cose uguali a come erano prima.
  • Esistenza dell’inverso: se ruoto di 90 gradi e poi voglio tornare indietro, posso ruotare di altri 270 gradi e fare quindi un angolo giro di 360 gradi per tornare da dove ero partito. La composizione 90+270 equivale al “non fare niente”. Quindi diremo che l’elemento 270 gradi è la trasformazione inversa della rotazione di 90 gradi.

Il gruppo di simmetria del quadrato ha, come hai visto, pochi elementi. Esistono però gruppi con un numero infinito di elementi. Considera ad esempio un cerchio

Nel caso del cerchio qualsiasi angolo di rotazione è un elemento del gruppo di simmetria. Se chiudessi gli occhi e io ruotassi il cerchio di 13.42 gradi, dopo non sapresti dire se io abbia eseguito la rotazione o meno.
Il gruppo di simmetria del cerchio è definito da un angolo che può assumere infiniti valori.

“Tutto molto elegante, ma quindi? Non stavamo parlando di trasformazioni di fase?"

Le trasformazioni di fase: il gruppo U(1)

Abbiamo visto che le trasformazioni di fase che si fanno sulle funzioni d’onda sono delle rotazioni nel piano di Gauss, e la notizia è che sono molto simili al gruppo di simmetria del cerchio. Il loro collettivo ha un nome speciale: gruppo U(1).

Un elemento del gruppo può essere rappresentato da un esponenziale avente come esponente l’angolo di cui si sta facendo la rotazione.

“i” è l’unità immaginaria dei numeri complessi: la radice quadrata di -1.

Questa rappresentazione esponenziale degli elementi del gruppo rende più evidenti le proprietà dei gruppi elencate sopra:

Quindi la trasformazione di fase U(1) ha pieno diritto di essere considerata un gruppo di simmetria.

Quando trasformiamo una funzione d’onda moltiplicandola per un elemento del gruppo U(1), stiamo ruotando il suo valore sul piano complesso in ogni punto dello spazio in cui la funzione d’onda è definita. Se facciamo il modulo quadro di questo prodotto, l’effetto è quello di effettuare una rotazione inversa: la composizione delle due cose restituisce l’identità, cioè il non fare niente.

“Continuo a non capire perché porre tanta enfasi sulle simmetrie. È un accidente matematico e nulla di più, perché perderci tutto questo tempo?"

Il motivo di tanta enfasi è il teorema di Noether.

Simmetrie e conservazione

Il teorema di Noether garantisce che per ogni simmetria debba esserci una quantità conservata. Ad esempio se un sistema fisico ha lo stesso gruppo di simmetria del cerchio, la quantità conservata è il momento angolare nel tempo.

È lecito chiedersi quale quantità conservata si nasconda dietro la simmetria U(1).

La teoria della relatività impone che la teoria più semplice per la descrizione di una particella libera sia quella di Dirac

La teoria di Dirac per una particella libera di spin 1/2 e massa m.

Dove la parte di sinistra descrive un cambiamento della funzione d’onda nello spaziotempo, e la parte di destra descrive la massa “m” della particella.

La parte sinistra della teoria di Dirac coinvolge una derivata rispetto alle coordinate spaziotemporali, cioè calcola le variazioni della quantità su cui agisce. In questo caso agisce sulla funzione d’onda a destra.

La teoria di Dirac è stata costruita in modo da essere simmetrica rispetto a una trasformazione di fase globale. Le due funzioni d’onda scritte sopra trasformano infatti in modo opposto sotto una trasformazione U(1)

In modo che il loro prodotto rimanga invariato

La trasformazione di fase globale, ripetiamo ancora una volta, ha l’effetto di ruotare simultaneamente in ogni punto dello spaziotempo il valore della funzione d’onda nel piano di Gauss. In sostanza il valore dell’angolo di rotazione θ è uguale per tutti i punti dello spaziotempo.

Siccome θ è una costante (cioè uguale in tutti i punti dello spazio tempo, da cui il nome globale), la parte di variazione della teoria di Dirac è anch’essa lasciata intatta dalla trasformazione

L’angolo θ non dipende dallo spaziotempo e la derivata non ha effetto su di lui.

Questa simmetria della teoria di Dirac genera una quantità conservata molto importante: la differenza tra numero di particelle e numero di antiparticelle.

Tuttavia la relatività vieta che la trasformazione di una fase in un certo punto dello spaziotempo possa ruotare istantaneamente la fase in un altro punto.

Richiediamo che debba esserci un “tempo di propagazione diverso da zero” tra un punto e l’altro.
L’unico rimedio è assumere che l’angolo di rotazione θ abbia un valore diverso punto per punto nello spaziotempo e che la trasformazione si propaghi ad una velocità finita, trasmessa da un qualche campo ignoto che siamo costretti a introdurre nella teoria:

Introduzione di un campo ignoto nella teoria per fare da mediatore nella trasmissione dell’informazione sulla fase tra i punti dello spaziotempo. “q” è una costante ignota.

Inoltre ora la teoria di Dirac ha perso la simmetria U(1), in quanto la parte di variazione comprende sia la variazione della funzione d’onda, sia la variazione dell’angolo che passa da θ costante a θ(x) funzione dello spaziotempo:

La richiesta che l’angolo di rotazione dipenda dallo spazio rompe la simmetria globale U(1)

quel termine aggiuntivo a destra rovina la festa, perché l’espressione non rimane uguale a se stessa dopo la trasformazione!

“Mi pare che andiamo di male in peggio. Ora non solo dobbiamo aggiungere alla teoria un campo ignoto per rispettare la relatività, ma abbiamo anche un pezzo in più dovuto alla variazione dell'angolo θ(x)! 

Non ha proprio nulla di simmetrico, non ne usciremo mai!"

Siccome nella realtà nessun esperimento è in grado di rivelare questo cambiamento di fase θ(x) che abbiamo effettuato matematicamente, vorremmo eliminare questa imbarazzante rottura della simmetria nella matematica della nostra teoria. E se la via d’uscita fosse proprio il campo ignoto che siamo stati costretti a postulare?

Per preservare sia la simmetria U(1) che la relatività ristretta, possiamo imporre che la nostra teoria sia simmetrica rispetto a un nuovo tipo di trasformazione.

Ad esempio una trasformazione del tipo:

Per quale motivo proprio questa trasformazione? Furbizia!
Infatti facendo entrambe queste trasformazioni, i termini aggiuntivi si eliminano e la nostra teoria rimane invariata, cioè abbiamo di nuovo una simmetria, che chiamiamo per ragioni storiche “simmetria U(1) di Gauge“.

L’azione combinata di entrambe le trasformazioni fa in modo di cancellare il termine aggiuntivo, la teoria è ora simmetrica.

Nasce l’elettrodinamica quantistica

Tramite alcune ragionevoli considerazioni si dimostra che il famigerato campo ignoto non è altro che il campo elettromagnetico. La teoria di Dirac descrive il comportamento delle particelle cariche in presenza di un campo elettromagnetico!

La costante “e” rappresenta la carica dell’elettrone, se vogliamo descrivere l’interazione di un elettrone con un campo elettromagnetico rappresentato da “A”.

Si è presentata la necessità dell’esistenza del campo elettromagnetico nel momento in cui abbiamo richiesto che venisse rispettata la relatività ristretta assieme alla simmetria U(1). Ciò ci ha condotto a considerare un nuovo insieme di trasformazioni sotto le quali la teoria è simmetrica: la U(1) di Gauge.

Inoltre la quantità conservata sotto questa nuova simmetria è proprio la carica elettrica.

La teoria ottenuta da queste considerazioni è nota come elettrodinamica quantistica, ed è la teoria del modello standard meglio verificata sperimentalmente.


PS. ho scritto un libro di testo che rappresenta proprio ciò che avrei desiderato leggere all’inizio dei miei studi di Fisica teorica, per renderla accessibile agli amatori e insegnare le tecniche matematiche necessarie a una sua comprensione universitaria. Si chiama “L’apprendista teorico” , dai un’occhiata per vedere di cosa si tratta. Il libro è acquistabile su Amazon.

Questa immagine ha l'attributo alt vuoto; il nome del file è cover_view_2.png
Questa immagine ha l'attributo alt vuoto; il nome del file è amazon_btn.jpg

9 comments

Rispondi

%d